JP4483394B2 - Exhaust purification device - Google Patents

Exhaust purification device Download PDF

Info

Publication number
JP4483394B2
JP4483394B2 JP2004127120A JP2004127120A JP4483394B2 JP 4483394 B2 JP4483394 B2 JP 4483394B2 JP 2004127120 A JP2004127120 A JP 2004127120A JP 2004127120 A JP2004127120 A JP 2004127120A JP 4483394 B2 JP4483394 B2 JP 4483394B2
Authority
JP
Japan
Prior art keywords
filter
differential pressure
point calibration
engine
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004127120A
Other languages
Japanese (ja)
Other versions
JP2005307884A (en
Inventor
健太郎 溝口
信雄 黒住
充弘 松田
社 三枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004127120A priority Critical patent/JP4483394B2/en
Priority to DE602005013142T priority patent/DE602005013142D1/en
Priority to EP05008889A priority patent/EP1591635B1/en
Publication of JP2005307884A publication Critical patent/JP2005307884A/en
Application granted granted Critical
Publication of JP4483394B2 publication Critical patent/JP4483394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02T10/47

Description

この発明は、例えばディーゼルエンジンの排気パティキュレートを処理する排気浄化装置に関する。   The present invention relates to an exhaust emission control device that processes exhaust particulates of, for example, a diesel engine.

ディーゼルエンジンから排出される排気パティキュレート(カーボン粒子等)を処理するために、排気系にフィルタ(DPF)を配置したものでは、フィルタでのパティキュレートの捕集量が所定量になると、フィルタを加熱装置により加熱したり、燃料の噴射時期を変えて排気温度を上昇させたり、いわゆるポスト噴射を行って、捕集したパティキュレートを燃焼処理して、フィルタの再生を行うようにしている。   In the case where a filter (DPF) is disposed in the exhaust system in order to process exhaust particulates (carbon particles, etc.) discharged from a diesel engine, the filter is removed when the particulate collection amount in the filter reaches a predetermined amount. The filter is regenerated by burning the collected particulates by heating with a heating device, raising the exhaust gas temperature by changing the fuel injection timing, or performing so-called post-injection.

この場合、フィルタの上流の圧力と下流の圧力との差圧を検出する差圧センサを設けて、パティキュレートの捕集量が所定量に達したか、すなわちフィルタの再生時期どうかを判定するものがあるが、差圧センサに検出誤差があると、フィルタの再生時期を的確には把握しにくい。   In this case, a differential pressure sensor that detects the differential pressure between the upstream pressure and the downstream pressure of the filter is provided to determine whether the particulate collection amount has reached a predetermined amount, that is, whether the filter is to be regenerated. However, if there is a detection error in the differential pressure sensor, it is difficult to accurately grasp the regeneration timing of the filter.

そのため、エンジンのアイドル運転時に差圧センサのゼロ点校正を行うもの(例えば、特許文献1)、エンジンキースイッチのオン直前もしくはオフ直後に差圧センサのゼロ点校正を行うもの(例えば、特許文献2)がある。
特開2002−206419 特開2003−314248
Therefore, one that performs zero point calibration of the differential pressure sensor during engine idle operation (for example, Patent Document 1), one that performs zero point calibration of the differential pressure sensor immediately before or after the engine key switch is turned on (for example, Patent Document 1) 2).
JP2002-206419 JP2003-314248

しかし、特許文献1のように、エンジンの運転時は、排気脈動やフィルタのつまり度合いにより、差圧が不安定であり、精度良くゼロ点校正するのは難しい。   However, as in Patent Document 1, when the engine is operating, the differential pressure is unstable depending on the exhaust pulsation and the degree of clogging of the filter, and it is difficult to calibrate the zero point with high accuracy.

また、特許文献2のものは、ゼロ点校正をエンジンキースイッチのオン直前もしくはオフ直後に行うが、ゼロ点校正時の差圧センサの雰囲気温度や差圧センサ自体の温度により、差圧センサの出力値にバラツキが生じるため、精度良くゼロ点校正するのは難しい。   Further, in Patent Document 2, the zero point calibration is performed immediately before the engine key switch is turned on or immediately after the engine key switch is turned on. Depending on the atmospheric temperature of the differential pressure sensor at the time of zero point calibration or the temperature of the differential pressure sensor itself, Since the output value varies, it is difficult to calibrate the zero point accurately.

この発明は、エンジン停止状態にあって的確に差圧センサのゼロ点校正を行うことを目的としている。   It is an object of the present invention to accurately perform zero point calibration of a differential pressure sensor when the engine is stopped.

本発明は、エンジンの排気通路に配設されて排気中のパティキュレートを捕集するフィルタと、フィルタ上流側の排圧とフィルタ下流側の排圧との差圧を検出する差圧センサと、エンジン停止状態で差圧センサのゼロ点校正を行うゼロ点校正手段と、を備えた排気浄化装置において、ゼロ点校正手段は、エンジン温度が所定温度を超え、外気温度が所定温度以下にある場合にゼロ点校正を行う。 The present invention includes a filter that is disposed in an exhaust passage of an engine and collects particulates in exhaust, a differential pressure sensor that detects a differential pressure between an exhaust pressure on the upstream side of the filter and an exhaust pressure on the downstream side of the filter, in the exhaust purification apparatus provided with a zero-point calibration means for performing a zero-point calibration of the differential pressure sensor in the engine stop state, the zero point calibration means, the engine temperature exceeds a predetermined temperature, the outside air temperature is Ru near the predetermined temperature or less If so, perform zero point calibration.

本発明によれば、差圧センサの出力のモニターによってフィルタの再生時期の判定を行うときの条件に極力近い温度の状態でゼロ点校正を行うことができ、差圧センサのゼロ点校正を的確に行える。   According to the present invention, the zero point calibration can be performed at a temperature as close as possible to the condition for determining the regeneration timing of the filter by monitoring the output of the differential pressure sensor, and the zero point calibration of the differential pressure sensor can be accurately performed. Can be done.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1において、20はディーゼルエンジンで、21は吸気通路、22は排気通路を示す。排気通路22には排気中のパティキュレートを捕集するフィルタ1を設置している。   In FIG. 1, 20 is a diesel engine, 21 is an intake passage, and 22 is an exhaust passage. The exhaust passage 22 is provided with a filter 1 that collects particulates in the exhaust.

フィルタ1のパティキュレートの捕集量が所定値に達すると、フィルタ1の再生処理を行うためにコントローラ30を備える。コントローラ30はマイクロプロセッサ、メモリ、入出力インターフェイス等で構成している。   When the collected amount of the particulates of the filter 1 reaches a predetermined value, the controller 30 is provided to perform the regeneration process of the filter 1. The controller 30 includes a microprocessor, a memory, an input / output interface, and the like.

フィルタ1の上流と下流の圧力差を検出するために、フィルタ1をバイパスする差圧検出通路に差圧センサ3を設けている。また、エンジン排気流量を検出するためにエンジン回転速度センサ6、エンジン負荷センサ7を、エンジン温度(冷却水温)を検出するために水温センサ10を設けている。また、図示しないが、外気温を検出する外気温センサ等を設けている。   In order to detect a pressure difference between the upstream and downstream of the filter 1, a differential pressure sensor 3 is provided in a differential pressure detection passage that bypasses the filter 1. Further, an engine rotation speed sensor 6 and an engine load sensor 7 are provided for detecting the engine exhaust flow rate, and a water temperature sensor 10 is provided for detecting the engine temperature (cooling water temperature). Moreover, although not shown in figure, the outside temperature sensor etc. which detect outside temperature are provided.

これら各センサの出力はコントローラ30に送られ、コントローラ30はこれらに基づいて、フィルタ1のパティキュレートの捕集量を判定し、所定のタイミングでフィルタ1の再生処理を行う。   The outputs of these sensors are sent to the controller 30, and the controller 30 determines the particulate collection amount of the filter 1 based on them, and performs the regeneration processing of the filter 1 at a predetermined timing.

フィルタ1の上流と下流の差圧は、パティキュレートの捕集量が増えるにしたがって増加するが、そのときの排気流量に応じて変動し、同一の捕集量のときは、排気流量が増加するほど差圧が大きくなる。すなわち、差圧センサ3による検出差圧が、排気流量を基に設定した所定圧に達すると、フィルタ1の再生時期と判定して、フィルタ1の再生処理を行う。この再生処理は、ディーゼルエンジン20の燃料噴射装置(例えばコモンレール式噴射装置)2から噴射される燃料の噴射時期を通常運転時の噴射時期よりも遅らせたり、あるいは通常の噴射後にさらに1回噴射(ポスト噴射)することなどにより、排気温度を上昇させ、焼却処理することで実行する。   The differential pressure between the upstream and downstream of the filter 1 increases as the particulate collection amount increases, but fluctuates according to the exhaust flow rate at that time, and the exhaust flow rate increases at the same collection amount. The differential pressure increases. That is, when the differential pressure detected by the differential pressure sensor 3 reaches a predetermined pressure set based on the exhaust gas flow rate, it is determined that the filter 1 is to be regenerated and the filter 1 is regenerated. In this regeneration process, the injection timing of the fuel injected from the fuel injection device (for example, common rail type injection device) 2 of the diesel engine 20 is delayed from the injection timing during normal operation, or is injected once more after normal injection ( This is done by raising the exhaust gas temperature by injecting it (post-injection), etc., and incinerating it.

一方、差圧センサ3は、経時変化等により検出に誤差が生じてくるため、コントローラ30が、差圧センサ3のゼロ点校正を行う。   On the other hand, since an error occurs in detection of the differential pressure sensor 3 due to a change with time or the like, the controller 30 performs zero point calibration of the differential pressure sensor 3.

この差圧センサ3のゼロ点校正の処理内容を、図2のフローチャートに基づいて説明する。   The processing content of the zero point calibration of the differential pressure sensor 3 will be described based on the flowchart of FIG.

ステップS1では、エンジンキースイッチがオフされたかを見る。   In step S1, it is checked whether the engine key switch is turned off.

ステップS2では、エンジンキースイッチがオフされた場合、エンジンが停止したか(エンジン回転がほぼ0)を見て、エンジンが停止した場合、ステップS3に進む。   In step S2, when the engine key switch is turned off, it is checked whether the engine is stopped (engine rotation is almost 0). If the engine is stopped, the process proceeds to step S3.

ステップS3では、エンジンの冷却水温Twが基準温度a以上かどうかを見る。   In step S3, it is determined whether or not the engine coolant temperature Tw is equal to or higher than the reference temperature a.

基準温度aは、例えば、60℃で、エンジンの運転時に差圧センサ3の出力のモニターによってフィルタ1の再生時期の判定を行うときの温度条件と同等となるエンジンの冷却水温度である。   The reference temperature a is, for example, an engine coolant temperature that is equivalent to a temperature condition at 60 ° C. when the regeneration timing of the filter 1 is determined by monitoring the output of the differential pressure sensor 3 during engine operation.

エンジンの冷却水温Twが基準温度a未満のときは、ゼロ点校正を行わず、終了する。   When the engine coolant temperature Tw is lower than the reference temperature a, the zero point calibration is not performed and the process is terminated.

エンジンの冷却水温Twが基準温度a以上のときは、ステップS4に進む。   When the engine coolant temperature Tw is equal to or higher than the reference temperature a, the process proceeds to step S4.

ステップS4では、外気温Taが所定温度b(例えば、30℃)以下かどうかを見る。   In step S4, it is checked whether or not the outside air temperature Ta is equal to or lower than a predetermined temperature b (for example, 30 ° C.).

外気温Taが所定温度bよりも高いときは、ゼロ点校正を行わず、終了する。   When the outside air temperature Ta is higher than the predetermined temperature b, the zero point calibration is not performed and the process ends.

外気温Taが所定温度b以下のときは、ステップS5に進む。   When the outside air temperature Ta is not more than the predetermined temperature b, the process proceeds to step S5.

ステップS5では、タイマーによりエンジン停止後の経過時間tを計測する。   In step S5, an elapsed time t after engine stop is measured by a timer.

フィルタ1の上流と下流の差圧ΔPは、エンジンが停止しても、直ぐにはゼロにならず、パティキュレートの捕集量によるフィルタ1の目詰まり具合にしたがって減少していくと共に、ゼロに近づくほど減少は遅くなり、ゼロになるのに所要時間かかる。   Even if the engine is stopped, the differential pressure ΔP between the upstream and downstream of the filter 1 does not immediately become zero, decreases according to the degree of clogging of the filter 1 due to the amount of particulates collected, and approaches zero. The decrease becomes slower, and it takes time to reach zero.

図3に、フィルタ1のパティキュレートの捕集量が最大量(再生を行うときの量)のときの、エンジン停止後の経過時間tに対するフィルタ1の上流と下流の差圧ΔPの減少状態を示す。フィルタ1の上流と下流の差圧ΔPは、エンジンが停止してから所要時間cが経過すると、ゼロになる。この所要時間cは、フィルタ1のパティキュレートの捕集量が最大量のときの時間に設定しているが、フィルタ1の容量、フィルタ1の温度によって目詰まり具合が変わり、所要時間cが変わるため、フィルタ1の容量、フィルタ1の温度(エンジンの冷却水温Twでも良い)に合わせて設定(例えば、1秒〜数10秒)する。   FIG. 3 shows a decrease state of the differential pressure ΔP between the upstream and downstream of the filter 1 with respect to the elapsed time t after the engine is stopped when the particulate collection amount of the filter 1 is the maximum amount (the amount when regeneration is performed). Show. The differential pressure ΔP upstream and downstream of the filter 1 becomes zero when the required time c elapses after the engine is stopped. The required time c is set to the time when the amount of particulates collected by the filter 1 is the maximum amount. However, the clogging degree changes depending on the capacity of the filter 1 and the temperature of the filter 1, and the required time c changes. Therefore, it is set according to the capacity of the filter 1 and the temperature of the filter 1 (which may be the engine coolant temperature Tw) (for example, 1 second to several tens of seconds).

エンジン停止後の経過時間tが所要時間cになると、ステップS6にて、差圧センサ3のゼロ点校正を行う。   When the elapsed time t after the engine stops reaches the required time c, the zero point calibration of the differential pressure sensor 3 is performed in step S6.

すなわち、差圧センサ3の出力値Poutがゼロでなければ、その出力値Poutをゼロ点に校正する。   That is, if the output value Pout of the differential pressure sensor 3 is not zero, the output value Pout is calibrated to the zero point.

このように、エンジンの冷却水温Twが基準温度a以上であり、外気温Taが所定温度b以下であり、エンジン停止後、所要時間cが経過したときに、差圧センサ3のゼロ点校正を行うので、ゼロ点校正を精度良く行える。   Thus, when the engine coolant temperature Tw is equal to or higher than the reference temperature a, the outside air temperature Ta is equal to or lower than the predetermined temperature b, and the required time c has elapsed after the engine is stopped, the zero pressure calibration of the differential pressure sensor 3 is performed. As a result, zero-point calibration can be performed with high accuracy.

エンジンの冷却水温Twが基準温度a(例えば、60℃)以上、すなわち、差圧センサ3の出力のモニターによってフィルタ1の再生時期の判定を行うときの条件に極力近い温度の状態でゼロ点校正を行うので、ゼロ点校正を適正に行える。   Zero-point calibration when the engine coolant temperature Tw is equal to or higher than a reference temperature a (for example, 60 ° C.), that is, the temperature is as close as possible to the condition for determining the regeneration timing of the filter 1 by monitoring the output of the differential pressure sensor 3 Therefore, zero point calibration can be performed properly.

また、外気温Taが所定温度b(例えば、30℃)以下のときにゼロ点校正を行うので、差圧センサ3のゼロ点校正を適正に行える。   Further, since the zero point calibration is performed when the outside air temperature Ta is equal to or lower than a predetermined temperature b (for example, 30 ° C.), the zero point calibration of the differential pressure sensor 3 can be appropriately performed.

差圧センサ3自体の温度ならびに雰囲気温度が極めて高温の場合あるいは極めて低温の場合、差圧センサ3は、図4に示すように検出のバラツキならびに誤差が大きく、ゼロ点校正を行えないが、このように差圧センサ3の出力のモニターによってフィルタ1の再生時期の判定を行うときの条件に極力近い温度の状態かつ外気温Taが所定温度b(例えば、30℃)以下のときにゼロ点校正を行うので、差圧センサ3のゼロ点校正を適正温度範囲にて的確に行えるのである。   When the temperature of the differential pressure sensor 3 and the ambient temperature are extremely high or extremely low, the differential pressure sensor 3 has large detection variations and errors as shown in FIG. As described above, the zero point calibration is performed when the temperature of the filter 1 is as close as possible to the condition for determining the regeneration time of the filter 1 by monitoring the output of the differential pressure sensor 3 and the outside air temperature Ta is a predetermined temperature b (for example, 30 ° C.) or less. Therefore, the zero point calibration of the differential pressure sensor 3 can be accurately performed in an appropriate temperature range.

そして、エンジン停止後、フィルタ1の目詰まり具合に対してフィルタ1の上流と下流の差圧ΔPが確実にゼロになる所要時間cが経過したときに、差圧センサ3のゼロ点校正を行うので、ゼロ点校正を高精度で行える。   Then, after the engine is stopped, the zero point calibration of the differential pressure sensor 3 is performed when a required time c has elapsed in which the differential pressure ΔP upstream and downstream of the filter 1 is reliably zero with respect to the degree of clogging of the filter 1. Therefore, zero point calibration can be performed with high accuracy.

したがって、差圧センサ3の精度良いゼロ点校正により、フィルタ1の再生時期の判定を最適に行うことができるため、フィルタ1の再生を早めに行ったりする必要はなく、フィルタ1の再生のための燃料噴射の燃費の悪化を抑制できる。   Therefore, since the regeneration time of the filter 1 can be optimally determined by the accurate zero point calibration of the differential pressure sensor 3, it is not necessary to regenerate the filter 1 early. It is possible to suppress the deterioration of the fuel consumption of the fuel injection.

車両ならびに車両以外のエンジンの排気浄化装置に適用できる。   The present invention can be applied to an exhaust emission control device for vehicles and engines other than vehicles.

本発明の実施形態の概略構成図である。It is a schematic block diagram of embodiment of this invention. ゼロ点校正のフローチャートである。It is a flowchart of a zero point calibration. フィルタの上流と下流の差圧の減少特性を示す図である。It is a figure which shows the decreasing characteristic of the differential pressure | voltage upstream and downstream of a filter. 差圧センサの温度に対する検出のバラツキ、誤差の特性を示す図である。It is a figure which shows the variation of the detection with respect to the temperature of a differential pressure sensor, and the characteristic of an error.

符号の説明Explanation of symbols

1 フィルタ
2 燃料噴射装置
3 差圧センサ
6 エンジン回転速度センサ
7 エンジン負荷センサ
10 水温センサ
20 エンジン
21 吸気通路
22 排気通路
30 コントローラ
DESCRIPTION OF SYMBOLS 1 Filter 2 Fuel-injection apparatus 3 Differential pressure sensor 6 Engine rotational speed sensor 7 Engine load sensor 10 Water temperature sensor 20 Engine 21 Intake passage 22 Exhaust passage 30 Controller

Claims (2)

エンジンの排気通路に配設されて排気中のパティキュレートを捕集するフィルタと、フィルタ上流側の排圧とフィルタ下流側の排圧との差圧を検出する差圧センサと、エンジン停止状態で差圧センサのゼロ点校正を行うゼロ点校正手段と、を備えた排気浄化装置において、
前記ゼロ点校正手段は、エンジン温度が所定温度を超え、外気温度が所定温度以下にある場合にゼロ点校正を行う
ことを特徴とする排気浄化装置。
A filter that is disposed in the exhaust passage of the engine and collects particulates in the exhaust; a differential pressure sensor that detects a differential pressure between the exhaust pressure upstream of the filter and the exhaust pressure downstream of the filter; and In an exhaust purification device comprising a zero point calibration means for performing zero point calibration of a differential pressure sensor,
The zero point calibration means, the engine temperature exceeds a predetermined temperature, the exhaust gas purifying apparatus outside air temperature is equal to or performing a zero-point calibration when Ru near the predetermined temperature or less.
前記ゼロ点校正手段は、エンジンが停止して所定時間経過してからゼロ点校正を行う
ことを特徴とする請求項1に記載の排気浄化装置。
The exhaust emission control device according to claim 1, wherein the zero point calibration means performs zero point calibration after a predetermined time has elapsed since the engine stopped.
JP2004127120A 2004-04-22 2004-04-22 Exhaust purification device Expired - Fee Related JP4483394B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004127120A JP4483394B2 (en) 2004-04-22 2004-04-22 Exhaust purification device
DE602005013142T DE602005013142D1 (en) 2004-04-22 2005-04-22 Control system for the regeneration of a diesel particulate filter
EP05008889A EP1591635B1 (en) 2004-04-22 2005-04-22 Regeneration control of diesel particulate filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004127120A JP4483394B2 (en) 2004-04-22 2004-04-22 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2005307884A JP2005307884A (en) 2005-11-04
JP4483394B2 true JP4483394B2 (en) 2010-06-16

Family

ID=35436937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004127120A Expired - Fee Related JP4483394B2 (en) 2004-04-22 2004-04-22 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP4483394B2 (en)

Also Published As

Publication number Publication date
JP2005307884A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
US8495861B2 (en) Fault detection system for PM trapper
JP4301070B2 (en) Exhaust gas purification device for internal combustion engine
US6966178B2 (en) Internal combustion engine exhaust gas purification system
JP4462142B2 (en) Control device for internal combustion engine
US9322312B2 (en) Ambient humidity and temperature correction to particulate filter soot rate
EP1529931A1 (en) Filter control device
US20050102076A1 (en) Exhaust temperature sensor malfunction detection apparatus
JP3750664B2 (en) Engine exhaust purification system
JP6323354B2 (en) Exhaust gas purification device for internal combustion engine
JP2007315275A (en) Exhaust gas purifying filter failure diagnosis device and method
WO2016006509A1 (en) Particulate filter fault diagnosis method and device
JP2002303123A (en) Exhaust emission control device
US7478553B2 (en) Method for detecting excessive burn
JP4506060B2 (en) Particulate filter regeneration control device
JP5533362B2 (en) PM sensor failure detection device
JP2006022730A (en) Exhaust temperature sensor failure detection device for exhaust emission control device
JP5034864B2 (en) Exhaust gas purification device for internal combustion engine
JP4311071B2 (en) Defect determination method of exhaust purification system
JP3918619B2 (en) Exhaust gas purification device for internal combustion engine
JP4483393B2 (en) Exhaust purification device
JP4483394B2 (en) Exhaust purification device
JP4470661B2 (en) Exhaust gas sensor abnormality diagnosis device
JP4349219B2 (en) Exhaust gas purification device for internal combustion engine
JP5614295B2 (en) Engine exhaust purification system
JP5464151B2 (en) Engine exhaust purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees