JP3918619B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3918619B2
JP3918619B2 JP2002116259A JP2002116259A JP3918619B2 JP 3918619 B2 JP3918619 B2 JP 3918619B2 JP 2002116259 A JP2002116259 A JP 2002116259A JP 2002116259 A JP2002116259 A JP 2002116259A JP 3918619 B2 JP3918619 B2 JP 3918619B2
Authority
JP
Japan
Prior art keywords
pressure
detection means
flow rate
exhaust
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002116259A
Other languages
Japanese (ja)
Other versions
JP2003314248A (en
Inventor
伸一朗 奥川
司 窪島
誠 斉藤
茂人 矢羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002116259A priority Critical patent/JP3918619B2/en
Publication of JP2003314248A publication Critical patent/JP2003314248A/en
Application granted granted Critical
Publication of JP3918619B2 publication Critical patent/JP3918619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排出ガスに含まれるパティキュレートを捕集するためのパティキュレートフィルタを備える排気浄化装置に関し、詳しくは、パティキュレート堆積量を高精度に検出して、パティキュレートフィルタの再生を適切な時期に行うことができる排気浄化装置に関する。
【0002】
【従来の技術】
環境対策として、近年、ディーゼルエンジンから排出されるパティキュレート(粒子状物質)を低減するための装置が種々提案されている。その代表的なものに、ディーゼルパティキュレートフィルタ(以下DPFと称する)があり、排気管内に設置したDPFの多孔質の隔壁を排出ガスが通過する際に、パティキュレートを捕集するように構成されている。パティキュレートは、そのまま堆積すると圧損が増大し、排気抵抗が増大して機関性能が低下することから、適正な時期に燃焼させて、DPFを再生する必要がある。再生は、例えば、バーナやヒータ等の加熱手段を用いたり、ポスト噴射や吸気を絞って排気温度を上昇させて、DPFをパティキュレートが燃焼可能な温度まで昇温することにより行われる。
【0003】
この時、DPFの再生時期の決定を適切に行うことが重要で、DPFにパティキュレートが過剰に堆積すると、機関性能が低下するだけでなく、パティキュレートが再生時に急激に燃焼する。図7に示すように、パティキュレート燃焼量(PM燃焼量)が増加するほどDPF内温度が上昇するので、DPF内温度が過度に上昇してDPFが劣化するおそれがある。一方、DPFの過昇温を防止するために、再生頻度を多くして、DPFにパティキュレートが過剰に堆積しないようにすることもできるが、例えば、DPFの再生にポスト噴射を用いる場合には、DPF昇温のために燃料を供給していることから、再生頻度が多くなるほど、燃料消費量が大きくなる不具合がある(図8参照)。
【0004】
DPFの再生時期を決定するための従来技術として、例えば、特開2001−263043には、DPFの上流と下流の差圧を検出する差圧センサを設けることが記載されている。パティキュレートの堆積量が増加すると、DPF前後の差圧が増加するので、検出された差圧から堆積したパティキュレートの量を算出することができる。そして、その量が所定量を越えた時にバーナやヒータ等を用いてDPFを加熱することにより、パティキュレートを燃焼させている。
【0005】
【発明が解決しようとする課題】
しかしながら、差圧センサは個体ごとにゼロ点とセンサ感度の双方にバラツキがあり、また経時変化による誤差も生じる(図10参照)。そのため、差圧からパティキュレートの堆積量を検出する際に十分な精度を確保することが難しかった。このため、差圧センサの検出値を補正し、精度良くパティキュレートの堆積量を検出することが要求されている。
【0006】
そこで、本発明の目的は、DPFを用いた排気浄化装置において、差圧を検出するセンサのゼロ点とセンサ感度の双方を較正することで、パティキュレートの堆積量を精度良く検出し、安全かつ確実な再生を可能とすることにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために、請求項1の内燃機関の排気浄化装置は、内燃機関の排気管内に設置されて排気中のパティキュレートを捕集するパティキュレートフィルタと、
上記排気管内の上記パティキュレートフィルタの下流側に設置される圧力較正用デバイスと、
上記パティキュレートフィルタ側の圧力導入通路および上記圧力較正用デバイス側の圧力導入通路から導入される圧力を検出する圧力検出手段と、
上記圧力導入通路と上記圧力検出手段との連通を切換えて、上記圧力検出手段へ導入される圧力を、上記パティキュレートフィルタ側または上記圧力較正用デバイス側に選択的に切換える検出圧力切換え手段と、
上記検出圧力切換え手段の動作を制御するとともに、上記圧力検出手段の出力からパティキュレートの捕集状態を検出する捕集状態検出手段とを備えている。
【0008】
上記捕集状態検出手段は、上記排気管内の排気流量を検出する排気流量検出手段と、上記圧力検出手段の出力を較正する圧力較正手段を有している。上記圧力較正手段は、上記排気流量検出手段で検出した排気流量を基に、上記検出圧力切換え手段を動作させて上記圧力導入通路を切換え、上記圧力検出手段で検出した上記圧力較正用デバイス側の圧力値に基づいて、上記圧力検出手段で検出した上記パティキュレートフィルタ側の圧力値の較正を行う。
【0009】
上記構成によれば、パティキュレートが堆積せず、排気流量と差圧の関係が既知である上記圧力較正用デバイス側の検出圧力を基に、上記パティキュレートフィルタ側の検出圧力を較正するので、圧力検出手段の誤差をなくし、検出精度を大幅に向上することができる。また、上記検出圧力切換え手段を用いて、上記圧力検出手段に導入される圧力を上記パティキュレートフィルタ側または上記圧力較正用デバイス側に容易に切換えることができるので、上記圧力較正用デバイス側の圧力を検出するための手段を別途設ける必要がない。よって、簡易な構成で、精度よくパティキュレートの捕集状態を検出して、DPFの再生時期を適切に設定することができる。
【0010】
請求項2の構成のように、上記圧力検出手段としては、上記パティキュレートフィルタおよび上記圧力較正用デバイスの前後差圧を検出する差圧検出手段を用いることができる。
【0011】
あるいは、請求項3の構成のように、上記圧力検出手段を、上記記パティキュレートフィルタおよび上記圧力較正用デバイスの上流圧力を検出する圧力検出手段としてもよい。
【0012】
請求項4の構成において、上記圧力較正手段は、上記圧力検出手段が通常時は上記パティキュレートフィルタ側の圧力を検出し、上記排気流量検出手段で検出した排気流量が所定値を越えた場合に一時的に上記圧力較正用デバイス側の圧力を検出するように、上記検出圧力切換え手段を動作させるものとする。排気流量が少ないと、パティキュレートの堆積量変化に対する差圧変化が小さく、誤差が大きくなるため、排気流量が所定値より大きい場合において、本発明による検出圧力の較正を行うことで、パティキュレートの捕集状態をより精度よく検出することが可能になる。
【0013】
請求項5の構成では、上記圧力較正用デバイスを消音器とする。消音器を利用することで、圧力較正用の新たなデバイスを設ける必要がなく、構成を簡易にできる。
【0014】
請求項6の構成では、上記圧力較正手段は、上記排気流量検出手段で検出した排気流量が0である時に上記圧力検出手段の出力が0となるように、上記圧力検出手段の出力を較正するものとする。
【0015】
排気流量が0であれば、DPFの前後差圧は0になるので、この時の上記圧力検出手段の出力から随時ゼロ点を較正することで、個々の差圧センサのバラツキや、経時変化により生じる検出誤差を低減し、十分な検出精度を長期に渡り確保することができる。
【0016】
【発明の実施の形態】
以下、本発明の第1の実施の形態を図1に基づいて説明する。図1はディーゼルエンジンの排気浄化装置の全体構成を示すもので、排気管5内には、マフラ(消音器)3の上流側に、ディーゼルパティキュレートフィルタ2(DPF)が設置されている。DPF2は公知の構成で、例えば、コーディエライト等の耐熱性セラミックスをハニカム構造に成形して、多孔性の隔壁で区画された多数のセルの入口または出口を互い違いに目封じしてなる。エンジンからの排出ガスは、入口側が開口しているセルからDPF2内に入り、多孔性の隔壁を通過する際にパティキュレートが捕集される。
【0017】
排出ガスは、その後、DPF2下流に位置するマフラ3を通過し、大気中に放出される。マフラ3には、パティキュレートが捕集された後の排出ガスが流入するため、パティキュレートが堆積することはなく、排気流量と前後差圧の関係が常に既知である。そのため、本実施の形態では、このマフラ3を、DPF2の圧力較正用デバイスとして使用し、所定の条件で検出したマフラ3の前後差圧を基に、DPF2の前後差圧の検出値を較正して、パティキュレート堆積量を算出する。
【0018】
DPF2とマフラ3の前後差圧は、圧力検出手段である差圧センサ1で検出する。差圧センサ1の一端側には、DPF2とマフラ3の間の排気管5bが、圧力導入通路としての圧力取込管61を介して接続されており、差圧センサ1の他端側には、圧力導入通路としての圧力取込管62を介して検出圧力切換え手段である三方弁4が接続されている。三方弁4は、圧力導入通路としての圧力取込管71を介してDPF2の上流の排気管5aに、また、圧力導入通路としての圧力取込管72を介してマフラ3の下流の排気管5cに、それぞれ接続している。
【0019】
三方弁4は、ECU8からの信号によって駆動されて、圧力取込管62を、圧力取込管71および圧力取込管72のいずれか一方に選択的に連通させる構成となっている。差圧センサ1の一端側には、排気管5b内の圧力が常に導入されるので、例えば、三方弁4をDPF2に連通する圧力取込管71側に切換えることによって、DPF2の前後差圧を、マフラ3に連通する圧力取込管72側に切換えることによって、マフラ3の前後差圧を差圧センサ1で検出することができる。
【0020】
差圧センサ1の出力は、捕集状態検出手段となるECU8に送られ、ECU8は、マフラ3の前後差圧に基づくDPF2の前後差圧の較正や、パティキュレートの堆積量の算出等の演算を行う。パティキュレート堆積量に対する、DPF2の前後差圧とDPF2を通過する排気流量との関係を図2に示す。図2のように、ある排気流量に対して、パティキュレート堆積量の増加に伴い差圧が増加することから、この関係を利用してパティキュレート堆積量を算出することができる。ただし、パティキュレート堆積量が同一(多または少)であっても、排気流量によって差圧が変動するため、DPF2の前後差圧からのみではパティキュレート堆積量を正確に検出することができない。特に、排気流量が多くなると排気流量変化に対する差圧変化が増大する傾向にある。
【0021】
ECU8は、図示しない各種センサからの信号により排気流量を算出する排気流量検出手段と、排気流量が所定値を越えた場合に、三方弁4を切換えて、マフラ3の前後差圧を検出し、これを基にセンサ出力値の較正を行う圧力較正手段を有している。マフラ3はDPF2の下流に位置するため、パティキュレートは堆積せず、排気流量と差圧の関係が常に既知である。よって、ある排気流量に対する差圧センサ1の出力値から、センサ感度を知り、DPF2の前後差圧検出時の出力を較正することができる。圧力較正手段は、また、差圧ゼロの時の差圧センサ1の出力(ゼロ点)の較正を行い、排気流量がゼロとなる状態を排気流量検出手段で検出し、その時の差圧センサ1出力からゼロ点を較正する。このECU8の作動の一例を図3に示すフローチャートを用いて説明する。
【0022】
ECU8は、まず、エンジン始動直前や停止直後といった排気流量がゼロとなる状態の差圧センサ1出力からゼロ点を較正する。図3(a)はゼロ点較正処理のフローチャートで、ECU8において所定の周期で実行される。図3(a)において、ゼロ点較正処理がスタートすると、ステップ100で、エンジンのIG(イグニッション)スイッチがON直前またはOFF直後であるか否かを判別し、IGスイッチがON直前またはOFF直後でなければ、直ちに本処理を終了する。IGスイッチがON直前またはOFF直後であれば、ステップ101に進み、差圧センサ1の出力Pout (kPa)を読み込む。三方弁4は、通常時には、圧力取込管62と圧力取込管71を連通させてDPF2の前後差圧を検出するように通路を切換えているので、差圧センサ1は、排気流量ゼロの時のDPF2の前後差圧を検出することになる。次に、ステップ102で、差圧センサ1ゼロ点Po (kPa)を排気流量ゼロの時の差圧センサ1出力Pout とし、ECU8内のメモリに記録する。図4の排気流量−差圧特性において、点線は、差圧センサ1の出力、実線は差圧真値である。
【0023】
図3(b)は、センサ感度較正処理のフローチャートで、ECU8において所定の周期で実行される。図3(b)のセンサ感度較正処理がスタートすると、まず、ステップ103で排気流量Vexを算出する。排気流量Vexは、吸気量ga(g/sec )を、排気温度Tex(℃)、差圧P(kPa)を用いて、体積流量に換算することにより求められ、具体的には、下記式(1)からDPF2・マフラ3を流れる排気流量Vex(L/min )を算出することができる。この時の差圧P(kPa)には、前回のセンサ感度較正処理時に較正された差圧P(kPa)を用いる。
Vex=60×22.4×(ga/28.8)×{101.3/(101.3+P)}×{(273+Tex)/273}・・・(1)
【0024】
ステップ104では、算出された排気流量Vexを基に、差圧センサ1の感度較正を実行するか否かを判断する。具体的には、排気流量Vex>所定値(例えば、500L/min )であり、かつ排気流量Vex変動量<所定値(例えば、50(L/min )/sec )の時に感度較正を実行するものとする。これは、排気流量Vexが所定値以下、または排気流量Vex変動量が所定値以上であると、本処理による較正の精度を十分高くすることが難しいためで、上記条件を満足する場合のみ、ステップ105へ進んでそれ以降の較正処理を実行することで、検出精度をより高めることができる。なお、上記所定値は一例であり、適宜変更することができる。上記条件を満足しない場合は、ステップ111へ進む。
【0025】
感度較正を実行する場合は、ステップ105で、差圧センサ1でマフラ3の前後差圧を検出するために、3方弁4を、圧力取込管62と圧力取込管72が連通するように切り換える。ステップ106で、差圧センサ1出力Pout (kPa)を読み込み、次いで、ステップ107で、上記ステップ103で算出した排気流量Vex(L/min )に対応する既知のマフラ前後差圧Pm(kPa)を算出する。次に、ステップ108で、差圧センサ1出力Pout (kPa)と、マフラ前後差圧Pm(kPa)から、差圧センサ1感度Aを算出する。図5に示すように、排気流量Vex(L/min )が既知であれば、これに対応する既知のマフラ前後差圧Pm(kPa)と差圧センサ1出力Pout (kPa)を基に差圧センサ1感度Aを知ることができる。具体的には、下記式(2)に基づいて差圧センサ1感度Aを算出し、この算出した差圧センサ1感度Aを、ECU8内のメモリに記録する。
差圧センサ1感度A=Pm/Pout ・・・(2)
【0026】
次いで、ステップ109で、3方弁4を、差圧センサ1がDPF2の前後差圧を検出するように切り換える。ステップ110で、差圧センサ1出力Pout (kPa)を読み込み、ステップ111で、差圧センサ1出力Pout (kPa)を、上記ステップ102で記録した差圧センサ1ゼロ点Po (kPa)、ステップ108で記録した差圧センサ1感度Aを用いて較正する。具体的には、下記式(3)に基づいて較正後差圧Pを算出し、ECU8内のメモリに記録する。
較正後差圧P=感度A×Pout −Po ・・・(3)
【0027】
このようにして、ゼロ点較正処理を行うとともに、マフラ3前後差圧を基に差圧センサ感度較正処理を行うことで、DPF2の差圧Pを精度よく検出することができる。ECU8は、さらに、この較正後差圧Pを基に、予め記録してあるマップから、パティキュレートの堆積量を算出する。そして、パティキュレートの堆積量が所定量に達した時に再生信号を出力することで、適正な時期にDPF再生を行うことができ、安全かつ確実なDPF再生が可能になる。
【0028】
図6に本発明の第2の実施の形態を示す。本実施の形態では、圧力検出手段となる差圧センサ1の役割を圧力計11で代替しており、DPF2またはマフラ3の前後差圧を検出する代わりに、DPF2またはマフラ3の上流の圧力を検出する。圧力計11には圧力導入通路となる圧力取り込み管63を介して、検出圧力切換え手段である切換え弁41が接続されている。切換え弁41には、DPF2の上流の排気管5a、マフラ3の上流の排気管5bが、それぞれ圧力導入通路となる圧力取り込み管73、74を介して接続されている。この構成においても、圧力計11の出力を基に、ECU8で、ゼロ点較正処理およびセンサ感度較正処理を行って、パティキュレートの捕集状態を精度よく検出することができる。そのフローチャートを図9に示す。
【0029】
図9(a)はゼロ点較正処理のフローチャートで、ECU8において所定の周期で実行される。図9(a)において、ゼロ点較正処理がスタートすると、ステップ200で、エンジンのIG(イグニッション)スイッチがON直前またはOFF直後であるか否かを判別し、IGスイッチがON直前またはOFF直後でなければ、本処理を終了する。IGスイッチがON直前またはOFF直後であれば、ステップ201に進み、大気圧Patm (kPa)を読み込む。次に、ステップ202で、圧力計11ゼロ点Po (kPa)を大気圧Patm (kPa)とし、ECU8内のメモリに記録する。
【0030】
図9(b)は、センサ感度較正処理のフローチャートで、ECU8において所定の周期で実行される。図9(b)のセンサ感度較正処理がスタートすると、まず、ステップ203で排気流量Vexを算出する。排気流量Vexは、吸気量ga(g/sec )を、排気温度Tex(℃)、前回の処理で算出した較正後差圧P(kPa)を用いて、下記式(1)からDPF2・マフラ3を流れる排気流量Vex(L/min )を算出する。
Vex=60×22.4×(ga/28.8)×{101.3/(101.3+P)}×{(273+Tex)/273}・・・(1)
【0031】
ステップ204では、算出された排気流量Vexを基に、感度較正を実行するか否かを判断する。具体的には、排気流量Vex>所定値(例えば、500L/min )であり、かつ排気流量Vex変動量<所定値(例えば、50(L/min )/sec )の時に感度較正を実行するものとする。上記条件を満足しない場合は、ステップ111へ進む。感度較正を実行する場合は、ステップ205で、圧力計11でマフラ3の上流圧力を検出するために、切換え弁41を、圧力取込管63と圧力取込管74が連通するように切り換える。ステップ206で、算出した排気流量Vex(L/min )に対応する既知のマフラ前後差圧Pm(kPa)を算出する。
【0032】
ステップ207で、較正前の前後差圧Pout (kPa)を、マフラ3の上流圧力Pa(kPa)、既知である排気流量Vex(L/min )から算出したマフラ前後差圧Pm(kPa)、大気圧Patm から、下記式(4)に基づいて算出する。
Pout =Pa−Pm−Patm ・・・(4)
次いで、ステップ208で、較正前の前後差圧Pout (kPa)と、既知のマフラ前後差圧Pm(kPa)から、下記式(5)に基づいて圧力計11感度Aを算出し、ECU8内のメモリに記録する。
圧力計11感度A=Pm/Pout ・・・(5)
【0033】
次いで、ステップ209で、切換え弁4を、圧力計11がDPF2上流圧力を検出するように切り換える。ステップ210で、圧力計11出力Pa(kPa)を読み込み、較正前の前後差圧Pout (kPa)を算出する。さらに、ステップ211で、較正前の前後差圧Pout (kPa)を、上記ステップ202で記録した圧力計11ゼロ点Po (kPa)、ステップ208で記録した圧力計11感度Aを用いて、下記式(6)に基づいて較正し、較正後差圧PとしてECU8内のメモリに記録する。
較正後差圧P=感度A×Pout −Po ・・・(6)
【0034】
本実施の形態によっても、ゼロ点較正処理を行うとともに、センサ感度較正処理を行うことで、DPF2の差圧Pを精度よく検出し、適正な時期にDPF再生を安全かつ確実に行うことができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態における内燃機関の排気浄化装置の全体概略構成図である。
【図2】パティキュレート堆積量に対する、排気流量と差圧の関係を示す図である。
【図3】(a)はECUによるゼロ点較正処理のフローチャート、(b)は差圧センサ感度較正処理のフローチャートを示す図である。
【図4】ゼロ点較正処理における排気流量と差圧の関係を示す図である。
【図5】センサ感度較正処理における排気流量と差圧の関係を示す図である。
【図6】本発明の第2の実施の形態における内燃機関の排気浄化装置の全体概略構成図である。
【図7】パティキュレート燃焼量とDPF内温度の関係を示す図である。
【図8】パティキュレート燃焼量とDPF内温度の関係を示す図である。
【図9】(a)はECUによるゼロ点較正処理のフローチャート、(b)はセンサ感度較正処理のフローチャートを示す図である。
【図10】ゼロ点、センサ感度のずれによる差圧センサの誤差を示す図である。
【符号の説明】
1 差圧センサ(圧力検出手段)
11 圧力計(圧力検出手段)
2 DPF(パティキュレートフィルタ)
3 マフラ(消音器)
4 三方弁(検出圧力切換え手段)
41 切換え弁(検出圧力切換え手段)
5 排気管
5a、5b、5c 排気管
61、62、63 圧力取込管(圧力導入通路)
71、72、73、74 圧力取込管(圧力導入通路)
8 ECU(捕集状態検出手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust emission control device including a particulate filter for collecting particulates contained in exhaust gas of an internal combustion engine. More specifically, the present invention relates to regeneration of a particulate filter by detecting the amount of particulate accumulation with high accuracy. The present invention relates to an exhaust emission control device that can perform the operation at an appropriate time.
[0002]
[Prior art]
In recent years, as an environmental measure, various devices for reducing particulates (particulate matter) discharged from a diesel engine have been proposed. A typical example is a diesel particulate filter (hereinafter referred to as DPF), which is configured to collect particulates when exhaust gas passes through the porous partition walls of the DPF installed in the exhaust pipe. ing. If particulates are deposited as they are, pressure loss increases, exhaust resistance increases, and engine performance deteriorates. Therefore, it is necessary to regenerate the DPF by burning it at an appropriate time. The regeneration is performed, for example, by using a heating means such as a burner or a heater, or by increasing the exhaust temperature by restricting post injection or intake air to raise the DPF to a temperature at which particulates can be combusted.
[0003]
At this time, it is important to appropriately determine the regeneration timing of the DPF. If excessive particulates are accumulated in the DPF, not only the engine performance is deteriorated but also the particulates are rapidly burned during regeneration. As shown in FIG. 7, as the particulate combustion amount (PM combustion amount) increases, the DPF internal temperature rises, so that the DPF internal temperature may rise excessively and the DPF may deteriorate. On the other hand, in order to prevent overheating of the DPF, it is possible to increase the regeneration frequency so that excessive particulates do not accumulate in the DPF. For example, when post injection is used for regeneration of the DPF, Since fuel is supplied to raise the DPF temperature, there is a problem that the fuel consumption increases as the regeneration frequency increases (see FIG. 8).
[0004]
As a conventional technique for determining the regeneration timing of the DPF, for example, Japanese Patent Laid-Open No. 2001-263043 describes providing a differential pressure sensor that detects a differential pressure upstream and downstream of the DPF. When the accumulated amount of particulates increases, the differential pressure before and after the DPF increases, so the amount of accumulated particulates can be calculated from the detected differential pressure. When the amount exceeds a predetermined amount, the DPF is heated using a burner, a heater, or the like, thereby burning the particulates.
[0005]
[Problems to be solved by the invention]
However, differential pressure sensors vary in both the zero point and sensor sensitivity for each individual, and errors due to changes over time also occur (see FIG. 10). Therefore, it has been difficult to ensure sufficient accuracy when detecting the amount of particulate deposition from the differential pressure. For this reason, it is required to correct the detection value of the differential pressure sensor and accurately detect the amount of particulate deposition.
[0006]
Accordingly, an object of the present invention is to accurately detect the accumulated amount of particulates by calibrating both the zero point and the sensor sensitivity of a sensor for detecting a differential pressure in an exhaust gas purification apparatus using a DPF, which is safe and safe. It is to enable reliable reproduction.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, an exhaust emission control device for an internal combustion engine according to claim 1 is a particulate filter that is installed in an exhaust pipe of the internal combustion engine and collects particulates in the exhaust,
A pressure calibration device installed downstream of the particulate filter in the exhaust pipe;
Pressure detecting means for detecting pressure introduced from the pressure introduction passage on the particulate filter side and the pressure introduction passage on the pressure calibration device side;
Detecting pressure switching means for selectively switching the pressure introduced to the pressure detecting means to the particulate filter side or the pressure calibration device side by switching the communication between the pressure introducing passage and the pressure detecting means;
And a collecting state detecting means for controlling the operation of the detected pressure switching means and detecting the particulate collecting state from the output of the pressure detecting means.
[0008]
The collection state detection means has exhaust flow rate detection means for detecting the exhaust flow rate in the exhaust pipe, and pressure calibration means for calibrating the output of the pressure detection means. The pressure calibration means switches the pressure introduction passage by operating the detected pressure switching means based on the exhaust flow rate detected by the exhaust flow rate detection means, and detects the pressure calibration device side detected by the pressure detection means. Based on the pressure value, the pressure value on the particulate filter side detected by the pressure detecting means is calibrated.
[0009]
According to the above configuration, the particulate pressure does not accumulate, and the detected pressure on the particulate filter side is calibrated based on the detected pressure on the pressure calibration device side where the relationship between the exhaust flow rate and the differential pressure is known. The error of the pressure detecting means can be eliminated, and the detection accuracy can be greatly improved. In addition, since the pressure introduced into the pressure detection means can be easily switched to the particulate filter side or the pressure calibration device side using the detection pressure switching means, the pressure on the pressure calibration device side There is no need to separately provide a means for detecting. Therefore, with a simple configuration, it is possible to accurately detect the particulate collection state and appropriately set the regeneration time of the DPF.
[0010]
As in the configuration of the second aspect, as the pressure detecting means, a differential pressure detecting means for detecting a differential pressure across the particulate filter and the pressure calibration device can be used.
[0011]
Alternatively, as in the configuration of claim 3, the pressure detection means may be a pressure detection means for detecting an upstream pressure of the particulate filter and the pressure calibration device.
[0012]
5. The pressure calibration means according to claim 4, wherein the pressure detecting means detects the pressure on the particulate filter side when the pressure detecting means is normal, and the exhaust flow rate detected by the exhaust flow rate detecting means exceeds a predetermined value. The detected pressure switching means is operated so as to temporarily detect the pressure on the pressure calibration device side. When the exhaust flow rate is small, the change in differential pressure with respect to the change in the accumulated amount of particulates is small and the error becomes large.Therefore, when the exhaust flow rate is larger than a predetermined value, the detected pressure is calibrated by performing calibration of the detected pressure according to the present invention. It becomes possible to detect the collection state with higher accuracy.
[0013]
In the configuration of claim 5, the pressure calibration device is a silencer. By using the silencer, it is not necessary to provide a new device for pressure calibration, and the configuration can be simplified.
[0014]
In the configuration of claim 6, the pressure calibration means calibrates the output of the pressure detection means so that the output of the pressure detection means becomes zero when the exhaust flow rate detected by the exhaust flow rate detection means is zero. Shall.
[0015]
If the exhaust flow rate is 0, the differential pressure across the DPF will be 0. By calibrating the zero point as needed from the output of the pressure detection means at this time, due to variations in individual differential pressure sensors and changes over time The generated detection error can be reduced, and sufficient detection accuracy can be ensured over a long period of time.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows the overall configuration of an exhaust emission control device for a diesel engine. In an exhaust pipe 5, a diesel particulate filter 2 (DPF) is installed upstream of a muffler (silencer) 3. The DPF 2 has a known configuration, for example, a heat-resistant ceramic such as cordierite is formed into a honeycomb structure, and the inlets or outlets of a large number of cells partitioned by porous partition walls are alternately plugged. The exhaust gas from the engine enters the DPF 2 from a cell having an opening on the inlet side, and particulates are collected when passing through the porous partition wall.
[0017]
Thereafter, the exhaust gas passes through the muffler 3 located downstream of the DPF 2 and is released into the atmosphere. Since the exhaust gas after the particulates are collected flows into the muffler 3, the particulates do not accumulate, and the relationship between the exhaust flow rate and the front-rear differential pressure is always known. Therefore, in the present embodiment, this muffler 3 is used as a pressure calibration device for the DPF 2, and the detected value of the differential pressure across the DPF 2 is calibrated based on the differential pressure across the muffler 3 detected under predetermined conditions. To calculate the particulate deposition amount.
[0018]
The differential pressure across the DPF 2 and the muffler 3 is detected by a differential pressure sensor 1 that is a pressure detection means. An exhaust pipe 5b between the DPF 2 and the muffler 3 is connected to one end side of the differential pressure sensor 1 via a pressure intake pipe 61 as a pressure introduction passage. The three-way valve 4 which is a detection pressure switching means is connected through a pressure intake pipe 62 as a pressure introduction passage. The three-way valve 4 is connected to the exhaust pipe 5a upstream of the DPF 2 via a pressure intake pipe 71 serving as a pressure introduction passage, and to the exhaust pipe 5c downstream of the muffler 3 via a pressure intake pipe 72 serving as a pressure introduction passage. Are connected to each other.
[0019]
The three-way valve 4 is driven by a signal from the ECU 8 to selectively communicate the pressure intake pipe 62 with either the pressure intake pipe 71 or the pressure intake pipe 72. Since the pressure in the exhaust pipe 5b is always introduced into one end side of the differential pressure sensor 1, for example, by switching the three-way valve 4 to the pressure intake pipe 71 side communicating with the DPF 2, the differential pressure across the DPF 2 is reduced. The differential pressure sensor 1 can detect the differential pressure across the muffler 3 by switching to the pressure intake pipe 72 side communicating with the muffler 3.
[0020]
The output of the differential pressure sensor 1 is sent to an ECU 8 serving as a collection state detection means. The ECU 8 performs calculations such as calibration of the differential pressure across the DPF 2 based on the differential pressure across the muffler 3 and calculation of the amount of accumulated particulates. I do. FIG. 2 shows the relationship between the differential pressure across the DPF 2 and the flow rate of the exhaust gas passing through the DPF 2 with respect to the particulate deposition amount. As shown in FIG. 2, since the differential pressure increases with an increase in the particulate deposition amount for a certain exhaust flow rate, the particulate deposition amount can be calculated using this relationship. However, even if the particulate accumulation amount is the same (large or small), the differential pressure varies depending on the exhaust flow rate, and therefore the particulate deposition amount cannot be accurately detected only from the differential pressure across the DPF 2. In particular, when the exhaust flow rate increases, the differential pressure change with respect to the exhaust flow rate change tends to increase.
[0021]
The ECU 8 detects the differential pressure across the muffler 3 by switching the three-way valve 4 when the exhaust flow rate exceeds a predetermined value with the exhaust flow rate detection means for calculating the exhaust flow rate based on signals from various sensors (not shown), Based on this, pressure calibration means for calibrating the sensor output value is provided. Since the muffler 3 is located downstream of the DPF 2, no particulates accumulate, and the relationship between the exhaust flow rate and the differential pressure is always known. Therefore, it is possible to know the sensor sensitivity from the output value of the differential pressure sensor 1 for a certain exhaust flow rate, and to calibrate the output when the differential pressure across the DPF 2 is detected. The pressure calibration means also calibrates the output (zero point) of the differential pressure sensor 1 when the differential pressure is zero, detects the exhaust gas flow rate zero state by the exhaust flow rate detection means, and the differential pressure sensor 1 at that time Calibrate the zero point from the output. An example of the operation of the ECU 8 will be described with reference to the flowchart shown in FIG.
[0022]
The ECU 8 first calibrates the zero point from the output of the differential pressure sensor 1 in a state where the exhaust flow rate becomes zero, such as immediately before starting the engine or immediately after stopping. FIG. 3A is a flowchart of the zero point calibration process, which is executed in the ECU 8 at a predetermined cycle. In FIG. 3A, when the zero point calibration process starts, it is determined in step 100 whether or not the engine IG (ignition) switch is immediately before ON or immediately after OFF, and immediately after the IG switch is immediately ON or immediately after OFF. If not, the process is immediately terminated. If the IG switch is immediately before ON or immediately after OFF, the process proceeds to step 101 and the output Pout (kPa) of the differential pressure sensor 1 is read. Since the three-way valve 4 normally switches the passage so that the pressure intake pipe 62 and the pressure intake pipe 71 communicate with each other to detect the differential pressure across the DPF 2, the differential pressure sensor 1 has a zero exhaust flow rate. The differential pressure across the DPF 2 at the time is detected. Next, in step 102, the differential pressure sensor 1 zero point Po (kPa) is set as the differential pressure sensor 1 output Pout when the exhaust gas flow rate is zero, and is recorded in the memory in the ECU 8. In the exhaust flow rate-differential pressure characteristics of FIG. 4, the dotted line is the output of the differential pressure sensor 1, and the solid line is the differential pressure true value.
[0023]
FIG. 3B is a flowchart of the sensor sensitivity calibration process, which is executed in the ECU 8 at a predetermined cycle. When the sensor sensitivity calibration process of FIG. 3B starts, first, at step 103, the exhaust flow rate Vex is calculated. The exhaust flow rate Vex is obtained by converting the intake air amount ga (g / sec) into a volume flow rate using the exhaust temperature Tex (° C.) and the differential pressure P (kPa). The exhaust flow rate Vex (L / min) flowing through the DPF 2 and the muffler 3 can be calculated from 1). As the differential pressure P (kPa) at this time, the differential pressure P (kPa) calibrated during the previous sensor sensitivity calibration process is used.
Vex = 60 × 22.4 × (ga / 28.8) × {101.3 / (101.3 + P)} × {(273 + Tex) / 273} (1)
[0024]
In step 104, it is determined whether sensitivity calibration of the differential pressure sensor 1 is to be executed based on the calculated exhaust flow rate Vex. Specifically, the sensitivity calibration is executed when the exhaust flow rate Vex> a predetermined value (for example, 500 L / min) and the exhaust flow rate Vex fluctuation amount <the predetermined value (for example, 50 (L / min) / sec). And This is because if the exhaust flow rate Vex is equal to or smaller than the predetermined value or the fluctuation amount of the exhaust flow rate Vex is equal to or larger than the predetermined value, it is difficult to sufficiently increase the accuracy of calibration by this processing. By proceeding to 105 and executing the subsequent calibration processing, the detection accuracy can be further increased. The predetermined value is an example and can be changed as appropriate. If the above condition is not satisfied, the process proceeds to step 111.
[0025]
When performing the calibration of the sensitivity, in order to detect the differential pressure across the muffler 3 with the differential pressure sensor 1 in step 105, the pressure intake pipe 62 and the pressure intake pipe 72 are communicated with each other in the three-way valve 4. Switch to. In step 106, the differential pressure sensor 1 output Pout (kPa) is read, and in step 107, a known muffler front-rear differential pressure Pm (kPa) corresponding to the exhaust flow rate Vex (L / min) calculated in step 103 is obtained. calculate. Next, in step 108, the differential pressure sensor 1 sensitivity A is calculated from the differential pressure sensor 1 output Pout (kPa) and the muffler longitudinal pressure difference Pm (kPa). As shown in FIG. 5, if the exhaust flow rate Vex (L / min) is known, the differential pressure based on the known muffler front-rear differential pressure Pm (kPa) corresponding to this and the differential pressure sensor 1 output Pout (kPa). Sensor 1 sensitivity A can be known. Specifically, the differential pressure sensor 1 sensitivity A is calculated based on the following formula (2), and the calculated differential pressure sensor 1 sensitivity A is recorded in a memory in the ECU 8.
Differential pressure sensor 1 sensitivity A = Pm / Pout (2)
[0026]
Next, at step 109, the three-way valve 4 is switched so that the differential pressure sensor 1 detects the differential pressure across the DPF 2. In step 110, the differential pressure sensor 1 output Pout (kPa) is read. In step 111, the differential pressure sensor 1 output Pout (kPa) is recorded in the differential pressure sensor 1 zero point Po (kPa) recorded in step 102, step 108. Is calibrated by using the differential pressure sensor 1 sensitivity A recorded in the above. Specifically, the post-calibration differential pressure P is calculated based on the following equation (3) and recorded in the memory in the ECU 8.
Post-calibration differential pressure P = sensitivity A × Pout−Po (3)
[0027]
Thus, the differential pressure P of the DPF 2 can be accurately detected by performing the zero point calibration process and performing the differential pressure sensor sensitivity calibration process based on the differential pressure across the muffler 3. The ECU 8 further calculates the amount of accumulated particulates from a pre-recorded map based on the post-calibration differential pressure P. By outputting a regeneration signal when the amount of accumulated particulates reaches a predetermined amount, DPF regeneration can be performed at an appropriate time, and safe and reliable DPF regeneration is possible.
[0028]
FIG. 6 shows a second embodiment of the present invention. In the present embodiment, the pressure gauge 11 replaces the role of the differential pressure sensor 1 serving as a pressure detection means, and instead of detecting the differential pressure across the DPF 2 or the muffler 3, the pressure upstream of the DPF 2 or the muffler 3 is determined. To detect. The pressure gauge 11 is connected to a switching valve 41 serving as a detection pressure switching means via a pressure intake pipe 63 serving as a pressure introduction passage. An exhaust pipe 5a upstream of the DPF 2 and an exhaust pipe 5b upstream of the muffler 3 are connected to the switching valve 41 via pressure intake pipes 73 and 74 serving as pressure introduction passages, respectively. Also in this configuration, it is possible to accurately detect the particulate collection state by performing the zero point calibration process and the sensor sensitivity calibration process by the ECU 8 based on the output of the pressure gauge 11. The flowchart is shown in FIG.
[0029]
FIG. 9A is a flowchart of the zero point calibration process, which is executed in the ECU 8 at a predetermined cycle. In FIG. 9A, when the zero point calibration process is started, it is determined in step 200 whether or not the engine IG (ignition) switch is immediately before turning on or immediately after turning off. If not, the process ends. If the IG switch is immediately before ON or immediately after OFF, the process proceeds to step 201, and the atmospheric pressure Patm (kPa) is read. Next, in step 202, the pressure gauge 11 zero point Po (kPa) is set as the atmospheric pressure Patm (kPa) and recorded in the memory in the ECU 8.
[0030]
FIG. 9B is a flowchart of the sensor sensitivity calibration process, which is executed in the ECU 8 at a predetermined cycle. When the sensor sensitivity calibration process of FIG. 9B starts, first, at step 203, the exhaust flow rate Vex is calculated. The exhaust gas flow rate Vex is calculated from the following equation (1) by using the intake air amount ga (g / sec), the exhaust gas temperature Tex (° C.), and the post-calibration differential pressure P (kPa) calculated in the previous process. The exhaust gas flow rate Vex (L / min) flowing through is calculated.
Vex = 60 × 22.4 × (ga / 28.8) × {101.3 / (101.3 + P)} × {(273 + Tex) / 273} (1)
[0031]
In step 204, it is determined whether or not sensitivity calibration is to be executed based on the calculated exhaust flow rate Vex. Specifically, the sensitivity calibration is executed when the exhaust flow rate Vex> a predetermined value (for example, 500 L / min) and the exhaust flow rate Vex fluctuation amount <the predetermined value (for example, 50 (L / min) / sec). And If the above condition is not satisfied, the process proceeds to step 111. When performing sensitivity calibration, in order to detect the upstream pressure of the muffler 3 with the pressure gauge 11 in step 205, the switching valve 41 is switched so that the pressure intake pipe 63 and the pressure intake pipe 74 communicate with each other. In step 206, a known muffler front-rear differential pressure Pm (kPa) corresponding to the calculated exhaust flow rate Vex (L / min) is calculated.
[0032]
In step 207, the front-rear differential pressure Pout (kPa) before calibration is calculated based on the upstream pressure Pa (kPa) of the muffler 3 and the muffler front-rear differential pressure Pm (kPa) calculated from the known exhaust flow rate Vex (L / min). The pressure is calculated from the atmospheric pressure Patm based on the following formula (4).
Pout = Pa-Pm-Patm (4)
Next, in step 208, the pressure gauge 11 sensitivity A is calculated from the pre-calibration differential pressure Pout (kPa) before calibration and the known muffler differential pressure Pm (kPa) based on the following equation (5). Record in memory.
Pressure gauge 11 sensitivity A = Pm / Pout (5)
[0033]
Next, at step 209, the switching valve 4 is switched so that the pressure gauge 11 detects the DPF2 upstream pressure. In step 210, the pressure gauge 11 output Pa (kPa) is read to calculate the differential pressure Pout (kPa) before and after calibration. Further, in step 211, the differential pressure Pout (kPa) before and after calibration is calculated using the pressure gauge 11 zero point Po (kPa) recorded in step 202 and the pressure gauge 11 sensitivity A recorded in step 208 by the following equation. Calibrate based on (6), and record in the memory in the ECU 8 as the post-calibration differential pressure P.
Post-calibration differential pressure P = sensitivity A × Pout−Po (6)
[0034]
Also according to the present embodiment, by performing the zero point calibration process and the sensor sensitivity calibration process, the differential pressure P of the DPF 2 can be accurately detected, and the DPF regeneration can be performed safely and reliably at an appropriate time. .
[Brief description of the drawings]
FIG. 1 is an overall schematic configuration diagram of an exhaust emission control device for an internal combustion engine according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a relationship between an exhaust flow rate and a differential pressure with respect to a particulate accumulation amount.
3A is a flowchart of zero point calibration processing by the ECU, and FIG. 3B is a flowchart of differential pressure sensor sensitivity calibration processing.
FIG. 4 is a diagram showing a relationship between an exhaust flow rate and a differential pressure in a zero point calibration process.
FIG. 5 is a diagram showing a relationship between an exhaust flow rate and a differential pressure in sensor sensitivity calibration processing.
FIG. 6 is an overall schematic configuration diagram of an exhaust emission control device for an internal combustion engine according to a second embodiment of the present invention.
FIG. 7 is a graph showing the relationship between particulate combustion amount and DPF internal temperature.
FIG. 8 is a diagram showing the relationship between particulate combustion amount and DPF internal temperature.
9A is a flowchart of zero point calibration processing by the ECU, and FIG. 9B is a flowchart of sensor sensitivity calibration processing.
FIG. 10 is a diagram illustrating an error of a differential pressure sensor due to a deviation of a zero point and sensor sensitivity.
[Explanation of symbols]
1 Differential pressure sensor (pressure detection means)
11 Pressure gauge (pressure detection means)
2 DPF (Particulate Filter)
3 Muffler (silencer)
4 Three-way valve (Detection pressure switching means)
41 switching valve (detection pressure switching means)
5 Exhaust pipes 5a, 5b, 5c Exhaust pipes 61, 62, 63 Pressure intake pipe (pressure introduction passage)
71, 72, 73, 74 Pressure intake pipe (pressure introduction passage)
8 ECU (collection state detection means)

Claims (6)

内燃機関の排気管内に設置されて排気中のパティキュレートを捕集するパティキュレートフィルタと、
上記排気管内の上記パティキュレートフィルタの下流側に設置される圧力較正用デバイスと、
上記パティキュレートフィルタ側の圧力導入通路および上記圧力較正用デバイス側の圧力導入通路から導入される圧力を検出する圧力検出手段と、
上記圧力導入通路と上記圧力検出手段との連通を切換えて、上記圧力検出手段へ導入される圧力を、上記パティキュレートフィルタ側または上記圧力較正用デバイス側に選択的に切換える検出圧力切換え手段と、
上記検出圧力切換え手段の動作を制御するとともに、上記圧力検出手段の出力からパティキュレートの捕集状態を検出する捕集状態検出手段とを備え、
上記捕集状態検出手段が、上記排気管内の排気流量を検出する排気流量検出手段と、上記圧力検出手段の出力を較正する圧力較正手段を有しており、
上記圧力較正手段は、上記排気流量検出手段で検出した排気流量を基に、上記検出圧力切換え手段を動作させて、上記圧力導入通路を切換えるとともに、上記圧力検出手段で検出した上記圧力較正用デバイス側の圧力値に基づいて、上記圧力検出手段で検出した上記パティキュレートフィルタ側の圧力値の較正を行うことを特徴とする内燃機関の排気浄化装置。
A particulate filter that is installed in the exhaust pipe of the internal combustion engine and collects particulates in the exhaust;
A pressure calibration device installed downstream of the particulate filter in the exhaust pipe;
Pressure detecting means for detecting pressure introduced from the pressure introduction passage on the particulate filter side and the pressure introduction passage on the pressure calibration device side;
Detection pressure switching means for selectively switching the pressure introduced to the pressure detection means to the particulate filter side or the pressure calibration device side by switching communication between the pressure introduction passage and the pressure detection means;
The operation of the detection pressure switching means is controlled, and the collection state detection means for detecting the particulate collection state from the output of the pressure detection means,
The collection state detection means has exhaust flow rate detection means for detecting the exhaust flow rate in the exhaust pipe, and pressure calibration means for calibrating the output of the pressure detection means,
The pressure calibration means operates the detected pressure switching means based on the exhaust flow rate detected by the exhaust flow rate detection means to switch the pressure introduction passage, and the pressure calibration device detected by the pressure detection means. An exhaust purification device for an internal combustion engine, wherein the pressure value on the particulate filter side detected by the pressure detecting means is calibrated based on the pressure value on the side.
上記圧力検出手段が、上記パティキュレートフィルタおよび上記圧力較正用デバイスの前後差圧を検出する差圧検出手段である請求項1記載の内燃機関の排気浄化装置。The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the pressure detection means is a differential pressure detection means for detecting a differential pressure across the particulate filter and the pressure calibration device. 上記圧力検出手段が、上記記パティキュレートフィルタおよび上記圧力較正用デバイスの上流圧力を検出する圧力検出手段である請求項1記載の内燃機関の排気浄化装置。2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the pressure detection means is pressure detection means for detecting an upstream pressure of the particulate filter and the pressure calibration device. 上記圧力較正手段は、上記圧力検出手段が通常時は上記パティキュレートフィルタ側の圧力を検出し、上記排気流量検出手段で検出した排気流量が所定値を越えた場合に一時的に上記圧力較正用デバイス側の圧力を検出するように、上記検出圧力切換え手段を動作させる請求項1ないし3のいずれか記載の内燃機関の排気浄化装置。The pressure calibration means detects the pressure on the particulate filter side when the pressure detection means is normal, and temporarily performs the pressure calibration when the exhaust flow rate detected by the exhaust flow rate detection means exceeds a predetermined value. The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the detected pressure switching means is operated so as to detect the pressure on the device side. 上記圧力較正用デバイスが、消音器である請求項1ないし4のいずれか記載の内燃機関の排気浄化装置。The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 4, wherein the pressure calibration device is a silencer. 上記圧力較正手段は、上記排気流量検出手段で検出した排気流量が0である時に上記圧力検出手段の出力が0となるように、上記圧力検出手段の出力を較正する請求項1ないし5のいずれか記載の内燃機関の排気浄化装置。The pressure calibration means calibrates the output of the pressure detection means so that the output of the pressure detection means becomes zero when the exhaust flow rate detected by the exhaust flow rate detection means is zero. An exhaust emission control device for an internal combustion engine as described above.
JP2002116259A 2002-04-18 2002-04-18 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3918619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002116259A JP3918619B2 (en) 2002-04-18 2002-04-18 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002116259A JP3918619B2 (en) 2002-04-18 2002-04-18 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003314248A JP2003314248A (en) 2003-11-06
JP3918619B2 true JP3918619B2 (en) 2007-05-23

Family

ID=29533948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002116259A Expired - Fee Related JP3918619B2 (en) 2002-04-18 2002-04-18 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3918619B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10513994B2 (en) * 2015-10-21 2019-12-24 Bayerische Motoren Werke Aktiengesellschaft Method and system for regenerating a soot particle filter

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005013142D1 (en) * 2004-04-22 2009-04-23 Nissan Motor Control system for the regeneration of a diesel particulate filter
JP4737098B2 (en) * 2007-01-24 2011-07-27 株式会社デンソー Diagnostic device for internal combustion engine
JP4935390B2 (en) * 2007-02-05 2012-05-23 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
GB2476062A (en) * 2009-12-09 2011-06-15 Gm Global Tech Operations Inc Determining the pressure in an exhaust line of an i.c. engine having a muffler and a number of exhaust gas after-treatment units
US8839610B2 (en) 2011-02-01 2014-09-23 Toyota Jidosha Kabushiki Kaisha Controller of internal combustion engine
DE112011104817B4 (en) 2011-02-01 2021-03-18 Toyota Jidosha Kabushiki Kaisha Internal combustion engine controller
KR101599832B1 (en) * 2014-04-14 2016-03-04 주식회사 유라테크 A sensor integration module of exhaust gas and method of controling purifier for the sensor integration module
KR101896756B1 (en) * 2016-03-31 2018-09-07 현대자동차주식회사 A method for correcting dpf differential-pressure sensor
CN109538333B (en) * 2018-09-17 2021-09-14 广东工业大学 Method for judging regeneration time of diesel engine exhaust particle catcher

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10513994B2 (en) * 2015-10-21 2019-12-24 Bayerische Motoren Werke Aktiengesellschaft Method and system for regenerating a soot particle filter

Also Published As

Publication number Publication date
JP2003314248A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
US6966178B2 (en) Internal combustion engine exhaust gas purification system
US7396389B2 (en) Abnormality detection apparatus for exhaust gas purification apparatus for internal combustion engine
US7357822B2 (en) Filter control apparatus
US6735941B2 (en) Exhaust gas purification system having particulate filter
JP4506539B2 (en) Exhaust gas purification device for internal combustion engine
JP4244652B2 (en) Exhaust gas purification device for internal combustion engine
JP6201577B2 (en) Diagnostic equipment
US7980060B2 (en) Filter clogging determination apparatus for diesel engine
JP4403944B2 (en) Exhaust gas purification device for internal combustion engine
US20100242443A1 (en) Exhaust aftertreatment device
US7051519B2 (en) Exhaust gas cleaning device for internal combustion engine
JP3918619B2 (en) Exhaust gas purification device for internal combustion engine
JP4598655B2 (en) Exhaust gas purification device
JP4349219B2 (en) Exhaust gas purification device for internal combustion engine
JP4534959B2 (en) Exhaust gas purification device for internal combustion engine
JP4352745B2 (en) Exhaust gas purification device for internal combustion engine
JPH1113455A (en) Diesel particulate filter device equipped with clogging detector
JPS60108520A (en) Device for detecting trapping amount of fine particles in internal-combustion engine
JP4483393B2 (en) Exhaust purification device
JP4483394B2 (en) Exhaust purification device
JP3608255B2 (en) Clogging detection method for exhaust gas purification device of internal combustion engine
JP2005207239A (en) Pm accumulation amount determination device
JP2005214084A (en) Regenerative apparatus for particulate filter
JPH05296027A (en) Exhaust gas purifying device for internal combustion engine
JPH07150929A (en) Exhaust emission control device of diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

R150 Certificate of patent or registration of utility model

Ref document number: 3918619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees