JP3919339B2 - Vacuum evaporative processing product cooling device - Google Patents

Vacuum evaporative processing product cooling device Download PDF

Info

Publication number
JP3919339B2
JP3919339B2 JP17672298A JP17672298A JP3919339B2 JP 3919339 B2 JP3919339 B2 JP 3919339B2 JP 17672298 A JP17672298 A JP 17672298A JP 17672298 A JP17672298 A JP 17672298A JP 3919339 B2 JP3919339 B2 JP 3919339B2
Authority
JP
Japan
Prior art keywords
cooling chamber
cooling
vacuum
processed product
door
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17672298A
Other languages
Japanese (ja)
Other versions
JPH11350047A (en
Inventor
芳昭 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoei Shokai Co Ltd
Original Assignee
Hoei Shokai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoei Shokai Co Ltd filed Critical Hoei Shokai Co Ltd
Priority to JP17672298A priority Critical patent/JP3919339B2/en
Publication of JPH11350047A publication Critical patent/JPH11350047A/en
Application granted granted Critical
Publication of JP3919339B2 publication Critical patent/JP3919339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は真空蒸発処理品冷却装置及びそこにおける処理品の室間移送装置、より詳細には、自動車、家電製品、OA機器等の廃棄品の表面付着物を真空蒸発させて回収すると共に、再利用する金属を得る真空蒸発回収装置において、真空加熱処理した処理品を効率よく冷却し、金属の生産効率を向上させ得る真空蒸発処理品冷却装置及びそこにおける処理品の室間移送装置に関するものである。
【0002】
【従来の技術】
自動車、OA機器等の廃棄物を真空加熱して蒸発処理し、再利用可能な金属を生産することが行われている。その場合、真空加熱によってカドミニウム、鉛、亜鉛等を真空蒸発させた後の金属は、できるだけ酸化しないような状態で回収する必要がある。その回収に当っては冷却処理がなされるが、ロット当りの処理量が1〜3トンと多くなると、通常90〜150分もの冷却時間が必要となり、真空蒸発回収処理が短時間の内に済んだとしても、冷却処理に長時間とられるため、結果的に生産効率が悪いことになる。
【0003】
【発明が解決しようとする課題】
上述したように、従来の真空蒸発回収装置においては、真空蒸発物回収後の処理品冷却のために多くの時間を取られるために、再利用のための金属の生産効率が悪い。
【0004】
そこで本発明は、真空蒸発物回収後の処理品の冷却処理を効率よく短時間の内に行うことができ、以て再利用のための金属の生産効率を大幅に向上させることができる真空蒸発処理品冷却装置及びそこにおける処理品の室間移送装置を提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明は、真空蒸発回収装置における真空加熱室に、断熱扉を介して第1冷却室を設置し、前記第1冷却室に真空扉を介して第2冷却室を設置し、更に必要に応じ前記第2冷却室に真空扉(好ましくは二重真空扉)を介して第3並びにそれ以下の冷却室を連設し、前記真空加熱室に、処理品を前記第1冷却室へ移動させるための処理品搬出手段を設けると共に、前記各冷却室に冷却手段、減圧手段及び処理品搬送手段を設けて、前記真空加熱室から最後段の前記冷却室まで処理品の移動を可能にし、以て前記処理品を、前記冷却室間移動に伴って段階的に冷却していくことを可能にした真空蒸発処理品冷却装置、を以て上記課題を解決した。
【0006】
好ましくは、前記冷却室同志を、真空バルブを備えたバイパスで連通させる。また、前記処理品搬出手段をプッシャ−駆動とすると共に、前記処理品搬送手段をロ−ラ−駆動とし、前記ロ−ラ−駆動として、搬送ロ−ラ−を前記冷却室の下部を横切らせ、その両端を前記冷却室外に出してそこに添設された真空シ−ルケ−ス内に収めたものを用いる。
【0007】
【発明の実施の形態】
本発明の実施の形態を添付図面に依拠して説明する。図1は本発明に係る冷却室付き真空蒸発回収装置の概略平面図であり、図中1は真空加熱室、2は第1冷却室、3は第2冷却室、4は第3冷却室である。この例では冷却室の数は3室であるが、増減することもある。即ち、第3冷却室4がなくて、第2冷却室が最後段となる場合や、第3冷却室4に更に第4冷却室が連設される場合があり得る。真空加熱室1と第1冷却室2間には、断熱性能を備えた断熱扉6が配備され、各冷却室2〜4間には真空保持性能を備えた真空扉7、8が配備される。また、最後段の第3冷却室4とそれに連設される炉外搬出路5との間にも真空扉9が設置される。
【0008】
第2冷却室3から最終段冷却室に至る間の冷却室間に設置される真空扉、即ち図示した例では第2冷却室3と第3冷却室4間に設置される真空扉8は、図7に示すように、真空性保持のためのパッキン8cを備えた真空扉8a、8bを二重に配置した二重真空扉とすることが好ましい。
【0009】
その理由は次の通りである。第1冷却室2は常時真空状態に保持されているために、第2冷却室3との間に設置される真空扉7は常に第1冷却室2側に引かれた状態となる。そのため、真空扉7は第2冷却室3側に1枚設置すれば足りる(図7に示す真空扉8bに相当するもの1枚で足りる。)。これに対し真空扉8の場合は、その両側(第2冷却室3と第3冷却室4)において真空度が変化するため、その変化に伴っていずれかの方向に引かれることになる。そのため、両方向からの吸引力に対処するため、図7に示すように、各室側に真空扉8a、8bを設置する必要があるのである。
【0010】
なお、真空扉を1枚のみとし、これに吸引力に対処するためのストッパ−を設置することも考えられるが、耐久性の点で問題が残る。
【0011】
各冷却室2〜4には真空ポンプ10が設置され、また各冷却室間は、真空バルブ(真空用電磁弁)13を備えたバイパス11、12で連通される。最終段の第3冷却室4にはリ−クバルブ14が取り付けられる。15は処理品を示している。冷却室3、4には、処理品冷却のための冷却ガス(普通チッ素ガス)が供給される。なお、第1冷却室2内は真空冷却される。
【0012】
上記構成のように冷却室が複数ある場合、各冷却室間を仕切る真空扉7、8の開閉に当っては、その両側の冷却室の圧力を同一にしておく必要がある。そこで本発明では、各冷却室2〜4間を連通させるバイパス11、12を設け、各バイパス11、12の途中に真空バルブ13を配置した。
【0013】
これにより、真空扉7、8の開閉に先立ち、真空バルブ13を開いてバイパス11、12を開通させることにより冷却室2、3間並びに冷却室3、4間を連通させ、以て冷却室2、3間並びに冷却室3、4間を同圧にすることが可能となった。また、冷却室3、4間においては、前段の冷却室3の冷却ガスを後段の冷却室4に導入して再利用することになるため、冷却ガスの使用量が半減し、前段側の冷却室3内の残存冷却ガス量も半減するので、真空引きに要する時間が短縮される。
【0014】
一番外側の第3冷却室4においては、冷却された処理品が外部に搬出されるが、その際に外気が室内に流入して冷却ガスに混入する。その状態のままで冷却すると酸化物を生成する虞があるので、真空ポンプ10の作用で流入外気を排出した後、チッ素ガスを供給してから冷却することが行われる。
【0015】
次に、上記装置における処理品の処理工程について説明する。真空加熱室1で真空加熱され、蒸発物を回収された処理品15は、断熱扉6を開けて第1冷却室2に搬送される。その際真空扉7は閉じ、また、真空バルブ13が閉じてバイパス11は閉鎖されている。断熱扉6には真空シ−ルがなく、真空加熱室1と第1冷却室2は同圧となっている。処理品15の搬入後断熱扉6が閉じ、第1冷却室2内が真空にされることにより処理品15の一次冷却が行われる。
【0016】
一次冷却終了後、冷却室2、3間の真空バルブ13が開いてバイパス11が開通すると共に真空扉7が開くが、それに先立ち、第2冷却室3においては、バイパス11、12が閉じると共に真空扉7及び二重真空扉8が閉じた状態において真空ポンプ10が動作し、室内が所定の真空度にされる。ここにおいて真空扉8が第2冷却室3側に1枚のみであると、上述したようにそれが負圧によって第2冷却室3側に引張られ、室間の真空シ−ルが達成できず、真空引を行うことができない。
【0017】
次いで、バイパス11が開くと共に真空扉7が開き、処理品15が第1冷却室2より第2冷却室3に搬送される。処理品15が第2冷却室3に搬送された後、バイパス11が閉鎖されると共に真空扉7が閉じ、第2冷却室3内に冷却ガスが供給されて処理品15の二次冷却が行われる。
【0018】
二次冷却終了後バイパス12が開通し、第2冷却室3内の冷却ガスの約2分の1が第3冷却室4内に流入するが、それに先立ち、第3冷却室4のリ−クバルブ14と真空扉9は共に閉じられ、第3冷却室4内は真空ポンプ10の作用で設定真空度に減圧されている。このように冷却ガスが流通することにより、第2冷却室3と第3冷却室4とが同一条件下になったところで二重真空扉8が開き、処理品15が第2冷却室3から第3冷却室4へと搬送される。その後バイパス12が閉鎖されると共に真空扉8が閉じ、第3冷却室4に冷却ガスが供給されて処理品15の三次冷却が行われる。
【0019】
三次冷却終了後リ−クバルブ14が開くことにより、第3冷却室4内が外気圧と同圧になったところで真空扉9が開き、処理品15が炉外搬出路5から炉外へ搬出される。処理品15の搬出後、リ−クバルブ14が閉じると共に真空扉9が閉じ、第3冷却室4は真空ポンプ10の作用で再び設定真空度に減圧される。以後上記工程が繰り返される。この工程によった場合は、1ロット当たりの各冷却室における冷却時間が従来の約3分の1となる。
【0020】
次に、本発明に係る装置における処理品搬送手段について説明する。一般に連続炉の駆動装置としては、ロ−ラ−駆動とプッシャ−駆動が考えられる。この内ロ−ラ−駆動は炉内の処理室が多い場合に使用され、プッシャ−駆動は単室の場合に使用されている。しかるに、これらの駆動装置を高温炉内で使用する場合、種々故障の原因となる事態が発生する。
【0021】
即ち、ロ−ラ−駆動においては、高温下にある炉内において故障が発生してロ−ラ−駆動が停止した場合、処理品の荷重によりロ−ラ−に荷重歪みが生じ、ロ−ラ−自身も長年の内には歪みを起こす。この歪みが生ずると、処理品が直進せずに炉壁に当たり、停止するようなことが起こる。このことは、プッシャ−駆動において、処理品を載せるトレ−やトレ−を滑動させるスキットレ−ルを金属製とした場合にも起こる。
【0022】
また、ロ−ラ−駆動においては駆動部が炉外に出ているため、炉内温度が熱伝導により駆動部チェ−ンやスプロケットに伝達され、それらが伸縮する。そのため、駆動部に故障が起きやすい。更に、炉外ロ−ラ−部の真空シ−ルを完全に行うことができないため、空気の吸い込みが多くなり、真空度の保持ができない。
【0023】
現在これらの問題を解決する手段としては、ロ−ラ−シャフトを管状にし、その中に水を供給して水冷し、真空シ−ル部にはチッ素ガスを供給することが行われている。この方法の欠点としては、水冷による加熱エネルギ−のロスが大きくなる点、チッ素ガスが真空度を阻害して金属蒸発温度を高める点、ランニングコストが大幅にアップする点等が挙げられる。しかも、これらの対策を講じても、熱歪みや荷重歪みによる駆動装置の故障の発生を回避することはできない。従って、このような故障発生時には炉を冷却し、修理に4日位かけなければならないこととなり、その間処理量が低下し、定期納入ができなくなる等のために客の信用を失う等の損害を蒙りやすい。
【0024】
以上のような点を踏まえ、本発明においては、処理品15は、処理品15を載せる容体(治具)を備えたカ−ボントレ−18に載せて移動させることとし、その移動は、真空加熱炉1内においてはプッシャ−駆動によることとし、各冷却室2〜4内においてはロ−ラ−駆動によることとした。以下、これらの構成について詳述する。
【0025】
図2はカ−ボントレ−18の形状例を示すもので、カ−ボントレ−18にはその全面に亘って多数の透孔19が形成される。カ−ボントレ−は一般に衝撃に弱く、熱伝導性が悪いといった欠点があり、1000kg以上の重量物には使用されていない。本発明においては、この欠点を補うためにカ−ボントレ−18を従来のものより約 倍厚くし、更に多数の透孔19を設けることにより、熱歪みを防止すると共に、熱の通りを良くして冷却効率が高まるよう配慮してある。
【0026】
また、装置のサイズが数10m単位と非常に大きいため、室内の温度分布を良好に取ることができず、水平度を出すことが難しい。このような装置に対応させるため、カ−ボントレ−18を2〜3枚に分割し、それらをカ−ボンピン20で止めることも行われる。この継ぎ合わせ方式とした場合、各カ−ボントレ−構成部がそれぞれ個別に上下に動いて衝撃吸収し、以て耐衝撃性を高めることができる。仮に衝撃吸収し切れない状況が起こっても、カ−ボンピン20の損傷だけで済む。
【0027】
真空加熱室1内には、レンガ状のカ−ボンブロックを前後左右に十分な間隔を置いて放熱可能な状態に敷き詰めて成るスキットレ−ル21が敷かれ(図1参照)、その上に処理品15を載せたカ−ボントレ−18が置かれる。そこにおけるカ−ボントレ−18、18aの移動は、油圧プッシャ−22による。
【0028】
上述したように、トレ−及びスキットレ−ルを金属製とした場合は、熱歪みが大きくなって駆動部が故障しやすくなり、また、スキットレ−ルに酸化ケイ素等を使用する場合は、非常に硬質となり、高温状況下においてトレ−が部分的に削られて駆動部の故障を招く虞があり、また、摩擦係数が大きいために強力な油圧プッシャ−が必要となる。
【0029】
そのため本発明においては、スキットレ−ル21とその上を移動するカ−ボントレ−18、18aの材質を共にカ−ボンとすることにより、摩擦係数を900℃で0.38程度の低いものとすることができる。これにより、油圧プッシャ−22による押圧力は少なくて済むことになり、装置を小型化、低コスト化することができる。
【0030】
また、カ−ボンは非金属のため熱歪みが小さく、変形が少ない。そのため、カ−ボントレ−18、18aが真空加熱炉1内を移動しても、スキットレ−ル21、カ−ボントレ−18、18a共に水平度の変化が少なく、衝撃にも耐えられ、しかも移動動作(進行方向等)も正確なため、故障が少ない。
【0031】
次に、図4乃至図6に拠って、本発明において冷却室2〜4に採用されているロ−ラ−駆動による処理品の搬送手段について説明する。そこにおいて符号25、25aは搬送用ロ−ラ−で、円筒形の冷却室2〜4の下部に外向きに突設された支持筒26に挿通され、室内下部を横切るように配置される。ロ−ラ−25は処理品搬送方向に多数並設されるが、各冷却室2〜4における一端部(中間部でもよい。)のロ−ラ−25a、25b、25cは駆動用で、駆動用モ−タ36に直結される。
【0032】
図4、図5は駆動用ロ−ラ−25a〜cの室外突出部の支持部の構成を示すもので、駆動用ロ−ラ−25a〜cの室外突出部は、箱状の真空シ−ルケ−ス27内において軸支され、そのロ−ラ−端は更に真空シ−ルケ−ス27外に延長され、そこに駆動用モ−タ36に直結されるスプロケット28が取り付けられる。
【0033】
真空シ−ルケ−ス27は支持筒26に固定され、各冷却室2〜4についてそれぞれほぼその全長に亘って延びる。駆動用ロ−ラ−25a〜cを軸支する軸受29は、真空シ−ルケ−ス27の内壁に設置された軸受取付ブロック30に固定される。軸受取付ブロック30には駆動用ロ−ラ−25a〜cが回転可能に挿通されるが、その駆動用ロ−ラ−25a〜c摺接部及び真空シ−ルケ−ス27の内壁当接部に、真空シ−ル31、32が配備される。真空シ−ル31は二重に配置することが好ましい。
【0034】
駆動用ロ−ラ−25a〜cの真空シ−ル31内に位置する部分には更に、後続の搬送ロ−ラ−25に回転動力を伝達するためのスプロケット33が取り付けられる。また、真空シ−ルケ−ス27に、軸受29及び軸受取付ブロック30の駆動用ロ−ラ−25a〜c摺接部と真空シ−ル31との間にグリ−スを供給するための、グリ−スニップル34が設置される。そして、真空シ−ルケ−ス27に、真空バルブ37を備えた真空引パイプ38が設置される。かくして、真空シ−ルケ−ス27内の真空度保持が可能となる。
【0035】
駆動用ロ−ラ−25a〜cは全長に亘って中空とされて水路が形成され、端部にロ−タリ−ジョイント40を介して冷却水の給水管39が接続される。
【0036】
駆動用ロ−ラ−25a〜cの他端部も支持筒26に挿通されて室外に出され、やはり真空シ−ルケ−ス27a内において軸受取付ブロック30aに固定された軸受29aに軸支される。そして、先端にロ−タリ−ジョイント40を介して、駆動用ロ−ラ−25a〜cを通流した冷却水の流出管41が接続される。また、真空シ−ルケ−ス27aにも真空引パイプ38aが設置される。
【0037】
続いて、図6に示された駆動用ロ−ラ−25a〜c以外のロ−ラ−25の構成について説明する。ロ−ラ−25の構成は、駆動用モ−タ36に直結されるスプロケット28の構成を欠く点と、ロ−ラ−端が真空シ−ルケ−ス27b外に突出していない点で駆動用ロ−ラ−25a〜cと異なっているが、その他の点は大体同じである。駆動用ロ−ラ−25a〜cの回転は、スプロケット33、33aを介して全部のロ−ラ−25に伝達され、全部のロ−ラ−25が同時に同一方向に回転する。
【0038】
処理品15を載せたカ−ボントレ−18、18aは、真空加熱室1内における処理品15の真空加熱処理終了後、プッシャ−22によってスキットレ−ル21上を押送され、その際開状態にされる断熱扉6を通過してその前部が第1冷却室2内に送り込まれる。
【0039】
このようにしてカ−ボントレ−18、18aの前部が第1冷却室2のロ−ラ−25上に乗ると、ロ−ラ−25の回転に伴って第1冷却室2の中央部にまで搬送される。その位置は図示せぬセンサにより検出され、当該センサからの信号により駆動用モ−タ36の動作が停止する。
【0040】
第1冷却室2内における冷却処理終了後、真空扉7が開くと共に駆動用モ−タ36が始動すると、カ−ボントレ−18、18aはロ−ラ−25によって搬送され、その前部が第2冷却室3内に臨む。そして、その前部が第2冷却室3内のロ−ラ−25上に乗るに至り、第1冷却室2内のロ−ラ−25から第2冷却室3内のロ−ラ−25へ受け渡しされ、カ−ボントレ−18、18aは第2冷却室3の中央部へと搬送される。以後同様にして搬送され、最終段の冷却室から炉外搬出路5へ送られ、そこから適宜手段によって搬出される。
【0041】
カ−ボントレ−18、18aが各冷却室2〜4内に留まっている間(約20〜90分間)、各ロ−ラ−25、25a〜cには冷却水が供給されて冷却され、熱歪みを生ずることが極力防止される。しかし、処理品が200℃以上もの高温状態にて搬入される冷却室の場合は、この水冷方式だけではロ−ラ−25が停止しているため、その熱歪みを十分に阻止することができない。
【0042】
この問題に対処するため本発明では、ロ−ラ−25に、処理品15をカ−ボントレ−18、18aごとロ−ラ−25上に浮上させるリフタ−を設け、冷却処理中このリフタ−でカ−ボントレ−18、18aを持ち上げてロ−ラ−25から離し、ロ−ラ−25への熱伝導を阻止し、且つロ−ラ−25を空回りさせるという方法を採用した。次に、図8乃至図10に拠ってこのリフタ−の構成について説明する。
【0043】
図8乃至図10において45は、カ−ボントレ−18、18aの裏面に当接してこれを押上げる押上部材で、各ロ−ラ−25間に一対宛配置される。押上部材45はロ−ラ−25の下側に配置された支持フレ−ム46上に固定され、支持フレ−ム46の上下動に伴ってロ−ラ−25間を上下動し、上昇端においてその上面がロ−ラ−25の上面よりも上に出る。
【0044】
支持フレ−ム46を上下動させるための機構は任意であるが、図示した例では、例えば90度宛正反回転するカム47、48を利用している。カム47、48は、ロ−ラ−25と平行に配置されたカム軸49、50にそれぞれ一対設置される。カム軸49とカム軸50は、互いに反対方向に例えば90度宛正反回転する。カム軸49、50の室外露出部は、ロ−ラ−25の場合と同様にして真空シ−ルされる。
【0045】
図10はカム軸49、50を正反回転駆動する機構を示すもので、この機構は冷却室外に配置される。そこにおいて51は端部を枢支された駆動シリンダ−であり、そのロッド先端は一方のカム軸50に固定された駆動レバ−52に枢着される。そして、駆動レバ−52の中間部にコネクティングロッド53の一端部が取り付けられ、コネクティングロッド53の他端部は他方のカム軸49に固定された駆動レバ−54に取り付けられる。
【0046】
駆動シリンダ−51が図10に示す状態から伸び動作をすると、駆動レバ−52が図において時計回りに回動し始め、駆動シリンダ−51の伸び動作端において90度回動する。この駆動レバ−52の動きはそのままカム軸50及びそれに固定されたカム48に伝達され、カム48は図8に示す左向きの状態から上向きの状態に移行し、以て支持フレ−ム46を押し上げる。
【0047】
上記駆動レバ−52の動きに伴ってコネクティングロッド53が引張られ、駆動レバ−54がコネクティングロッド53に引かれて図10において反時計回りに90度回動する。その結果カム軸49及びカム47が90度回動し、カム47は図8に示す右向きの状態から上向きの状態に移行し、以て支持フレ−ム46を押上げる。言うまでもなく、カム47とカム48の動きは同期する。
【0048】
支持フレ−ム46の昇降動作はガイドポスト55により支持される。また、処理品15からの熱伝達による各押上部材45の過度の昇温を防止するために、支持フレ−ム46の上面に、冷却水の循環するウォ−タ−ジャケット56を配備することが好ましい。
【0049】
【発明の効果】
本発明は上述した通りであって、本発明によれば、真空蒸発物回収後の処理品の冷却処理を効率よく短時間の内に行うことができ、以て再利用のための金属の生産効率を大幅に向上させることができる真空蒸発処理品冷却装置及びそこにおける処理品の室間移送装置が得られる効果がある。
【0050】
請求項2に記載の発明によれば、隣り合う冷却室同志を同圧にすることが容易であり、前段の冷却室の冷却ガスを後段の冷却室に導入して再利用することになるため、冷却ガスの使用量が半減し、前段側の冷却室内の残存冷却ガス量も半減するので、真空引きに要する時間が短縮される効果がある。
【0051】
請求項3に記載の発明によれば、ロ−ラ−駆動のみの場合に比較して搬送エネルギ−の損失が少なく(ロ−ラ−駆動の場合、ロ−ラ−水冷のためのコストが高くつく。)、設備コストも少なくて済み、真空度維持も容易で故障も少ないといった効果がある。
【0052】
請求項5に記載の発明によれば、扉の両側の冷却室の真空度の変化に際し、室間部の真空シ−ル性が損なわれることがない効果がある。
【0053】
請求項6に記載の発明によれば、処理品からロ−ラ−への熱伝導が極力回避されてロ−ラ−の熱歪みが防止され、以てロ−ラ−の熱歪みに起因する搬送トラブル等が起こらず、ロ−ラ−の寿命を延ばすことができる効果がある。
【図面の簡単な説明】
【図1】 本発明に係る真空蒸発処理品冷却装置の構成例を示す図である。
【図2】 本発明に係る真空蒸発処理品冷却装置におけるカ−ボントレ−の形状例を示す図である。
【図3】 本発明に係る真空蒸発処理品冷却装置におけるカ−ボントレ−の他の形状例を示す図である。
【図4】 本発明に係る真空蒸発処理品冷却装置におけるロ−ラ−駆動部の構成例を示す図である。
【図5】 本発明に係る真空蒸発処理品冷却装置におけるロ−ラ−駆動部の要部断面図である。
【図6】 本発明に係る真空蒸発処理品冷却装置におけるロ−ラ−駆動部の要部断面図である。
【図7】 本発明に係る真空蒸発処理品冷却装置における二重真空扉の構成を示す図である。
【図8】 本発明に係る真空蒸発処理品冷却装置におけるリフタ−の構成を示す図である。
【図9】 本発明に係る真空蒸発処理品冷却装置におけるリフタ−の構成を示す平面図である。
【図10】 本発明に係る真空蒸発処理品冷却装置におけるリフタ−の駆動機構を示す図である。
【符号の説明】
1 真空加熱室
2 第1冷却室
3 第2冷却室
4 第3冷却室
5 炉外搬出路
7 真空扉
8 二重真空扉
11 バイパス
12 バイパス
15 処理品
18 カ−ボントレ−
21 スキットレ−ル
22 プッシャ−
25 ロ−ラ−
27 真空シ−ルケ−ス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum evaporation treatment product cooling device and a device for transferring a treatment product between rooms, more specifically, a surface adhering material of a waste product such as an automobile, a household appliance, and an OA equipment is recovered by vacuum evaporation. In a vacuum evaporation recovery device for obtaining metal to be used, the present invention relates to a vacuum evaporation processing product cooling device capable of efficiently cooling a processed product subjected to vacuum heat treatment and improving metal production efficiency, and an inter-chamber transfer device for the processed product therein. is there.
[0002]
[Prior art]
2. Description of the Related Art Wastes such as automobiles and OA equipment are vacuum-heated and evaporated to produce reusable metals. In that case, the metal after vacuum evaporation of cadmium, lead, zinc, etc. by vacuum heating needs to be recovered in a state where it is not oxidized as much as possible. Cooling is performed for the recovery, but if the processing amount per lot is increased to 1 to 3 tons, a cooling time of 90 to 150 minutes is usually required, and the vacuum evaporation recovery processing is completed within a short time. Even so, the cooling process takes a long time, resulting in poor production efficiency.
[0003]
[Problems to be solved by the invention]
As described above, in the conventional vacuum evaporative recovery apparatus, a lot of time is taken for cooling the processed product after the vacuum evaporate recovery, so that the metal production efficiency for reuse is poor.
[0004]
Therefore, the present invention can efficiently perform the cooling process of the processed product after the recovery of the vacuum evaporate within a short time, and can thereby greatly improve the production efficiency of the metal for reuse. It is an object of the present invention to provide a processed product cooling device and a transfer device for transferring processed products therein.
[0005]
[Means for Solving the Problems]
According to the present invention, a first cooling chamber is installed in a vacuum heating chamber in a vacuum evaporation recovery apparatus through a heat insulating door, a second cooling chamber is installed in the first cooling chamber through a vacuum door, and further if necessary. Third and lower cooling chambers are connected to the second cooling chamber via a vacuum door (preferably a double vacuum door), and the processed product is moved to the first cooling chamber in the vacuum heating chamber. In addition, each cooling chamber is provided with a cooling means, a decompression means, and a processing product transfer means, so that the processing product can be moved from the vacuum heating chamber to the last cooling chamber. The above-described problems have been solved by a vacuum evaporation processed product cooling device capable of cooling the processed product in stages along with the movement between the cooling chambers.
[0006]
Preferably, the cooling chambers communicate with each other by a bypass having a vacuum valve. In addition, the processing product unloading means is a pusher drive, the processing product transporting means is a roller drive, and the roller driving is performed so that the transport roller crosses the lower part of the cooling chamber. Then, both ends are taken out of the cooling chamber and stored in a vacuum seal case attached thereto.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic plan view of a vacuum evaporation recovery apparatus with a cooling chamber according to the present invention, in which 1 is a vacuum heating chamber, 2 is a first cooling chamber, 3 is a second cooling chamber, and 4 is a third cooling chamber. is there. In this example, the number of cooling chambers is three, but may be increased or decreased. That is, there may be a case where the third cooling chamber 4 is not provided and the second cooling chamber is the last stage, or a fourth cooling chamber is further connected to the third cooling chamber 4. Between the vacuum heating chamber 1 and the first cooling chamber 2, a heat insulating door 6 having heat insulating performance is provided, and between each cooling chamber 2 to 4, vacuum doors 7 and 8 having vacuum holding performance are provided. . A vacuum door 9 is also installed between the third cooling chamber 4 at the last stage and the out-of-furnace carry-out path 5 connected thereto.
[0008]
The vacuum door installed between the cooling chambers from the second cooling chamber 3 to the final stage cooling chamber, that is, the vacuum door 8 installed between the second cooling chamber 3 and the third cooling chamber 4 in the illustrated example, As shown in FIG. 7, it is preferable to use a double vacuum door in which vacuum doors 8a and 8b each having a packing 8c for maintaining vacuum properties are doubled.
[0009]
The reason is as follows. Since the first cooling chamber 2 is always kept in a vacuum state, the vacuum door 7 installed between the first cooling chamber 2 and the second cooling chamber 3 is always drawn to the first cooling chamber 2 side. For this reason, it is sufficient to install one vacuum door 7 on the second cooling chamber 3 side (one sheet corresponding to the vacuum door 8b shown in FIG. 7 is sufficient). On the other hand, in the case of the vacuum door 8, the degree of vacuum changes on both sides (second cooling chamber 3 and third cooling chamber 4), and accordingly, the vacuum door 8 is pulled in either direction. Therefore, in order to cope with the suction force from both directions, it is necessary to install the vacuum doors 8a and 8b on each chamber side as shown in FIG.
[0010]
Although it is conceivable to use only one vacuum door and install a stopper for coping with the suction force, there remains a problem in terms of durability.
[0011]
A vacuum pump 10 is installed in each of the cooling chambers 2 to 4, and the cooling chambers are communicated with each other by bypasses 11 and 12 having a vacuum valve (vacuum electromagnetic valve) 13. A leak valve 14 is attached to the third cooling chamber 4 at the final stage. Reference numeral 15 denotes a processed product. A cooling gas (normal nitrogen gas) for cooling the processed product is supplied to the cooling chambers 3 and 4. Note that the inside of the first cooling chamber 2 is vacuum-cooled.
[0012]
When there are a plurality of cooling chambers as in the above configuration, the pressures of the cooling chambers on both sides of the vacuum doors 7 and 8 that partition the cooling chambers must be the same. Therefore, in the present invention, the bypasses 11 and 12 for communicating between the cooling chambers 2 to 4 are provided, and the vacuum valve 13 is disposed in the middle of each of the bypasses 11 and 12.
[0013]
Thus, prior to opening and closing the vacuum doors 7 and 8, the vacuum valve 13 is opened and the bypasses 11 and 12 are opened to connect the cooling chambers 2 and 3 and between the cooling chambers 3 and 4. 3 and the cooling chambers 3 and 4 can be made the same pressure. Further, between the cooling chambers 3 and 4, the cooling gas in the preceding cooling chamber 3 is introduced into the subsequent cooling chamber 4 and reused, so that the amount of cooling gas used is halved, and the cooling on the front side is reduced. Since the amount of residual cooling gas in the chamber 3 is also halved, the time required for evacuation is shortened.
[0014]
In the third cooling chamber 4 on the outermost side, the cooled processed product is carried out to the outside. At that time, outside air flows into the chamber and mixes with the cooling gas. If cooling is performed in this state, oxides may be generated. Therefore, after the inflowing outside air is discharged by the action of the vacuum pump 10, cooling is performed after supplying nitrogen gas.
[0015]
Next, processing steps for processed products in the apparatus will be described. The processed product 15 that has been heated in vacuum in the vacuum heating chamber 1 and from which the evaporate has been collected is transferred to the first cooling chamber 2 by opening the heat insulating door 6. At that time, the vacuum door 7 is closed, the vacuum valve 13 is closed, and the bypass 11 is closed. The heat insulating door 6 has no vacuum seal, and the vacuum heating chamber 1 and the first cooling chamber 2 have the same pressure. The heat insulation door 6 is closed after the processed product 15 is carried in, and the first cooling chamber 2 is evacuated to perform primary cooling of the processed product 15.
[0016]
After completion of the primary cooling, the vacuum valve 13 between the cooling chambers 2 and 3 is opened to open the bypass 11 and the vacuum door 7 is opened. Prior to that, in the second cooling chamber 3, the bypasses 11 and 12 are closed and the vacuum is closed. The vacuum pump 10 operates in a state where the door 7 and the double vacuum door 8 are closed, and the room is brought to a predetermined degree of vacuum. Here, if there is only one vacuum door 8 on the second cooling chamber 3 side, it is pulled toward the second cooling chamber 3 side by negative pressure as described above, and the vacuum seal between the chambers cannot be achieved. Evacuation cannot be performed.
[0017]
Next, the bypass 11 is opened and the vacuum door 7 is opened, and the processed product 15 is transferred from the first cooling chamber 2 to the second cooling chamber 3. After the processed product 15 is transferred to the second cooling chamber 3, the bypass 11 is closed and the vacuum door 7 is closed, and cooling gas is supplied into the second cooling chamber 3 to perform secondary cooling of the processed product 15. Is called.
[0018]
After the end of the secondary cooling, the bypass 12 is opened, and about one half of the cooling gas in the second cooling chamber 3 flows into the third cooling chamber 4, but prior to that, the leak valve of the third cooling chamber 4 14 and the vacuum door 9 are both closed, and the inside of the third cooling chamber 4 is depressurized to the set vacuum degree by the action of the vacuum pump 10. As the cooling gas flows in this manner, the double vacuum door 8 is opened when the second cooling chamber 3 and the third cooling chamber 4 are under the same conditions, and the processed product 15 is moved from the second cooling chamber 3 to the second cooling chamber 3. 3 It is conveyed to the cooling chamber 4. Thereafter, the bypass 12 is closed and the vacuum door 8 is closed, and the cooling gas is supplied to the third cooling chamber 4 to perform the tertiary cooling of the processed product 15.
[0019]
By opening the leak valve 14 after the end of the tertiary cooling, the vacuum door 9 is opened when the inside of the third cooling chamber 4 becomes the same pressure as the outside air pressure, and the processed product 15 is carried out of the furnace out-of-furnace passage 5 to the outside of the furnace. The After carrying out the processed product 15, the leak valve 14 is closed and the vacuum door 9 is closed, and the third cooling chamber 4 is again decompressed to the set vacuum degree by the action of the vacuum pump 10. Thereafter, the above steps are repeated. According to this process, the cooling time in each cooling chamber per lot is about one third of the conventional time.
[0020]
Next, the processed product conveying means in the apparatus according to the present invention will be described. In general, a roller drive and a pusher drive can be considered as a driving device for a continuous furnace. This inner roller drive is used when there are many processing chambers in the furnace, and the pusher drive is used when there is a single chamber. However, when these drive devices are used in a high-temperature furnace, situations that cause various failures occur.
[0021]
That is, in the roller drive, when a failure occurs in a furnace at a high temperature and the roller drive stops, a load distortion occurs in the roller due to the load of the processed product. -It will also distort itself over the years. When this distortion occurs, the processed product does not go straight but hits the furnace wall and stops. This also occurs when the pusher drive is made of metal for the tray on which the processed product is placed and the skit rail for sliding the tray.
[0022]
Further, in the roller drive, since the drive unit is out of the furnace, the temperature in the furnace is transmitted to the drive unit chain and the sprocket by heat conduction, and they expand and contract. For this reason, the drive unit is likely to fail. Furthermore, since the vacuum seal of the outside-roller portion cannot be completely performed, air suction increases, and the degree of vacuum cannot be maintained.
[0023]
At present, as means for solving these problems, a roller shaft is formed into a tubular shape, water is supplied into the roller shaft, water cooling is performed, and nitrogen gas is supplied to the vacuum seal portion. . Disadvantages of this method include that heating energy loss due to water cooling increases, nitrogen gas inhibits the degree of vacuum and raises the metal evaporation temperature, and running cost increases significantly. Moreover, even if these measures are taken, it is impossible to avoid the occurrence of a failure of the drive device due to thermal strain or load strain. Therefore, when such a failure occurs, it is necessary to cool the furnace and repair it for about 4 days. During this time, the amount of processing decreases, and regular delivery becomes impossible. It is easy to receive.
[0024]
In view of the above points, in the present invention, the processed product 15 is moved on a carbon tray 18 provided with a container (jig) on which the processed product 15 is placed. In the furnace 1, pusher driving is used, and in each of the cooling chambers 2 to 4, roller driving is used. Hereinafter, these configurations will be described in detail.
[0025]
FIG. 2 shows an example of the shape of the carbon tray 18, in which a large number of through holes 19 are formed over the entire surface. Carbon trays are generally vulnerable to impacts and have poor heat conductivity, and are not used for heavy objects of 1000 kg or more. In the present invention, in order to make up for this drawback, the carbon tray 18 is made about twice as thick as the conventional one, and a large number of through holes 19 are provided to prevent thermal distortion and improve the passage of heat. Therefore, consideration is given to increase the cooling efficiency.
[0026]
In addition, since the size of the device is as large as several tens of meters, it is difficult to obtain a good temperature distribution in the room, and it is difficult to achieve levelness. In order to correspond to such an apparatus, the carbon tray 18 is divided into two or three pieces and they are stopped by the carbon pins 20. In the case of this joining method, each carbon tray component part individually moves up and down to absorb the impact, thereby improving the impact resistance. Even if a situation where the shock cannot be absorbed completely occurs, only the carbon pin 20 needs to be damaged.
[0027]
In the vacuum heating chamber 1, there is a skit rail 21 in which brick-like carbon blocks are laid out in a heat dissipating state with sufficient spacing in the front, rear, left, and right sides (see FIG. 1), and processing is performed thereon. A carbon tray 18 with an article 15 is placed on it. The carbon trays 18 and 18a are moved by the hydraulic pusher 22.
[0028]
As described above, when the train and skit rail are made of metal, the thermal distortion becomes large and the drive unit is liable to break down. Also, when silicon oxide or the like is used for the skit rail, There is a risk that the tray is partially scraped under high temperature conditions, leading to failure of the drive unit, and a high hydraulic pusher is required due to the large friction coefficient.
[0029]
Therefore, in the present invention, the material of the skit rail 21 and the carbon trays 18 and 18a moving on the skit rail 21 are both carbon, so that the friction coefficient is as low as about 0.38 at 900 ° C. be able to. Thereby, the pressing force by the hydraulic pusher 22 can be reduced, and the apparatus can be reduced in size and cost.
[0030]
In addition, since carbon is non-metallic, its thermal strain is small and deformation is small. Therefore, even if the carbon trays 18 and 18a move in the vacuum heating furnace 1, both the skit rail 21 and the carbon trays 18 and 18a have little change in level, can withstand impacts, and move. Since the (traveling direction, etc.) is accurate, there are few failures.
[0031]
Next, with reference to FIG. 4 to FIG. 6, a means for conveying a processed product by roller driving, which is employed in the cooling chambers 2 to 4 in the present invention, will be described. Reference numerals 25 and 25a are transfer rollers, which are inserted through a support cylinder 26 projecting outward from the lower part of the cylindrical cooling chambers 2 to 4, and arranged so as to cross the lower part of the room. A large number of rollers 25 are arranged in parallel in the processed product conveyance direction. Rollers 25a, 25b, and 25c at one end (or intermediate portions) in each of the cooling chambers 2 to 4 are for driving. Directly connected to the motor 36.
[0032]
4 and 5 show the structure of the support portion of the outdoor protruding portion of the driving rollers 25a to 25c. The outdoor protruding portion of the driving rollers 25a to 25c is a box-shaped vacuum seal. The roller end is supported in the case 27, and its roller end is further extended outside the vacuum case 27, and a sprocket 28 directly connected to the driving motor 36 is attached thereto.
[0033]
The vacuum seal case 27 is fixed to the support cylinder 26 and extends substantially over the entire length of each of the cooling chambers 2 to 4. A bearing 29 that supports the driving rollers 25a to 25c is fixed to a bearing mounting block 30 installed on the inner wall of the vacuum seal case 27. The drive rollers 25a to 25c are rotatably inserted into the bearing mounting block 30, and the drive rollers 25a to 25c slide contact portions and the inner wall contact portion of the vacuum seal case 27 are inserted. In addition, vacuum seals 31 and 32 are provided. The vacuum seals 31 are preferably arranged in double.
[0034]
A sprocket 33 for transmitting rotational power to the succeeding transport roller 25 is further attached to a portion of the drive rollers 25a to 25c located in the vacuum seal 31. The vacuum seal 27 is supplied with grease between the bearings 29 and the driving rollers 25 a to 25 c of the bearing mounting block 30 and the vacuum seal 31. A grease nipple 34 is installed. A vacuum drawing pipe 38 having a vacuum valve 37 is installed in the vacuum seal case 27. Thus, the degree of vacuum in the vacuum seal case 27 can be maintained.
[0035]
The driving rollers 25a to 25c are hollow over the entire length to form a water channel, and a cooling water supply pipe 39 is connected to the end portion via a rotary joint 40.
[0036]
The other end portions of the driving rollers 25a to 25c are also inserted into the support cylinder 26 to be taken out of the room, and are also supported by a bearing 29a fixed to the bearing mounting block 30a in the vacuum seal case 27a. The And the outflow pipe 41 of the cooling water which flowed through the drive rollers 25a-c is connected to the tip via the rotary joint 40. Further, a vacuum pipe 38a is also installed in the vacuum seal case 27a.
[0037]
Next, the configuration of the roller 25 other than the driving rollers 25a to 25c shown in FIG. 6 will be described. The configuration of the roller 25 is for driving because it lacks the configuration of the sprocket 28 directly connected to the driving motor 36 and the roller end does not protrude outside the vacuum seal case 27b. It is different from the rollers 25a to 25c, but the other points are almost the same. The rotation of the driving rollers 25a to 25c is transmitted to all the rollers 25 via the sprockets 33 and 33a, and all the rollers 25 rotate in the same direction at the same time.
[0038]
The carbon trays 18 and 18a on which the processed product 15 is placed are pushed over the skit rail 21 by the pusher 22 after the vacuum heating processing of the processed product 15 in the vacuum heating chamber 1 and are opened. Passing through the heat insulating door 6, the front part is fed into the first cooling chamber 2.
[0039]
When the front portions of the carbon trays 18 and 18a are thus placed on the roller 25 of the first cooling chamber 2, the central portion of the first cooling chamber 2 is moved along with the rotation of the roller 25. It is conveyed to. The position is detected by a sensor (not shown), and the operation of the driving motor 36 is stopped by a signal from the sensor.
[0040]
When the vacuum door 7 is opened and the driving motor 36 is started after the cooling process in the first cooling chamber 2 is completed, the carbon trays 18 and 18a are transported by the roller 25, and the front portion thereof is the first one. 2 Facing in the cooling chamber 3. Then, the front part of the roller 25 comes on the roller 25 in the second cooling chamber 3, and the roller 25 in the first cooling chamber 2 moves to the roller 25 in the second cooling chamber 3. Then, the carbon trays 18 and 18 a are conveyed to the center of the second cooling chamber 3. Thereafter, it is conveyed in the same manner, sent from the cooling chamber at the final stage to the out-of-furnace carry-out path 5, and is carried out by appropriate means therefrom.
[0041]
While the carbon trays 18 and 18a remain in the cooling chambers 2 to 4 (about 20 to 90 minutes), cooling water is supplied to the rollers 25 and 25a to 25c to cool them. Generation of distortion is prevented as much as possible. However, in the case of a cooling chamber in which the processed product is carried in at a high temperature of 200 ° C. or higher, the roller 25 is stopped only by this water cooling method, so that the thermal distortion cannot be sufficiently prevented. .
[0042]
In order to deal with this problem, in the present invention, the roller 25 is provided with a lifter that floats the treated product 15 together with the carbon trays 18 and 18a on the roller 25, and this lifter is used during the cooling process. A method was adopted in which the carbon trays 18 and 18a are lifted away from the roller 25, heat conduction to the roller 25 is prevented, and the roller 25 is idled. Next, the structure of the lifter will be described with reference to FIGS.
[0043]
8 to 10, reference numeral 45 denotes a push-up member that abuts against and pushes up the rear surfaces of the carbon trays 18 and 18a, and is disposed between the rollers 25 as a pair. The push-up member 45 is fixed on a support frame 46 disposed on the lower side of the roller 25, and moves up and down between the rollers 25 as the support frame 46 moves up and down. The upper surface of the roller 25 comes out above the upper surface of the roller 25.
[0044]
Although the mechanism for moving the support frame 46 up and down is arbitrary, in the illustrated example, for example, cams 47 and 48 that rotate forward and backward to 90 degrees are used. A pair of cams 47 and 48 are respectively installed on cam shafts 49 and 50 arranged in parallel with the roller 25. The cam shaft 49 and the cam shaft 50 rotate forward and counterclockwise, for example, 90 degrees in opposite directions. The outdoor exposed portions of the cam shafts 49 and 50 are vacuum sealed in the same manner as in the case of the roller 25.
[0045]
FIG. 10 shows a mechanism for driving the camshafts 49 and 50 to rotate forward and backward, and this mechanism is arranged outside the cooling chamber. Reference numeral 51 denotes a drive cylinder pivotally supported at its end, and its rod tip is pivotally attached to a drive lever 52 fixed to one camshaft 50. One end of the connecting rod 53 is attached to the intermediate portion of the drive lever 52, and the other end of the connecting rod 53 is attached to the drive lever 54 fixed to the other cam shaft 49.
[0046]
When the driving cylinder 51 extends from the state shown in FIG. 10, the driving lever 52 starts to rotate clockwise in the figure, and rotates 90 degrees at the extending end of the driving cylinder 51. The movement of the drive lever 52 is transmitted as it is to the camshaft 50 and the cam 48 fixed thereto, and the cam 48 shifts from the left-facing state shown in FIG. 8 to the upward-facing state, thereby pushing up the support frame 46. .
[0047]
As the drive lever 52 moves, the connecting rod 53 is pulled, and the drive lever 54 is pulled by the connecting rod 53 to rotate 90 degrees counterclockwise in FIG. As a result, the cam shaft 49 and the cam 47 rotate 90 degrees, and the cam 47 shifts from the rightward state shown in FIG. 8 to the upward state, thereby pushing up the support frame 46. Needless to say, the movements of the cam 47 and the cam 48 are synchronized.
[0048]
The raising and lowering operation of the support frame 46 is supported by the guide post 55. Further, in order to prevent an excessive temperature rise of each push-up member 45 due to heat transfer from the processed product 15, a water jacket 56 for circulating cooling water may be provided on the upper surface of the support frame 46. preferable.
[0049]
【The invention's effect】
The present invention is as described above, and according to the present invention, it is possible to efficiently perform the cooling treatment of the processed product after the vacuum evaporate recovery within a short time, and thus to produce a metal for reuse. There is an effect that a vacuum evaporative processing product cooling device capable of greatly improving the efficiency and an inter-chamber transfer device for the processing product therein can be obtained.
[0050]
According to the second aspect of the present invention, it is easy to make adjacent cooling chambers have the same pressure, and the cooling gas in the preceding cooling chamber is introduced into the subsequent cooling chamber and reused. The amount of cooling gas used is halved and the amount of remaining cooling gas in the cooling chamber on the front stage side is also halved, so that the time required for evacuation is shortened.
[0051]
According to the third aspect of the present invention, there is less loss of carrier energy than in the case of only roller driving (in the case of roller driving, the cost for roller water cooling is high). The equipment cost is low, the vacuum is easily maintained, and there are few failures.
[0052]
According to the fifth aspect of the present invention, there is an effect that the vacuum sealability of the inter-chamber portion is not impaired when the degree of vacuum of the cooling chambers on both sides of the door is changed.
[0053]
According to the sixth aspect of the present invention, heat conduction from the treated product to the roller is avoided as much as possible to prevent the roller from being thermally distorted. There is an effect that the trouble of conveyance can be prevented and the life of the roller can be extended.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration example of a vacuum evaporation processed product cooling apparatus according to the present invention.
FIG. 2 is a view showing an example of the shape of a carbon tray in the vacuum evaporation processed product cooling apparatus according to the present invention.
FIG. 3 is a view showing another shape example of the carbon tray in the vacuum evaporation processed product cooling apparatus according to the present invention.
FIG. 4 is a diagram showing a configuration example of a roller driving unit in the vacuum evaporation processed product cooling apparatus according to the present invention.
FIG. 5 is a cross-sectional view of a main part of a roller drive unit in the vacuum evaporation processed product cooling apparatus according to the present invention.
FIG. 6 is a cross-sectional view of a main part of a roller drive unit in the vacuum evaporation processed product cooling apparatus according to the present invention.
FIG. 7 is a diagram showing a configuration of a double vacuum door in the vacuum evaporation processed product cooling apparatus according to the present invention.
FIG. 8 is a view showing a configuration of a lifter in the vacuum evaporation processed product cooling apparatus according to the present invention.
FIG. 9 is a plan view showing a configuration of a lifter in the vacuum evaporation processed product cooling apparatus according to the present invention.
FIG. 10 is a diagram showing a lifter drive mechanism in the vacuum evaporation processed product cooling apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum heating chamber 2 1st cooling chamber 3 2nd cooling chamber 4 3rd cooling chamber 5 Out-of-furnace carrying-out path 7 Vacuum door 8 Double vacuum door
11 Bypass
12 Bypass
15 Processed products
18 carbon tray
21 Skirt rail
22 Pusher
25 Roller
27 Vacuum seal case

Claims (6)

処理品を減圧下で加熱するための加熱室と、
開閉可能な第1の扉を介して前記加熱室と連設され、前記加熱室で加熱された処理品を減圧下で第1の温度まで冷却する第1の冷却室と、
開閉可能な第2の扉を介して前記第1の冷却室と連設され、前記第1の冷却室で冷却された処理品を非酸化性雰囲気で前記第1の温度よりも低い第2の温度まで冷却する第2の冷却室と
開閉可能な第3の扉を介して前記第2の冷却室と連設され、前記第2の冷却室で冷却された処理品を非酸化性雰囲気で前記第2の温度よりも低い第3の温度まで冷却する第3の冷却室と、
前記第2の冷却室と前記第3の冷却室との間を連通させるバイパスと、
前記バイパスに介挿された真空バルブと
を具備することを特徴とする処理装置。
A heating chamber for heating the treated product under reduced pressure;
A first cooling chamber that is connected to the heating chamber via a first openable / closable door, and that cools the processed product heated in the heating chamber to a first temperature under reduced pressure;
A second product that is connected to the first cooling chamber via a second door that can be opened and closed, and that is cooled in the first cooling chamber is lower than the first temperature in a non-oxidizing atmosphere. a second cooling chamber for cooling to a temperature,
A third product that is connected to the second cooling chamber via a third door that can be opened and closed, and that is cooled in the second cooling chamber is lower than the second temperature in a non-oxidizing atmosphere. A third cooling chamber that cools to a temperature;
A bypass for communicating between the second cooling chamber and the third cooling chamber;
And a vacuum valve interposed in the bypass .
請求項1に記載の処理装置であって、
前記第1の扉は断熱扉であり、前記第2の扉は気密扉であることを特徴とする処理装置。
The processing apparatus according to claim 1,
The processing apparatus, wherein the first door is a heat insulating door and the second door is an airtight door.
請求項1又は請求項2に記載の処理装置であって、
前記第1の冷却室に設けられた駆動ローラーによる第1の搬送手段と、
前記加熱室側から前記第1の冷却室の前記駆動ローラーに前記処理品の一部が載る位置までプッシャーにより搬送する第2の搬送手段と
をさらに具備したことを特徴とする処理装置。
The processing apparatus according to claim 1 or 2,
First conveying means by a driving roller provided in the first cooling chamber;
The processing apparatus further comprising: a second transport unit that transports from the heating chamber side to a position where a part of the processed product is placed on the driving roller of the first cooling chamber by a pusher.
請求項3に記載の処理装置であって、
前記第1の搬送手段は、前記処理品の一部が前記駆動ローラーに載った後、この駆動ローラーにより前記処理品の前記第1の冷却室内での搬送、または前記第1の冷却室から前記第2の冷却室への搬送の少なくとも一部行うことを特徴とする処理装置。
The processing apparatus according to claim 3,
After the part of the processed product is placed on the driving roller, the first transporting unit transports the processed product in the first cooling chamber by the driving roller, or from the first cooling chamber. A processing apparatus that performs at least a part of conveyance to the second cooling chamber.
請求項3又は請求項4に記載の処理装置であって、
前記第1の搬送手段は、前記第1及び第2の冷却室の下部において前記処理品の搬送方向に沿って複数設けられ、それぞれが前記各冷却室の両側に突出し、これら突出した位置で回転可能に保持された搬送ローラーを有し、
前記搬送ローラーを回転可能に保持する領域を密閉するケースと、
前記ケース内を減圧する手段と
を具備することを特徴とする処理装置。
The processing apparatus according to claim 3 or 4, wherein
A plurality of the first transfer means are provided in the lower part of the first and second cooling chambers along the transfer direction of the processed product, and each protrudes on both sides of each cooling chamber and rotates at the protruding positions. Having transport rollers held in a possible manner,
A case for sealing an area for rotatably holding the transport roller;
And a means for decompressing the inside of the case.
請求項3又は請求項4に記載の処理装置であって、
前記第1の搬送手段は、前記第1及び第2の冷却室の下部において前記処理品の搬送方向に沿って回転可能に複数設けられた搬送ローラーを有し、
前記搬送ローラー間に設けられ、前記搬送ローラーから処理品を浮上させるためのリフターと、
前記リフターにより処理品が浮上されているときに、前記搬送ローラーを空回りさせる手段と
を具備することを特徴とする処理装置。
The processing apparatus according to claim 3 or 4, wherein
The first transport means includes a plurality of transport rollers provided in a lower part of the first and second cooling chambers so as to be rotatable along the transport direction of the processed product.
A lifter provided between the transport rollers, for lifting a processed product from the transport roller;
And a means for causing the transport roller to idle when the processed product is levitated by the lifter.
JP17672298A 1998-06-09 1998-06-09 Vacuum evaporative processing product cooling device Expired - Fee Related JP3919339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17672298A JP3919339B2 (en) 1998-06-09 1998-06-09 Vacuum evaporative processing product cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17672298A JP3919339B2 (en) 1998-06-09 1998-06-09 Vacuum evaporative processing product cooling device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007000712A Division JP2007127407A (en) 2007-01-05 2007-01-05 Conveyance system, tray and carbon rail
JP2007000714A Division JP2007107879A (en) 2007-01-05 2007-01-05 Door

Publications (2)

Publication Number Publication Date
JPH11350047A JPH11350047A (en) 1999-12-21
JP3919339B2 true JP3919339B2 (en) 2007-05-23

Family

ID=16018643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17672298A Expired - Fee Related JP3919339B2 (en) 1998-06-09 1998-06-09 Vacuum evaporative processing product cooling device

Country Status (1)

Country Link
JP (1) JP3919339B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6141479B1 (en) * 2016-03-18 2017-06-07 エスペック株式会社 Drying equipment
JP6437149B2 (en) * 2018-02-23 2018-12-12 エスペック株式会社 Drying equipment
CN109084579B (en) * 2018-08-31 2023-09-19 张柳松 Lifting type air-cooled double-layer reciprocating roller kiln

Also Published As

Publication number Publication date
JPH11350047A (en) 1999-12-21

Similar Documents

Publication Publication Date Title
CN205957664U (en) Full -automatic continuous type vacuum drying system
US9337069B2 (en) Method for glass sheet semiconductor coating
KR20060050029A (en) Vacuum processing apparatus
KR20060050383A (en) Substrate transfer aparatus and vacuum process aparatus having the same
CN107764023A (en) A kind of Full-automatic continuous vacuum drying system
JP3919339B2 (en) Vacuum evaporative processing product cooling device
JP3908468B2 (en) High efficiency cooling heat treatment equipment
US3782705A (en) Continuously operated vacuum furnace having work part transfer conveyor and load and unload mechanism
CN105837060A (en) Production device capable of achieving continuous automatic production of semi-tempered plate vacuum glass
JP2007107879A (en) Door
CN207335414U (en) A kind of vacuum degreasing fritting furnace
JP2007127407A (en) Conveyance system, tray and carbon rail
CN205473394U (en) Can realize dull and stereotyped vacuum glass's of continuous automatic production half steelization production facility
CN107895644B (en) It is a kind of to expand the production line seeped and production method for heavy rare earth crystal boundary
CN211112112U (en) Sectional type continuous heat treatment furnace
KR20170140780A (en) Transporting apparatus
JP2003324272A (en) Reflow furnace
EP4040096A1 (en) Tunnel kiln and conveying method
JP2003014376A (en) Roller hearth type vacuum furnace
CN115246715A (en) Continuous full-automatic energy-saving production line for vacuum glass
CN209816219U (en) Trolley type tempering furnace with preheating recycling structure
CN111365987A (en) Novel vacuum drying tunnel furnace body structure and tunnel type vacuum drying system
CN217979555U (en) Split-door oven, processing workshop and operation system
WO2023233961A1 (en) Heat treatment system, and atmosphere exchange structure provided in heat treatment furnace
CN220845936U (en) Vacuum glass vacuumizing heating system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040608

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees