JP3922063B2 - Porous metal and solid polymer fuel cell using the same - Google Patents

Porous metal and solid polymer fuel cell using the same Download PDF

Info

Publication number
JP3922063B2
JP3922063B2 JP2002082484A JP2002082484A JP3922063B2 JP 3922063 B2 JP3922063 B2 JP 3922063B2 JP 2002082484 A JP2002082484 A JP 2002082484A JP 2002082484 A JP2002082484 A JP 2002082484A JP 3922063 B2 JP3922063 B2 JP 3922063B2
Authority
JP
Japan
Prior art keywords
porosity
metal
porous metal
fuel cell
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002082484A
Other languages
Japanese (ja)
Other versions
JP2003282068A (en
Inventor
修 水野
敬三 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002082484A priority Critical patent/JP3922063B2/en
Publication of JP2003282068A publication Critical patent/JP2003282068A/en
Application granted granted Critical
Publication of JP3922063B2 publication Critical patent/JP3922063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Powder Metallurgy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電極材料として利用する金属多孔体と、それをガス拡散電極として用いた固体高分子型燃料電池に関する。
【0002】
【従来の技術】
電気化学的な発電装置の一種である固体高分子型燃料電池のガス拡散電極として発泡金属を用いる技術が特許第3211378号公報に示され、また、特開平8−138680号には、選択的(スポット的)に低気孔率部を設けた金属多孔体が開示されている。
【0003】
さらに、金属繊維と有機繊維の混毛織布や混毛不織布をガス拡散電極として用いることが特許第3242736号公報に示されている。
【0004】
【発明が解決しようとする課題】
特許第3211378号公報の発泡金属は、ガス拡散性を良くするために気孔率を高めると接触相手部材との間の接触抵抗が大きくなり、一方、その接触抵抗を下げるために気孔率を下げると、ガスの流路抵抗が上昇し、どちらにしても電池の出力低下を招く。
【0005】
また、気孔率を低下させずに接触抵抗を下げる方法として、接触面を化学的に安定した金や白金で覆う方法があるが、これはコストアップを招く。
【0006】
特開平8−138680号公報の金属多孔体は、端子を溶接する部位の強度を高める目的でその部位を低気孔率にしているが、低気孔率部をスポット的に配置するだけでは、接触抵抗低減に対する寄与度が低い。
【0007】
さらに、特許第3242736号の混毛織布や混毛不織布は、繊維の集合体であり、厚み方向に何本もの繊維が積層して電気通路を構成している。そのため、各繊維間の接触抵抗が合算されて厚み方向の電気抵抗が大きくなる。
【0008】
また、これ等は気孔率が小さい(ガスの流れを遮断する面積が大きい)ため、ガスの流路抵抗が大きく、ガスの拡散性や触媒反応層の各部の均一反応性に問題が生じて燃料電池の総合効率を低下させる。
【0009】
そこで、この発明は、金属多孔体の気孔率低下を極力抑えて接触相手部材との間の接触抵抗を貴金属などを使わずに低下させることを課題としている。
【0010】
【課題を解決するための手段】
上記の課題を解決するため、この発明においては、固体高分子型燃料電池のガス拡散電極用として以下のように構成された金属多孔体、即ち、Fe−Crを主成分とした合金、又はそれに更に、Ni、Mo、Cu、B、Al、Si、Tiの中から選ばれた少なくとも1種の元素を10%未満の割合で添加した合金で形成され、平均孔径が50μm〜1mmの3次元網構造を有し、一表面又は両表面部に低気孔率層が設けられ、その低気孔率層を除く箇所の気孔率が85%以上、99%以下であり、低気孔率層の気孔率が前記低気孔率層を除く箇所の気孔率よりも少なくとも2%低くなっている金属多孔体を提供する。
【0011】
また、この金属多孔体を、高分子電解質膜の両面部にガス拡散電極として配置した固体高分子型燃料電池を併せて提供する。
【0014】
【作用】
この発明の金属多孔体は、一面又は両面に低気孔率層を有しており、その低気孔率層が相手部材(電極触媒層やセパレータ)と接触するので、相手部材との接触面積が増加し、高価な貴金属等を使わなくても接触抵抗を下げることができる。
【0015】
また、表層部を除く部分は、高気孔率を確保でき、ガス透過性能を高めて触媒反応を促進することができる。
【0016】
従って、この金属多孔体を高分子電解質膜の両面部にガス拡散電極として配置すれば、ガス透過性と電気伝導性に優れる金属多孔体の特性が生かされ、それに表面部の気孔率低下による電極触媒層或いはセパレータとの接触抵抗低減の効果がプラスされて燃料電池の出力向上が可能になる。
【0017】
ここで、金属多孔体の平均孔径を50μm〜1mmの範囲に限定したのは、その平均孔径が50μm未満では流路抵抗が大きくてガスの均一拡散が望み難くなり、一方、その平均孔径が1mmを越えると、相手部材との接触点が減少して接触抵抗が大きくなるからである。
【0018】
また、中心部と表面の低気孔率層の気孔率差が小さ過ぎると、接触抵抗低減の効果が十分に発揮されないので、その差は少なくとも2%とした。
【0019】
なお、金属多孔体の気孔率を下げ過ぎると、ガスの透過性や電気化学反応により電極触媒層で発生する水の排出性が悪化する。この不具合を避けるために、表面の低気孔率層を除く部位の気孔率を85%以上にするのがよい。また、一方で金属多孔体の弾力性を確保するために、低気孔率層を除く部位の気孔率は99%以下にするのがよい。
【0020】
このほか、金属多孔体は、電極用途での耐久性を考えて強度及び耐食性に優れる金属で形成するのが望ましい。
【0021】
Fe−Cr又はNi−Crを主体とした炭素を含む合金や、それに更にNi、Mo、Cu、B、Al、Si、Tiの中から選ばれた少なくとも1種の元素を添加した合金で形成される金属多孔体は、硫酸等の腐食環境において溶出が抑えられ、電池用電極としての適正が高まる。
【0022】
【発明の実施の形態】
図1及び図2に、この発明の金属多孔体の断面を模式化して示す。これ等の金属多孔体1は、平均孔径が50μm以上、1mm以下の3次元網目構造を有しており、シート状の外観をなす。
【0023】
この金属多孔体1は、高気孔率層2と低気孔率層3が積層された構造になっている。低気孔率層3は、図1に示すように一表面部又は図2に示すように両表面部に設けられ、中心部を含めた残りの部位が高気孔率層2になっている。
【0024】
高気孔率層2の気孔率は、既に述べたように85%以上、99%以下が好ましい。低気孔率層3の気孔率は、高気孔率層の気孔率に比べて2%以上低くする。
【0025】
気孔率が厚み方向途中で変化したこの金属多孔体1は、高気孔率層2と低気孔率層3が一体になったものが両層間での接触抵抗を無くせて好ましい。そのような構造の金属多孔体1は、気孔率の異なる金属多孔体を積層して焼結一体化する方法や、金属多孔体の表面に金属と樹脂の混合スラリーを塗布してこれを焼結し、表層部の骨格を太らせる方法などで製造することができる。
【0026】
金属多孔体は、発泡樹脂等を出発材にして特開昭57−174484号公報に示されるメッキ法や、特公昭38−17554号公報に示される塗着スラリーの焼結法などで製造され、従って、気孔率の異なる発泡樹脂等を積層したものを出発材にし、これにメッキした後、出発材を焼却除去し、必要に応じて後工程で金属の拡散処理を行って合金化する方法や、積層出発材に金属粉と樹脂のスラリーを塗布して焼結する方法でもこの発明の金属多孔体を製造し得るが、上述した方法の方が量産品を利用でき、生産性に勝る。
【0027】
金属多孔体1は、本出願人が特願2000−140037号(特開2001−226723号)で提案しているものなどが強度、耐食性、耐熱性に優れていて好ましい。特開2001−226723号の金属多孔体は、主としてFe及びCrを含む合金から成り、組織中にCr炭化物及び/又はFeCr炭化物が均一分散した骨格を有する。また、カーボン含有量は0.1%以上、3.5%以下が好ましいとしており、必要に応じてNi、Cu、Mo、Al、P、B、Si、Tiの中から選ばれた少なくとも1種の元素を更に添加したものもある。
【0028】
カーボンを含むNi−Cr合金(これは上記公報には開示されていない)も強度及び耐食性に優れており、金属多孔体1の材料として使用できる。
【0029】
ここで、カーボンを含むことにより金属多孔体の強度が向上するため、触媒電極層及びセパレータと積層加圧されたときに十分な反力があるため接触抵抗の経時劣化が殆どなく、燃料電池の耐久劣化が小さくなる。また、Cr炭化物相として金属多孔体中に均一分散されるため、不動態膜が形成されても導電性のある炭化物相が接触抵抗の低減にも寄与する。
【0030】
以下に、より詳細な実施例を挙げる。
−実施例1−
表1に示す金属多孔体(一面を低気孔率にし、層2、3を一体化した図1の構造)を製作し、その多孔体の接触抵抗を測定した。結果を表2に示す。
【0031】
接触抵抗は、金属多孔体の両面(低気孔率層の表面と高気孔率層の表面)を表面の清浄なCu電極板に1MPaの圧力で押し付けて測定した。
【0032】
【表1】

Figure 0003922063
【0033】
【表2】
Figure 0003922063
【0034】
−実施例2−
高分子電解質膜としてナフィオン(デュポン社製、膜厚150μm)を用い、その膜の両面に白金触媒を担持したカーボン多孔質体を接合したものを用意してそれを挟むように両側に表1の金属多孔体を配置し、さらに、その金属多孔体の外側にカーボン電極を重ね合わせて固体高分子型燃料電池を作成した。また、比較例として、表1のNo.3の金属多孔体を低気孔率層を設けずに高気孔率層のみとしたものを用いて同様の燃料電池を作製した。なお、この実施例においては、表1の金属多孔体として、低気孔率層を両面に設けたものを適用した。
【0035】
これ等の試作品の性能評価として、電流密度10mA/cm2 時のセル電圧を測定した。結果を表3に示す。
【0036】
【表3】
Figure 0003922063
【0037】
表3から判るように、この発明の金属多孔体を用いると、ガス拡散電極の接触抵抗が低減されて電池の出力が高まる。
【0038】
【発明の効果】
以上述べたように、この発明の金属多孔体は、表層部の気孔率を下げてその他の部位の気孔率を高くするので、ガスの透過性、電極触媒層で生じた水の排出性を悪化させずに、また、高価な貴金属等を使わずに接触抵抗を下げることができ、燃料電池の出力を経済的に高めることを可能ならしめる。
【0039】
なお、金属多孔体の材質を特定したものは、腐食環境においても溶出を抑えて耐久性を高めることができる。
【0040】
また、低気孔率部を除く部位の気孔率を85%以上、99%以下にしたものは、十分なガス透過性と十分な弾力性を確保できる。
【0041】
従って、この発明の金属多孔体をガス拡散電極として用いた固体高分子型燃料電池は、コスト増を招かずに出力特性を高めることができる。
【図面の簡単な説明】
【図1】この発明の金属多孔体の一例を示す断面の模式図
【図2】他の例の断面の模式図
【符号の説明】
1 金属多孔体
2 高気孔率層
3 低気孔率層[0001]
BACKGROUND OF THE INVENTION
This invention includes a metal porous body for use as an electrode materials, a solid polymer electrolyte fuel cell using the same as a gas diffusion electrode.
[0002]
[Prior art]
Japanese Patent No. 3211378 discloses a technique of using a foam metal as a gas diffusion electrode of a polymer electrolyte fuel cell which is a kind of electrochemical power generator, and JP-A-8-138680 discloses a selective ( A metal porous body provided with a low porosity portion in a spot-like manner is disclosed.
[0003]
Furthermore, Japanese Patent No. 3242636 discloses that a mixed woven fabric or mixed non-woven fabric of metal fibers and organic fibers is used as a gas diffusion electrode.
[0004]
[Problems to be solved by the invention]
In the metal foam of Japanese Patent No. 3211378, if the porosity is increased in order to improve gas diffusibility, the contact resistance with the contact member increases, while the porosity decreases in order to reduce the contact resistance. The gas flow path resistance increases, and in any case, the output of the battery decreases.
[0005]
Further, as a method for reducing the contact resistance without reducing the porosity, there is a method of covering the contact surface with chemically stable gold or platinum, but this increases the cost.
[0006]
The porous metal body disclosed in Japanese Patent Laid-Open No. 8-138680 has a low porosity for the purpose of increasing the strength of the portion where the terminal is welded. Low contribution to reduction.
[0007]
Furthermore, the mixed hair woven fabric or the mixed hair nonwoven fabric disclosed in Japanese Patent No. 3242636 is an aggregate of fibers, and a number of fibers are laminated in the thickness direction to form an electrical path. For this reason, the contact resistance between the fibers is added together, and the electrical resistance in the thickness direction is increased.
[0008]
In addition, since the porosity is small (the area for blocking the gas flow is large), the gas flow path resistance is large, causing problems in the gas diffusivity and the uniform reactivity of each part of the catalytic reaction layer. Reduce the overall efficiency of the battery.
[0009]
Accordingly, an object of the present invention is to reduce the contact resistance with the contact partner member without using a noble metal or the like by suppressing the decrease in the porosity of the metal porous body as much as possible.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention, a porous metal body configured as follows for a gas diffusion electrode of a polymer electrolyte fuel cell, that is, an alloy mainly composed of Fe-Cr, or a Furthermore, it is formed of an alloy to which at least one element selected from Ni, Mo, Cu, B, Al, Si, and Ti is added at a ratio of less than 10%, and has an average pore diameter of 50 μm to 1 mm. It has an eye structure, a low porosity layer is provided on one surface or both surface portions, and the porosity of the portion excluding the low porosity layer is 85% or more and 99% or less, and the porosity of the low porosity layer There is provided a porous metal body has at least 2% lower Kuna' than the porosity of a portion excluding the low porosity layer.
[0011]
The present invention also provides a solid polymer fuel cell in which this metal porous body is disposed as a gas diffusion electrode on both sides of a polymer electrolyte membrane.
[0014]
[Action]
The metal porous body of the present invention has a low porosity layer on one or both surfaces, and the low porosity layer contacts the mating member (electrode catalyst layer or separator), so the contact area with the mating member increases. In addition, the contact resistance can be reduced without using expensive precious metals.
[0015]
In addition, the portion excluding the surface layer portion can ensure a high porosity, enhance the gas permeation performance, and promote the catalytic reaction.
[0016]
Therefore, if this metal porous body is arranged as a gas diffusion electrode on both sides of the polymer electrolyte membrane, the characteristics of the metal porous body excellent in gas permeability and electrical conductivity are utilized, and the electrode due to a decrease in the porosity of the surface portion. The effect of reducing the contact resistance with the catalyst layer or the separator is added, and the output of the fuel cell can be improved.
[0017]
Here, the average pore diameter of the metal porous body is limited to the range of 50 μm to 1 mm because if the average pore diameter is less than 50 μm, the flow resistance is large and it is difficult to achieve uniform gas diffusion, while the average pore diameter is 1 mm. This is because the contact point with the mating member decreases and the contact resistance increases.
[0018]
In addition, if the porosity difference between the central portion and the low porosity layer on the surface is too small, the effect of reducing contact resistance is not sufficiently exhibited, so the difference was set to at least 2%.
[0019]
In addition, when the porosity of a metal porous body is reduced too much, the permeability | transmittance of the water which generate | occur | produces in an electrode catalyst layer by gas permeability or an electrochemical reaction will deteriorate. In order to avoid this problem, the porosity of the portion excluding the low porosity layer on the surface should be 85% or more. On the other hand, in order to ensure the elasticity of the metal porous body, the porosity of the portion excluding the low porosity layer is preferably 99% or less.
[0020]
In addition, it is desirable that the porous metal body is made of a metal having excellent strength and corrosion resistance in consideration of durability in electrode applications.
[0021]
It is formed of an alloy containing carbon mainly composed of Fe—Cr or Ni—Cr, and an alloy to which at least one element selected from Ni, Mo, Cu, B, Al, Si, and Ti is further added. The metal porous body is suppressed from elution in a corrosive environment such as sulfuric acid, and the suitability as a battery electrode is enhanced.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 schematically show a cross section of the porous metal body of the present invention. These metal porous bodies 1 have a three-dimensional network structure with an average pore diameter of 50 μm or more and 1 mm or less, and have a sheet-like appearance.
[0023]
This metal porous body 1 has a structure in which a high porosity layer 2 and a low porosity layer 3 are laminated. The low porosity layer 3 is provided on one surface portion as shown in FIG. 1 or on both surface portions as shown in FIG. 2, and the remaining portion including the central portion is the high porosity layer 2.
[0024]
As described above, the porosity of the high porosity layer 2 is preferably 85% or more and 99% or less. The porosity of the low-porosity layer 3 is 2% or more lower than the porosity of the high-porosity layer.
[0025]
In the metal porous body 1 in which the porosity is changed in the thickness direction, it is preferable that the high-porosity layer 2 and the low-porosity layer 3 are integrated to eliminate contact resistance between both layers. The porous metal body 1 having such a structure is obtained by laminating porous metal bodies having different porosities and integrating them by sintering, or by applying a mixed slurry of metal and resin on the surface of the metal porous body and sintering it. And it can manufacture by the method of thickening the frame | skeleton of a surface layer part.
[0026]
The metal porous body is manufactured by using a foaming resin or the like as a starting material by a plating method disclosed in JP-A-57-174484, a coating slurry sintering method disclosed in JP-B-38-17554, and the like. Therefore, a laminate of foamed resins having different porosities is used as a starting material, and after plating on this, the starting material is incinerated and removed, and if necessary, a metal diffusion treatment is performed in a subsequent process to form an alloy. The porous metal body of the present invention can also be manufactured by a method of applying a metal powder and resin slurry to a lamination starting material and sintering, but the above-described method can use a mass-produced product and is superior in productivity.
[0027]
As the metal porous body 1, the one proposed by the present applicant in Japanese Patent Application No. 2000-140037 (Japanese Patent Laid-Open No. 2001-226723) is preferable because of its excellent strength, corrosion resistance, and heat resistance. The metal porous body of JP 2001-226723 is mainly composed of an alloy containing Fe and Cr, and has a skeleton in which Cr carbide and / or FeCr carbide is uniformly dispersed in the structure. Further, the carbon content is preferably 0.1% or more and 3.5% or less, and at least one selected from Ni, Cu, Mo, Al, P, B, Si, Ti as necessary. Some of these elements are further added.
[0028]
A Ni—Cr alloy containing carbon (which is not disclosed in the above publication) is also excellent in strength and corrosion resistance, and can be used as a material for the porous metal body 1.
[0029]
Here, since the strength of the metal porous body is improved by including carbon, there is a sufficient reaction force when being laminated and pressurized with the catalyst electrode layer and the separator. Durability deterioration is reduced. Further, since the Cr carbide phase is uniformly dispersed in the metal porous body, even if a passive film is formed, the conductive carbide phase contributes to a reduction in contact resistance.
[0030]
More detailed examples are given below.
Example 1
The porous metal body shown in Table 1 (the structure of FIG. 1 in which one surface has a low porosity and the layers 2 and 3 are integrated) was manufactured, and the contact resistance of the porous body was measured. The results are shown in Table 2.
[0031]
The contact resistance was measured by pressing both surfaces of the metal porous body (the surface of the low porosity layer and the surface of the high porosity layer) against a clean Cu electrode plate with a pressure of 1 MPa.
[0032]
[Table 1]
Figure 0003922063
[0033]
[Table 2]
Figure 0003922063
[0034]
-Example 2-
As a polymer electrolyte membrane, Nafion (manufactured by DuPont, 150 μm thick) was prepared, and a porous carbon body carrying a platinum catalyst on both sides of the membrane was prepared. A porous metal body was disposed, and a carbon electrode was superimposed on the outside of the porous metal body to produce a polymer electrolyte fuel cell. Further, as a comparative example, a similar fuel cell was manufactured using a porous metal body of No. 3 in Table 1 in which only a high porosity layer was provided without providing a low porosity layer. In this example, the metal porous body shown in Table 1 was provided with low porosity layers on both sides.
[0035]
As a performance evaluation of these prototypes, the cell voltage at a current density of 10 mA / cm 2 was measured. The results are shown in Table 3.
[0036]
[Table 3]
Figure 0003922063
[0037]
As can be seen from Table 3, when the porous metal body of the present invention is used, the contact resistance of the gas diffusion electrode is reduced and the output of the battery is increased.
[0038]
【The invention's effect】
As described above, the porous metal body of the present invention lowers the porosity of the surface layer portion and increases the porosity of other parts, so that the gas permeability and the discharge of water generated in the electrode catalyst layer are deteriorated. In addition, the contact resistance can be lowered without using expensive precious metals or the like, and the output of the fuel cell can be increased economically.
[0039]
In addition, what specified the material of the metal porous body can suppress elution in a corrosive environment, and can improve durability.
[0040]
Moreover, what made the porosity of the site | part except a low-porosity part 85% or more and 99% or less can ensure sufficient gas permeability and sufficient elasticity.
[0041]
Therefore, the polymer electrolyte fuel cell using the porous metal body of the present invention as a gas diffusion electrode can improve the output characteristics without increasing the cost.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a porous metal body of the present invention. FIG. 2 is a schematic cross-sectional view of another example.
1 Porous metal 2 High porosity layer 3 Low porosity layer

Claims (2)

固体高分子型燃料電池のガス拡散電極として使用する、Fe−Crを主成分とした合金、又はそれに更に、Ni、Mo、Cu、B、Al、Si、Tiの中から選ばれた少なくとも1種の元素を10%未満の割合で添加した合金で形成された金属多孔体であって、
平均孔径が50μm〜1mmの3次元網構造を有し、一表面又は両表面部に低気孔率層が設けられ、その低気孔率層を除く箇所の気孔率が85%以上、99%以下であり、低気孔率層の気孔率が前記低気孔率層を除く箇所の気孔率よりも少なくとも2%低くなっている金属多孔体。
An alloy based on Fe—Cr used as a gas diffusion electrode of a polymer electrolyte fuel cell, or at least one selected from Ni, Mo, Cu, B, Al, Si, and Ti A porous metal body formed of an alloy to which an element of less than 10% is added,
The average pore diameter has a three-dimensional network structure of 50Myuemu~1mm, one surface or both surfaces portions in the low porosity layer is provided, the porosity of the region other than the low porosity layer is 85% or more, 99% or less , and the low porosity layer at least 2% low Kuna' in which the porous metal body than the porosity of the portion porosity excluding the low porosity layer.
請求項1に記載の金属多孔体を、高分子電解質膜の両面部にガス拡散電極として配置した固体高分子型燃料電池。A solid polymer fuel cell comprising the porous metal body according to claim 1 disposed as a gas diffusion electrode on both sides of a polymer electrolyte membrane.
JP2002082484A 2002-03-25 2002-03-25 Porous metal and solid polymer fuel cell using the same Expired - Fee Related JP3922063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002082484A JP3922063B2 (en) 2002-03-25 2002-03-25 Porous metal and solid polymer fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002082484A JP3922063B2 (en) 2002-03-25 2002-03-25 Porous metal and solid polymer fuel cell using the same

Publications (2)

Publication Number Publication Date
JP2003282068A JP2003282068A (en) 2003-10-03
JP3922063B2 true JP3922063B2 (en) 2007-05-30

Family

ID=29230650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002082484A Expired - Fee Related JP3922063B2 (en) 2002-03-25 2002-03-25 Porous metal and solid polymer fuel cell using the same

Country Status (1)

Country Link
JP (1) JP3922063B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8002166B2 (en) 2004-12-28 2011-08-23 Technical University Of Denmark Method of producing metal to glass, metal to metal or metal to ceramic connections
CN101137456B (en) * 2005-01-12 2011-09-14 丹麦科技大学 Method for sintering multilayer structure, multilayer structure and solid oxide fuel cell
US8252478B2 (en) 2005-01-31 2012-08-28 Technical University Of Denmark Redox-stable anode
ES2434442T3 (en) 2005-08-31 2013-12-16 Technical University Of Denmark Solid reversible stacking of oxide fuel cells and method of preparing it
JP5061454B2 (en) * 2005-11-24 2012-10-31 トヨタ自動車株式会社 Fuel cell
WO2007069404A1 (en) * 2005-12-16 2007-06-21 Kabushiki Kaisha Equos Research Electrode for fuel battery, cell for fuel battery, and stack for fuel battery
AT8975U1 (en) * 2006-02-27 2007-03-15 Plansee Se POROUS BODY
ATE550802T1 (en) 2006-11-23 2012-04-15 Univ Denmark Tech Dtu METHOD FOR PRODUCING REVERSIBLE SOLID OXIDE CELLS
JP5151270B2 (en) * 2007-06-26 2013-02-27 日産自動車株式会社 Fuel cell components
JP5298469B2 (en) * 2007-07-04 2013-09-25 日産自動車株式会社 Gas diffusion electrode for fuel cell
JP5439740B2 (en) * 2008-05-14 2014-03-12 トヨタ自動車株式会社 Fuel cell and fuel cell stack
ES2698062T3 (en) * 2012-06-13 2019-01-30 Nuvera Fuel Cells Llc Flow structures for use with an electrochemical cell
JP5888136B2 (en) * 2012-06-13 2016-03-16 コニカミノルタ株式会社 FUEL GENERATOR AND FUEL CELL SYSTEM INCLUDING THE SAME
JP2014089893A (en) * 2012-10-30 2014-05-15 Sumitomo Electric Ind Ltd Fuel cell
JP5833786B1 (en) * 2015-06-20 2015-12-16 株式会社健明 ELECTRODE MATERIAL FOR FUEL CELL, ITS MANUFACTURING METHOD, AND FUEL CELL
CN105161732B (en) * 2015-07-03 2018-01-30 中国科学院宁波材料技术与工程研究所 A kind of metal air battery cathodes material and preparation method thereof and metal-air battery
WO2017043365A1 (en) * 2015-09-10 2017-03-16 住友電気工業株式会社 Metal porous body, fuel cell, and method for manufacturing metal porous body
JP6701601B2 (en) * 2015-09-10 2020-05-27 住友電気工業株式会社 Metal porous body, fuel cell, and method for producing metal porous body
JP6412485B2 (en) * 2015-11-20 2018-10-24 株式会社健明 Fuel cell electrode material and method for producing the same
JP2020004527A (en) * 2018-06-26 2020-01-09 株式会社グラヴィトン Solid polymer electrolyte fuel cell and electrode manufacturing method

Also Published As

Publication number Publication date
JP2003282068A (en) 2003-10-03

Similar Documents

Publication Publication Date Title
JP3922063B2 (en) Porous metal and solid polymer fuel cell using the same
JP5473273B2 (en) Reinforced polymer electrolyte composite membrane, membrane electrode assembly for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP3549241B2 (en) Electrode for polymer solid electrolyte fuel cell and joined body thereof with polymer solid electrolyte
AU779425B2 (en) Electrochemical electrode for fuel cell
CN103891023B (en) Porous current collector, method for manufacturing same, and fuel cell that uses porous current collector
JP6614131B2 (en) Porous current collector, fuel cell, and method for producing porous current collector
JP6971534B2 (en) Membrane electrode complex and electrochemical cell
WO2016002579A1 (en) Film electrode composite, method for manufacturing film electrode composite, fuel cell, and method for manufacturing fuel cell
JP2004273359A (en) Porous member, manufacturing method of the same, and electrochemical device using the same
JP2013501336A (en) Fuel cell
JP4475866B2 (en) Fuel cell
JP2011029076A (en) Gas diffusion layer for fuel cell, and method of manufacturing gas diffusion layer for fuel cell, fuel cell, and fuel cell automobile
JP3922056B2 (en) Porous member, method for producing the same, and polymer electrolyte fuel cell using the same
EP1724863A1 (en) Metal foam materials in alkaline fuel cells and alkaline electrolysers
JP5111869B2 (en) Fuel cell
JP2020122172A (en) Water electrolysis laminate and water electrolysis apparatus using the same
JP6160386B2 (en) Fuel cell
JP4406820B2 (en) Oxygen electrode current collector of solid oxide fuel cell
JP5005294B2 (en) Method for producing porous metal electrode
JP2004047125A (en) Porous metal gas diffusing sheet for solid high polymer fuel cell exhibiting superior contact surface conductivity for long period
JPH07320744A (en) One-stage production of gas diffusion electrode
JP2006059661A (en) Solid polymer fuel cell
JP4370784B2 (en) Solid oxide fuel cell
JP2004047126A (en) Porous metal gas diffusing sheet for solid high polymer fuel cell exhibiting superior contact surface conductivity for long period
JP2005158518A (en) Manufacturing method of junction of electrolyte membrane and electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3922063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees