JP3918740B2 - Infrared gas analyzer - Google Patents

Infrared gas analyzer Download PDF

Info

Publication number
JP3918740B2
JP3918740B2 JP2003025349A JP2003025349A JP3918740B2 JP 3918740 B2 JP3918740 B2 JP 3918740B2 JP 2003025349 A JP2003025349 A JP 2003025349A JP 2003025349 A JP2003025349 A JP 2003025349A JP 3918740 B2 JP3918740 B2 JP 3918740B2
Authority
JP
Japan
Prior art keywords
infrared
signal
incident
cells
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003025349A
Other languages
Japanese (ja)
Other versions
JP2004233308A (en
Inventor
克彦 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003025349A priority Critical patent/JP3918740B2/en
Publication of JP2004233308A publication Critical patent/JP2004233308A/en
Application granted granted Critical
Publication of JP3918740B2 publication Critical patent/JP3918740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、化学工場や製鉄所のガス濃度を測定するプロセスモニター、ボイラーや燃焼炉の燃焼ガス分析、大気汚染の監視、自動車排ガス測定などに使用され、ガス分子固有の赤外線吸収効果を利用してガス又は蒸気中にある特定成分の濃度を連続的に測定する赤外線ガス分析計に関する。
【0002】
【従来の技術】
従来の赤外線ガス分析計では、光源からの赤外線がセクタによって試料セルと比較セルに交互に照射され、それぞれのセルを透過した赤外線が赤外線検出器で受光され、それぞれ交流信号の測定信号と比較信号として検出される。検出された両信号は、信号処理回路で積分され、それぞれの積分値の比に基づいて測定対象成分の濃度が計測される(特許文献1参照。)。
【0003】
【特許文献1】
特開平8−327545号公報
【0004】
【発明が解決しようとする課題】
得られた比較信号は、測定信号を補正するために用いられるため、試料ガスの測定ガス濃度に係る測定信号の大きさ(交流信号の振幅)が変化しても、比較信号の大きさが変化しないことが理想的である。
【0005】
しかしながら、測定信号から比較信号に移る過程で、比較信号は直前の測定信号に引きずられて、測定信号の大きさの違いによって比較信号の大きさ変動する。そして、測定信号の補正に用いられる比較信号が変わると、ガス濃度測定の安定性を損ねる結果となる。
そこで、本発明は、比較信号が測定信号の大きさの影響を受けにくいようにすることにより、ガス濃度測定の安定性を高めることを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、基準ガスが封入された比較セル、試料ガスが流通する試料セル、これらの両セルに赤外線を透過させる測定光学系、前記両セルを透過した赤外線を検出する赤外検出器、及び前記比較セルの透過赤外線による検出信号を比較信号とし前記試料セルの透過赤外線による検出信号を測定信号として両信号に基づいて試料ガス中の特定ガス濃度を算出するデータ処理装置を備えた赤外線ガス分析計において、前記測定光学系は少なくとも比較信号については測定信号から次の測定信号までの間に複数周期の交流信号からなる一連の信号として得られるように前記両セルから前記赤外検出器に赤外線を入射させるものであり、前記データ処理装置は前記比較信号の一連の信号のうち少なくとも最初の1周期の信号は除いて残りの周期の信号をガス濃度算出のための比較信号として用いるものである。
【0007】
本発明では、少なくとも比較信号は複数周期の交流信号からなる一連の信号として得られるようにし、測定信号から比較信号へ切り替わった直後の少なくとも1周期の比較信号は用いないようにすることにより、比較信号が測定信号の大きさの影響を受けにくくする。その結果、比較信号が測定信号による干渉を避けられるため、より安定した測定が可能となる。
【0008】
測定信号についても比較信号からの干渉を受けにくくするためには、測定光学系は測定信号についても一連の信号からなる比較信号から次の一連の信号からなる比較信号までの間に複数周期の交流信号からなる一連の信号として得られるように両セルから赤外検出器に赤外線を入射させるものとし、データ処理装置は測定信号についてもその一連の信号のうち少なくとも最初の1周期の信号は除いて残りの周期の信号をガス濃度算出のための測定信号として用いるものとするのが好ましい。
【0009】
【発明の実施の形態】
比較信号と測定信号の両方が複数周期の交流信号からなる一連の信号として得られるように両セルから赤外検出器に赤外線を入射させる測定光学系は、両セルの入射面に同時に赤外線を入射させうる大きさの光束をもつ光源を備えて、種々の形態として実現することができる。
【0010】
第1の形態の測定光学系は、その光源と両セルの入射面との間に配置されて、各セルに連続して複数回ずつ赤外線を入射させるように両セルへの赤外線入射を切り替える断続機構を備えたものである。
【0011】
第2の形態の測定光学系は、両セルの出射面と赤外検出器との間に配置されて、各セルから赤外検出器に連続して複数回ずつ赤外線を入射させるように赤外検出器への赤外線入射を切り替える断続機構を備えたものである。
【0012】
第3の形態の測定光学系は、その光源と両セルの入射面との間に配置されて両セルに同時に断続して赤外線を入射させる断続機構と、一方のセルの入射部又は出射部を遮蔽し他方のセルの入射部及び出射部を解放し、各セルの透過赤外線による赤外検出器の検出信号がそれぞれ複数周期の交流信号を単位とするように両セル間で移動させられる遮蔽板とを備えたものである。
【0013】
第4の形態の測定光学系は、両セルの出射面と赤外検出器との間に配置されて両セルから赤外検出器に入射する透過赤外線を同時に断続する断続機構と、一方のセルの入射部又は出射部を遮蔽し他方のセルの入射部及び出射部を解放し、各セルの透過赤外線による赤外検出器の検出信号がそれぞれ複数周期の交流信号を単位とするように両セル間で移動させられる遮蔽板とを備えたものである。
【0014】
各形態の測定光学系における断続機構は、各セルから赤外検出器への赤外線入射時間と非入射時間が略同一となるように赤外線入射時間を断続するものであることが好ましい。その場合には、赤外線入射時に生じる信号のみならず、非入射時に生じる信号についても積分値を求め、それらを検出データとして利用することができるようになるため、断続機構1回転当たり倍のデータ取得が可能となり、濃度測定が従来の半分の時間ですむようになる。そのため、測定対象ガスの濃度が比較的早く時間変動する場合であっても、精度の高い濃度測定が可能となり、また、測定対象ガスの濃度の時間変動が比較的遅い場合には、従来と同じ計測時間で倍のデータ取得が可能となるため、S/N(信号対ノイズ)比が向上し、ノイズの少ない正確な濃度計測が可能となる利点がある。
【0015】
以下、実施例に基づいて本発明を詳細に説明する。
(第1実施例)
第1の実施例を図1〜図3に基づいて説明する。
【0016】
図1(A)は本発明にかかる赤外線分析計の概略図、(B)は同実施例で使用されている断続機構としてのセクタを平面図で表わしたものである。
試料セル1aはガス導入口1a’とガス排出ロ1a”を有し、試料ガスがガス導入口1a’から試料セル1a内に供給されガス排出ロ1a”から排出される。比較セル1bには、基準ガスであるいわゆるゼロガスが封入されている。
【0017】
比較信号と測定信号の両方が複数周期、例えば2周期の交流信号からなる一連の信号として得られるように両セル1a,1bを透過して赤外検出器5に赤外線を入射させる測定光学系は、光源4と、断続機構としてのセクタ2を備えている。
【0018】
光源4は両セル1a,1bの入射面に同時に赤外線を入射させうる大きさの光束をもっている。
セクタ2は光源4と試料セル1a及び比較セル1b間に配設されて、モータ3によって所定速度で回転駆動される。セクタ2は円板状に形成され、セクタ2には試料セル1aに赤外線を照射する隣接した2つの透過窓2a−1,2a−2と、比較セル1bに赤外線を照射する隣接した2つの透過窓2b−1,2b−2とが、偏心した位置にそれぞれほぼ45°角に渡って均等に配置されて設けられている。
【0019】
セクタ2にはさらに、透過窓2a−1に近接した外周寄りの位置に、試料セル1aに赤外線が照射されていることを認識するための識別孔2cが穿設されており、セクタ2の回転によりこの識別孔2cが通過する試料セル1aの端部位置にはフォトダイオード等の光検出器7が配置されている。その光検出器7によって、識別孔2cが試料セル1aの位置を通過したことが検出される。
【0020】
検出器5は、その内部に測定対象ガスが封入されており、測定対象ガスに固有の波長光が入射した場合に生じる圧力変化によって、試料セル1a内の測定対象ガスの濃度に応じた信号を発生する。
【0021】
データ処理装置としての信号処理回路6は、図2に示されるように、全波整流回路6a、比較回路6b及び演算回路6cからなる。信号処理回路6は光検出器7の検出信号に基づいて検出器5による検出信号が比較セル1bの透過赤外線による比較信号であるか、試料セル1aの透過赤外線による測定信号であるかを識別し、比較セル1bの透過赤外線による検出信号を比較信号とし試料セル1aの透過赤外線による検出信号を測定信号として両信号に基づいて試料ガス中の特定ガス濃度を算出する。さらに、信号処理回路6は、比較信号と測定信号のそれぞれ最初の1周期の信号は除いて残りの周期の信号をガス濃度算出のための比較信号、測定信号として用いて演算を行なうものである。
【0022】
次に、この実施例の動作について説明する。
セクタ2は、モータ3によって所定速度で回転駆動されることで、図3(A)に示されるように、光源4からの赤外線を透過窓2a−1,2a−2と、2b−1,2b−2を介して、試料セル1aを2回照射し、その後比較セル1bを2回照射し、さらにその後試料セル1aを2回照射するというように繰り返す。これらの透過窓窓2a−1,2a−2,2b−1,2b−2はそれぞれほぼ45°の角度範囲にわたって均等に設けられているため、それぞれ赤外線の照射、非照射の時間が略同一となる。
【0023】
検出器5による検出信号を図3(B)に示す。比較セル1bを透過した赤外線は比較セル1bでは測定対象ガスに固有の波長が吸収されないため、比較信号として示されているように大きな信号変化として検出されるのに対して、試料セル1aを透過した赤外線は試料セル1aで測定対象ガスに固有の波長成分が試料ガスに含まれている測定対象ガスの濃度に応じて吸収されるため、測定信号として示されているように吸収された分だけ小さな信号変化として検出される。
【0024】
信号処理回路6は全波整流回路6a、比較回路6b及び演算回路6cを備えており、全波整流回路6aは図3(B)に示される検出器5からの出力信号を、図3(C)に示される全波整流された信号として出力し、比較回路6bはかかる全波整流された信号を所定の基準電圧Vrと比較することで、比較信号及び測定信号の各立ち上がりを検出してパルス信号として出力する。演算回路6cは、そのパルス信号の立ち下がりをトリガとして検出信号の積算を開始し、次のパルス信号の立ち上がりで積算を中止し、一時的にその値を保持する。このとき、演算回路6cは、測定信号から比較信号へ切り替わった直後の比較信号Rl、R2は測定信号の大きさにより影響をうけるため、比較信号Rl、R2は使用しないでR3、R4を比較信号とし、同様に比較信号から測定信号へ切り替わった直後の測定信号M1,M2は比較信号の大きさにより影響を受けるため、測定信号M1,M2は使用しないで、M3,M4を測定信号として使用し、積算を行なう。
【0025】
比較信号R3,R4、測定信号M3,M4は、それぞれの信号が他の信号からほとんど干渉されないで得られるため、これらの信号によりガス濃度測定を行うことで、測定の安定性が向上する。
【0026】
本実施例において、セクタ2はセル1a,1bと検出器5の間に配置し、光源4からの赤外線は両セル1a,1bを同時に透過するようにし、検出器5に入射する赤外線をセクタ2により断続するようにしてもよい。その場合、識別孔2cを検出する光源として、光源4からの赤外線を使用しにくくなるので、光源と光検出器を備えたホトインタラプタを使用すればよい。
【0027】
また、本実施例では、比較信号と測定信号はそれぞれ2周期ずつ連続して得られるようになっているが、セクタ構造を変更することにより、それぞれ3周期以上ずつ連続して得られるようにすることができる。信号が干渉する一周期目の信号を捨てた場合、この様に多周期の信号が得られると、残り2周期又はそれ以上の周期の信号を濃度測定に使用できるので感度が向上する利点がある。比較信号と測定信号をそれぞれ3周期以上得た場合、信号が干渉するために捨てる信号を2周期以上にして、より干渉を受けない比較信号と測定信号を用いて濃度測定を行うことができるようになる。
【0028】
(第2実施例)
図4(A)第2の実施例の赤外線分析計の概略図、(B)は同実施例で使用されている断続機構としてのセクタを平面図で表わしたものである。
【0029】
図1に示されている実施例と比較すると、検出器5にセル1a,1bを透過した赤外線を断続して入射させるための機構が相違し、他の構成は同じである。
図4においては、セクタ形状は図3(B)に示されるように、比較セル1bと試料セル1aへの光源4からの赤外線入射を同時に断続できるように、ほぼ90°の角度範囲にわたる扇型の開口が2つ均等に配置されて設けられている。このセクタ12は光源4とセル1a,1bの間に配置され、モータ3により一定の回転数で回転させられる。
【0030】
セクタ12により同時に断続されてセル1a,1bを透過した赤外線を選択して検出器5に入射させるために、セル1a,1bと検出器5の間に遮蔽板8が配置されている。遮蔽板8は、比較セル1bの透過赤外線を遮断して試料セル1aの透過赤外線だけを検出器5へ入射させる位置(これを「第1の位置」と呼ぶ)と、逆に試料セル1aの透過赤外線を遮断して比較セル1bの透過赤外線だけを検出器5へ入射させる位置(これを「第2の位置」と呼ぶ)との間をソレノイド等で移動することができるように取り付けられている。
【0031】
遮蔽板8が第1の位置にあるときに、セクタ12は複数回回転し、検出器5からはセクタ12の回転数の2倍の周期の測定信号を得る。次に、遮蔽板8が第2の位置に切り替えられ、同様にセクタ12が複数回回転して検出器5からはセクタ12の回転数の2倍の周期の比較信号を得る。
【0032】
このように、遮蔽板8の切替とセクタ12の回転により、検出器5からは図5(A)に示される信号が得られ、その信号は信号処理回路6で全波整流されて図5(B)に示される信号となる。この多周期の比較信号と測定信号から、第1の実施例と同様に、それぞれの最初の1〜数周期の信号を採用しないようにして濃度演算が行なわれる。
【0033】
また、この実施例では、セクタ12には第1の実施例のセクタ2に設けられていた識別孔2cとその透過光を検出する光検出器は必要ではなく、遮蔽板8を移動させる信号で判別可能である。
図4の実施例で、セクタ12と遮蔽板8の位置は、光源4とセル1a,1bの間と、セル1a,1bと検出器5の間のいずれに配置してもよい。
【0034】
また、遮蔽板8の位置の切換えのデューティ比は1:1でなくてもよく、第1の位置の時間の方が第2の位置の時間より長くなるよう設定して、測定信号を得る時間を長くしてもよい。この場合、測定信号が得られる時間が長いため、測定感度が向上する。
【0035】
セクタ12の形状は、図4(B)に示されたものに限るものではなく、両セル1a,1bへの赤外線の入射を一定周期で同時に断続させるものであればよい。
【0036】
【発明の効果】
本発明では、少なくとも比較信号は複数周期の交流信号からなる一連の信号として得られるようにし、測定信号から比較信号へ切り替わった直後の少なくとも1周期の比較信号は用いないようにすることにより、比較信号が測定信号による干渉を避けられるため、より安定した測定が可能となる。
【図面の簡単な説明】
【図1】(A)は一実施例の赤外線分析計を示す概略構成図、(B)は同実施例で使用されているセクタを示す平面図である。
【図2】同実施例で使用されている信号処理回路を示すブロック図である。
【図3】同実施例の動作を示す波形図である。
【図4】(A)は他の実施例の赤外線分析計を示す概略構成図、(B)は同実施例で使用されているセクタを示す平面図である。
【図5】同実施例の動作を示す波形図である。
【符号の説明】
1a 試料セル
1b 比較セル
2,12 断続機構としてのセクタ
4 光源
5 赤外検出器
6 データ処理装置としての信号処理回路
8 遮蔽板
[0001]
BACKGROUND OF THE INVENTION
The present invention is used for process monitors that measure gas concentrations in chemical factories and steelworks, combustion gas analysis of boilers and combustion furnaces, air pollution monitoring, automobile exhaust gas measurement, etc., and utilizes the infrared absorption effect inherent to gas molecules. The present invention relates to an infrared gas analyzer that continuously measures the concentration of a specific component in gas or vapor.
[0002]
[Prior art]
In a conventional infrared gas analyzer, infrared light from a light source is alternately irradiated onto a sample cell and a comparison cell by a sector, and infrared light transmitted through each cell is received by an infrared detector, and an AC signal measurement signal and a comparison signal, respectively. Detected as Both detected signals are integrated by a signal processing circuit, and the concentration of the measurement target component is measured based on the ratio of the respective integrated values (see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-8-327545 [0004]
[Problems to be solved by the invention]
Since the obtained comparison signal is used to correct the measurement signal, the magnitude of the comparison signal changes even if the magnitude of the measurement signal related to the measurement gas concentration of the sample gas (the amplitude of the AC signal) changes. Ideally not.
[0005]
However, in the process of moving from the measurement signal to the comparison signal, the comparison signal is dragged to the previous measurement signal, and the magnitude of the comparison signal varies depending on the difference in the magnitude of the measurement signal. If the comparison signal used for correcting the measurement signal is changed, the gas concentration measurement stability is impaired.
Accordingly, the object of the present invention is to improve the stability of gas concentration measurement by making the comparison signal less susceptible to the magnitude of the measurement signal.
[0006]
[Means for Solving the Problems]
The present invention includes a comparison cell in which a reference gas is sealed, a sample cell in which a sample gas is circulated, a measurement optical system that transmits infrared light to both of these cells, an infrared detector that detects infrared light transmitted through both the cells, and Infrared gas analysis provided with a data processing device for calculating a specific gas concentration in the sample gas based on both signals using the detection signal based on the transmitted infrared light of the comparison cell as a comparison signal and the detection signal based on the transmitted infrared light of the sample cell as a measurement signal The measurement optical system receives infrared rays from both cells to the infrared detector so that at least a comparison signal is obtained as a series of signals composed of a plurality of cycles of AC signals between the measurement signal and the next measurement signal. And the data processing device excludes at least the first one cycle signal of the series of comparison signals, and the remaining cycle signals. It is to use as a comparison signal for the gas concentration calculation.
[0007]
In the present invention, at least the comparison signal is obtained as a series of signals composed of AC signals of a plurality of periods, and the comparison signal of at least one period immediately after switching from the measurement signal to the comparison signal is not used. Make the signal less sensitive to the magnitude of the measurement signal. As a result, since the comparison signal can avoid interference due to the measurement signal, more stable measurement can be performed.
[0008]
In order to make the measurement signal less susceptible to interference from the comparison signal, the measurement optical system also has a plurality of cycles of AC between the comparison signal consisting of a series of signals and the comparison signal consisting of the next series of signals. Infrared rays are incident on the infrared detectors from both cells so that they can be obtained as a series of signals, and the data processing apparatus excludes at least the first cycle of the series of measurement signals. The signal of the remaining period is preferably used as a measurement signal for gas concentration calculation.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The measurement optical system that injects infrared light from both cells into the infrared detector so that both the comparison signal and measurement signal are obtained as a series of signals consisting of multiple periods of alternating current signals. It can be realized in various forms by including a light source having a luminous flux of a size that can be generated.
[0010]
The measurement optical system according to the first embodiment is arranged between the light source and the incident surfaces of both cells, and switches the incidence of infrared rays to both cells so that the infrared rays are continuously incident on each cell a plurality of times. It has a mechanism.
[0011]
The measurement optical system of the second embodiment is arranged between the emission surfaces of both cells and the infrared detector, and infrared rays are incident so that infrared rays are incident on the infrared detector a plurality of times continuously from each cell. It is provided with an intermittent mechanism for switching the incidence of infrared rays on the detector.
[0012]
The measuring optical system of the third form is arranged between the light source and the incident surfaces of both cells, and includes an intermittent mechanism that simultaneously interrupts both cells to make infrared rays incident, and an incident part or an emission part of one cell. Shielding plate that shields and releases the entrance and exit of the other cell and moves between the cells so that the detection signals of the infrared detectors by the transmitted infrared rays of each cell are in units of a plurality of periods of alternating current signals. It is equipped with.
[0013]
The measurement optical system according to the fourth aspect includes an intermittent mechanism that is disposed between the emission surfaces of both cells and the infrared detector and simultaneously interrupts transmitted infrared rays that enter the infrared detector from both cells, and one cell. Both cells so that the incident part or the emitting part of the other cell is shielded and the incident part and the emitting part of the other cell are released, and the detection signals of the infrared detectors by the transmitted infrared rays of each cell are in units of AC signals of multiple periods, respectively. And a shielding plate that can be moved between them.
[0014]
It is preferable that the intermittent mechanism in each form of the measurement optical system intermittently injects the infrared incident time so that the infrared incident time and the non-incident time from each cell to the infrared detector are substantially the same. In that case, since integral values can be obtained not only for signals that occur when infrared rays are incident but also for signals that occur when they are not incident, they can be used as detection data. This makes it possible to measure the concentration in half as much as before. Therefore, even when the concentration of the gas to be measured fluctuates relatively quickly, it is possible to measure the concentration with high accuracy. Since it is possible to acquire twice the data in the measurement time, there is an advantage that the S / N (signal to noise) ratio is improved and accurate density measurement with less noise is possible.
[0015]
Hereinafter, the present invention will be described in detail based on examples.
(First embodiment)
A first embodiment will be described with reference to FIGS.
[0016]
FIG. 1A is a schematic diagram of an infrared analyzer according to the present invention, and FIG. 1B is a plan view showing a sector as an intermittent mechanism used in the embodiment.
The sample cell 1a has a gas introduction port 1a ′ and a gas discharge port 1a ″, and a sample gas is supplied into the sample cell 1a from the gas introduction port 1a ′ and discharged from the gas discharge port 1a ″. The comparison cell 1b contains a so-called zero gas that is a reference gas.
[0017]
A measurement optical system for transmitting infrared light to the infrared detector 5 through both cells 1a and 1b so that both the comparison signal and the measurement signal are obtained as a series of signals composed of alternating signals of a plurality of periods, for example, two periods. , A light source 4 and a sector 2 as an intermittent mechanism.
[0018]
The light source 4 has a light beam having such a size that infrared rays can be simultaneously incident on the incident surfaces of both the cells 1a and 1b.
The sector 2 is disposed between the light source 4, the sample cell 1a, and the comparison cell 1b, and is rotationally driven by the motor 3 at a predetermined speed. The sector 2 is formed in a disk shape, and the sector 2 includes two adjacent transmission windows 2a-1 and 2a-2 that irradiate the sample cell 1a with infrared rays, and two adjacent transmission windows that irradiate the comparison cell 1b with infrared rays. The windows 2b-1 and 2b-2 are provided at an eccentric position so as to be evenly arranged over a 45 ° angle.
[0019]
The sector 2 is further provided with an identification hole 2c for recognizing that the sample cell 1a is irradiated with infrared rays at a position near the outer periphery close to the transmission window 2a-1. Thus, a photodetector 7 such as a photodiode is disposed at the end position of the sample cell 1a through which the identification hole 2c passes. The photodetector 7 detects that the identification hole 2c has passed the position of the sample cell 1a.
[0020]
The detector 5 has a gas to be measured enclosed therein, and a signal corresponding to the concentration of the gas to be measured in the sample cell 1a is generated by a pressure change that occurs when light having a specific wavelength is incident on the gas to be measured. appear.
[0021]
As shown in FIG. 2, the signal processing circuit 6 as a data processing device includes a full-wave rectification circuit 6a, a comparison circuit 6b, and an arithmetic circuit 6c. Based on the detection signal of the photodetector 7, the signal processing circuit 6 identifies whether the detection signal from the detector 5 is a comparison signal based on the transmitted infrared rays of the comparison cell 1b or a measurement signal based on the transmitted infrared rays of the sample cell 1a. The specific gas concentration in the sample gas is calculated based on both signals using the detection signal based on the transmitted infrared rays from the comparison cell 1b as the comparison signal and the detection signal based on the transmitted infrared rays from the sample cell 1a as the measurement signal. Further, the signal processing circuit 6 performs an operation using the signals of the remaining periods except the first one of the comparison signal and the measurement signal as the comparison signal and the measurement signal for calculating the gas concentration. .
[0022]
Next, the operation of this embodiment will be described.
The sector 2 is rotationally driven by the motor 3 at a predetermined speed, so that the infrared rays from the light source 4 are transmitted through the transmission windows 2a-1, 2a-2 and 2b-1, 2b as shown in FIG. -2, the sample cell 1a is irradiated twice, then the comparison cell 1b is irradiated twice, and then the sample cell 1a is irradiated twice. Since these transmissive window windows 2a-1, 2a-2, 2b-1, 2b-2 are equally provided over an angle range of approximately 45 °, the time of infrared irradiation and non-irradiation is substantially the same. Become.
[0023]
A detection signal from the detector 5 is shown in FIG. The infrared light transmitted through the comparison cell 1b is detected as a large signal change as shown as a comparison signal because the wavelength unique to the measurement target gas is not absorbed in the comparison cell 1b, but transmitted through the sample cell 1a. Since the wavelength component specific to the measurement target gas is absorbed in the sample cell 1a according to the concentration of the measurement target gas contained in the sample gas, the infrared ray is absorbed as shown in the measurement signal. It is detected as a small signal change.
[0024]
The signal processing circuit 6 includes a full-wave rectification circuit 6a, a comparison circuit 6b, and an arithmetic circuit 6c. The full-wave rectification circuit 6a outputs an output signal from the detector 5 shown in FIG. The comparison circuit 6b compares the full-wave rectified signal with a predetermined reference voltage Vr to detect each rising edge of the comparison signal and the measurement signal, and outputs a pulse. Output as a signal. The arithmetic circuit 6c starts the integration of the detection signal by using the falling edge of the pulse signal as a trigger, stops the integration at the rising edge of the next pulse signal, and temporarily holds the value. At this time, the arithmetic circuit 6c is not affected by the comparison signals Rl and R2 because the comparison signals Rl and R2 immediately after switching from the measurement signal to the comparison signal are affected by the magnitude of the measurement signal. Similarly, since the measurement signals M1 and M2 immediately after switching from the comparison signal to the measurement signal are affected by the magnitude of the comparison signal, the measurement signals M1 and M2 are not used, and M3 and M4 are used as the measurement signals. , Integrating.
[0025]
Since the comparison signals R3 and R4 and the measurement signals M3 and M4 are obtained with the respective signals being hardly interfered with other signals, the measurement stability is improved by performing the gas concentration measurement using these signals.
[0026]
In this embodiment, the sector 2 is arranged between the cells 1a and 1b and the detector 5, and the infrared rays from the light source 4 are transmitted through both the cells 1a and 1b at the same time. May be intermittent. In that case, since it becomes difficult to use infrared rays from the light source 4 as a light source for detecting the identification hole 2c, a photo interrupter including a light source and a photodetector may be used.
[0027]
In this embodiment, the comparison signal and the measurement signal are each obtained continuously for two periods. However, by changing the sector structure, the comparison signal and the measurement signal can be obtained continuously for three periods or more. be able to. When the signal of the first period in which the signal interferes is discarded, if a multi-cycle signal is obtained in this way, the signal of the remaining two or more periods can be used for concentration measurement, which has the advantage of improving sensitivity. . When the comparison signal and the measurement signal are obtained for 3 cycles or more, it is possible to perform concentration measurement using the comparison signal and the measurement signal that are not subject to interference by setting the signal discarded because the signal interferes to 2 cycles or more. become.
[0028]
(Second embodiment)
FIG. 4A is a schematic diagram of the infrared analyzer of the second embodiment, and FIG. 4B is a plan view showing a sector as an intermittent mechanism used in the embodiment.
[0029]
Compared to the embodiment shown in FIG. 1, the mechanism for intermittently making the infrared rays transmitted through the cells 1a and 1b incident on the detector 5 is different, and the other configurations are the same.
In FIG. 4, as shown in FIG. 3B, the sector shape is a sector shape over an angular range of approximately 90 ° so that the infrared rays from the light source 4 to the comparison cell 1b and the sample cell 1a can be interrupted at the same time. The two openings are arranged evenly. The sector 12 is disposed between the light source 4 and the cells 1a and 1b, and is rotated by the motor 3 at a constant rotational speed.
[0030]
A shielding plate 8 is arranged between the cells 1a, 1b and the detector 5 in order to select the infrared rays that are simultaneously interrupted by the sector 12 and transmitted through the cells 1a, 1b and enter the detector 5. The shielding plate 8 blocks the transmitted infrared light of the comparison cell 1b and makes only the transmitted infrared light of the sample cell 1a incident on the detector 5 (this is referred to as “first position”), and conversely the sample cell 1a. It is attached so that it can be moved by a solenoid or the like between a position where the transmitted infrared ray is blocked and only the transmitted infrared ray of the comparison cell 1b is incident on the detector 5 (this is referred to as a “second position”). Yes.
[0031]
When the shielding plate 8 is in the first position, the sector 12 rotates a plurality of times, and a measurement signal having a cycle twice the number of rotations of the sector 12 is obtained from the detector 5. Next, the shielding plate 8 is switched to the second position, and similarly, the sector 12 is rotated a plurality of times, and a comparison signal having a cycle twice the number of rotations of the sector 12 is obtained from the detector 5.
[0032]
As described above, the signal shown in FIG. 5A is obtained from the detector 5 by the switching of the shielding plate 8 and the rotation of the sector 12, and the signal is full-wave rectified by the signal processing circuit 6 and then shown in FIG. B). Similar to the first embodiment, the density calculation is performed from the multi-cycle comparison signal and the measurement signal so as not to employ the first to several cycles of signals.
[0033]
Further, in this embodiment, the sector 12 does not need the identification hole 2c provided in the sector 2 of the first embodiment and the photodetector for detecting the transmitted light, but is a signal for moving the shielding plate 8. It can be determined.
In the embodiment of FIG. 4, the positions of the sector 12 and the shielding plate 8 may be arranged between the light source 4 and the cells 1a and 1b and between the cells 1a and 1b and the detector 5.
[0034]
Also, the duty ratio for switching the position of the shielding plate 8 may not be 1: 1, and the time for obtaining the measurement signal by setting the time of the first position to be longer than the time of the second position. May be lengthened. In this case, since the time for obtaining the measurement signal is long, the measurement sensitivity is improved.
[0035]
The shape of the sector 12 is not limited to that shown in FIG. 4B, but may be any as long as it allows the infrared rays to enter both the cells 1a and 1b at the same time.
[0036]
【The invention's effect】
In the present invention, at least the comparison signal is obtained as a series of signals composed of AC signals of a plurality of periods, and the comparison signal of at least one period immediately after switching from the measurement signal to the comparison signal is not used. Since the signal can avoid interference due to the measurement signal, more stable measurement is possible.
[Brief description of the drawings]
FIG. 1A is a schematic configuration diagram showing an infrared analyzer of one embodiment, and FIG. 1B is a plan view showing a sector used in the embodiment.
FIG. 2 is a block diagram showing a signal processing circuit used in the embodiment.
FIG. 3 is a waveform diagram showing the operation of the embodiment.
4A is a schematic configuration diagram showing an infrared analyzer according to another embodiment, and FIG. 4B is a plan view showing a sector used in the embodiment.
FIG. 5 is a waveform chart showing the operation of the same example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1a Sample cell 1b Comparison cell 2,12 Sector 4 as an intermittent mechanism Light source 5 Infrared detector 6 Signal processing circuit 8 as a data processor 8 Shielding plate

Claims (7)

基準ガスが封入された比較セル、試料ガスが流通する試料セル、これらの両セルに赤外線を透過させる測定光学系、前記両セルを透過した赤外線を検出する赤外検出器、及び前記比較セルの透過赤外線による検出信号を比較信号とし前記試料セルの透過赤外線による検出信号を測定信号として両信号に基づいて試料ガス中の特定ガス濃度を算出するデータ処理装置を備えた赤外線ガス分析計において、
前記測定光学系は少なくとも比較信号については測定信号から次の測定信号までの間に複数周期の交流信号からなる一連の信号として得られるように前記両セルから前記赤外検出器に赤外線を入射させるものであり、
前記データ処理装置は前記比較信号の一連の信号のうち少なくとも最初の1周期の信号は除いて残りの周期の信号をガス濃度算出のための比較信号として用いるものであることを特徴とする赤外線ガス分析計。
A comparison cell in which a reference gas is sealed, a sample cell in which a sample gas flows, a measurement optical system that transmits infrared light to both of these cells, an infrared detector that detects infrared light transmitted through both of the cells, and the comparison cell In an infrared gas analyzer equipped with a data processing device for calculating a specific gas concentration in a sample gas based on both signals using a detection signal based on transmitted infrared rays as a comparison signal and a detection signal based on transmitted infrared rays of the sample cell as a measurement signal,
The measurement optical system causes infrared light to enter the infrared detector from both cells so that at least a comparison signal is obtained as a series of signals composed of a plurality of cycles of AC signals between the measurement signal and the next measurement signal. Is,
Infrared gas characterized in that the data processing device uses a signal of the remaining period except a signal of at least the first period among a series of signals of the comparison signal as a comparison signal for gas concentration calculation. Analyzer.
前記測定光学系は測定信号についても一連の信号からなる比較信号から次の一連の信号からなる比較信号までの間に複数周期の交流信号からなる一連の信号として得られるように前記両セルから前記赤外検出器に赤外線を入射させるものであり、
前記データ処理装置は前記測定信号についてもその一連の信号のうち少なくとも最初の1周期の信号は除いて残りの周期の信号をガス濃度算出のための測定信号として用いるものである請求項1に記載の赤外線ガス分析計。
The measurement optical system also obtains a measurement signal from both cells so that a measurement signal can be obtained as a series of signals consisting of alternating signals of a plurality of periods between a comparison signal consisting of a series of signals and a comparison signal consisting of the next series of signals. Infrared rays are incident on the infrared detector,
2. The data processing apparatus according to claim 1, wherein the data signal is also used as a measurement signal for calculating a gas concentration, except for at least the first one cycle signal of the series of measurement signals. Infrared gas analyzer.
前記測定光学系は、前記両セルの入射面に同時に赤外線を入射させうる大きさの光束をもつ光源と、前記光源と前記両セルの入射面との間に配置されて、各セルに連続して複数回ずつ赤外線を入射させるように両セルへの赤外線入射を切り替える断続機構を備えたものである請求項2に記載の赤外線ガス分析計。The measurement optical system is disposed between a light source having a luminous flux of a size that allows infrared rays to be incident on the incident surfaces of both cells at the same time, and between the light source and the incident surfaces of both cells, and is continuous with each cell. The infrared gas analyzer according to claim 2, further comprising an intermittent mechanism for switching the incidence of infrared rays to both cells so that the infrared rays are incident multiple times. 前記測定光学系は、前記両セルの入射面に同時に赤外線を入射させうる大きさの光束をもつ光源と、前記両セルの出射面と前記赤外検出器との間に配置されて、各セルから前記赤外検出器に連続して複数回ずつ赤外線を入射させるように前記赤外検出器への赤外線入射を切り替える断続機構を備えたものである請求項2に記載の赤外線ガス分析計。The measurement optical system is disposed between a light source having a light beam having a size capable of allowing infrared rays to simultaneously enter the incident surfaces of the two cells, and between the emission surfaces of the two cells and the infrared detector. The infrared gas analyzer according to claim 2, further comprising an intermittent mechanism that switches infrared incidence to the infrared detector so that infrared rays are incident on the infrared detector a plurality of times successively. 前記測定光学系は、前記両セルの入射面に同時に赤外線を入射させうる大きさの光束をもつ光源と、前記光源と前記両セルの入射面との間に配置されて前記両セルに同時に断続して赤外線を入射させる断続機構と、一方のセルの入射部又は出射部を遮蔽し他方のセルの入射部及び出射部を解放し、各セルの透過赤外線による前記赤外検出器の検出信号がそれぞれ複数周期の交流信号を単位とするように前記両セル間で移動させられる遮蔽板とを備えたものである請求項2に記載の赤外線ガス分析計。The measuring optical system is disposed between a light source having a light beam having a size capable of allowing infrared rays to be incident simultaneously on the incident surfaces of the two cells and the light source and the incident surfaces of the two cells, and is intermittently connected to both the cells simultaneously. And an intermittence mechanism for injecting infrared rays, and blocking the incident portion or the emitting portion of one cell and releasing the incident portion and the emitting portion of the other cell. The infrared gas analyzer according to claim 2, further comprising a shielding plate that is moved between the two cells so that a plurality of periods of AC signals are used as a unit. 前記測定光学系は、前記両セルの入射面に同時に赤外線を入射させうる大きさの光束をもつ光源と、前記両セルの出射面と前記赤外検出器との間に配置されて前記両セルから前記赤外検出器に入射する透過赤外線を同時に断続する断続機構と、一方のセルの入射部又は出射部を遮蔽し他方のセルの入射部及び出射部を解放し、各セルの透過赤外線による前記赤外検出器の検出信号がそれぞれ複数周期の交流信号を単位とするように前記両セル間で移動させられる遮蔽板とを備えたものである請求項2に記載の赤外線ガス分析計。The measurement optical system is disposed between a light source having a light beam having a size capable of allowing infrared rays to be incident on the incident surfaces of the two cells at the same time, and between the emission surfaces of the two cells and the infrared detector. The intermittent mechanism that interrupts the transmitted infrared light incident on the infrared detector at the same time, the incident part or the outgoing part of one cell is shielded, the incident part and the outgoing part of the other cell are released, and the transmitted infrared of each cell The infrared gas analyzer according to claim 2, further comprising: a shielding plate that is moved between the cells so that each detection signal of the infrared detector is a unit of an AC signal having a plurality of periods. 前記断続機構は、前記各セルから前記赤外検出器への赤外線入射時間と非入射時間が略同一となるように赤外線入射時間を断続するものである請求項3から6のいずれかに記載の赤外線ガス分析計。The said intermittent mechanism interrupts infrared incident time so that the infrared incident time and non-incident time from each said cell to the said infrared detector may become substantially the same, The any one of Claim 3 to 6 Infrared gas analyzer.
JP2003025349A 2003-02-03 2003-02-03 Infrared gas analyzer Expired - Lifetime JP3918740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003025349A JP3918740B2 (en) 2003-02-03 2003-02-03 Infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003025349A JP3918740B2 (en) 2003-02-03 2003-02-03 Infrared gas analyzer

Publications (2)

Publication Number Publication Date
JP2004233308A JP2004233308A (en) 2004-08-19
JP3918740B2 true JP3918740B2 (en) 2007-05-23

Family

ID=32953655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003025349A Expired - Lifetime JP3918740B2 (en) 2003-02-03 2003-02-03 Infrared gas analyzer

Country Status (1)

Country Link
JP (1) JP3918740B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109001140A (en) * 2018-09-27 2018-12-14 安徽皖仪科技股份有限公司 Double light path Differential UV spectroscopy gas analyzer
CN112540054A (en) * 2020-11-26 2021-03-23 威海精讯畅通电子科技有限公司 Detection device based on NDIR technology

Also Published As

Publication number Publication date
JP2004233308A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
JP3041827B2 (en) Infrared gas analyzer
EP0732580A2 (en) Apparatus for automatic identification of gas samples
US3832548A (en) Gas detector unit
JPH07151684A (en) Infrared ray type gas analyzer
KR20230095781A (en) Multiple air pollutant gas simultaneous measuring device
JPS6312938A (en) Gas analyzer and gas analyzing method
KR102114557B1 (en) A NDIR analyzer using Two Functional Channels
JP3918740B2 (en) Infrared gas analyzer
WO2015122237A1 (en) Spectroscopic analysis device and spectroscopic analysis method
JPS61194332A (en) Method and device for measuring gas concentration
JPH09178655A (en) Infrared gas analyzer
JP2004138499A (en) Gas concentration detection sensor
KR101921726B1 (en) Sample collection device, sample collection method, and fluorescent X-ray analysis device using them
KR20150072793A (en) Optical multi-gas sensor and method for optical multi-gas sensing
JP2736189B2 (en) Radioactive waste contamination / activation radioactive identification method with openings
JPH1048135A (en) Infrared gas analyzer
JP2001330562A (en) Infrared gas analyzer
JP2003057177A (en) Infrared gas analyzer
GB2089972A (en) Noise filter for combustion gas analyzer
JP4176535B2 (en) Infrared analyzer
JPH0620131Y2 (en) Non-dispersive gas analyzer
CN112683839B (en) Method for detecting gas chamber pollution, gas detection device and readable storage medium
JP2002340795A (en) Apparatus for measuring isotope gas
JPH05332933A (en) Portable co2 concentration measuring device
JPS6375537A (en) Automatic chemical analysis instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3918740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

EXPY Cancellation because of completion of term