JP3917403B2 - Rotary distribution type heat storage combustion equipment - Google Patents

Rotary distribution type heat storage combustion equipment Download PDF

Info

Publication number
JP3917403B2
JP3917403B2 JP2001327962A JP2001327962A JP3917403B2 JP 3917403 B2 JP3917403 B2 JP 3917403B2 JP 2001327962 A JP2001327962 A JP 2001327962A JP 2001327962 A JP2001327962 A JP 2001327962A JP 3917403 B2 JP3917403 B2 JP 3917403B2
Authority
JP
Japan
Prior art keywords
gas
heat storage
processed
opening
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001327962A
Other languages
Japanese (ja)
Other versions
JP2003130323A (en
Inventor
善規 田口
利文 向井
宏 一柳
博 川添
尚志 烏谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2001327962A priority Critical patent/JP3917403B2/en
Publication of JP2003130323A publication Critical patent/JP2003130323A/en
Application granted granted Critical
Publication of JP3917403B2 publication Critical patent/JP3917403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)
  • Incineration Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回転分配式蓄熱燃焼装置に係り、 特に揮発性有機化合物(以下、VOCという)等を含むガスを燃焼処理し、さらにその熱を再生利用する回転分配式蓄熱燃焼装置であって、ガス燃焼処理中の装置内の圧力変動を抑制し、被処理ガス排出源に圧力変動による悪影響が及ぶのを防止するようにした回転分配式蓄熱燃焼装置に関するものである。
【0002】
【従来の技術】
自動車の塗装工場、金属洗浄装置、印刷工場などからは、トルエン、キシレン、スチレン等の揮発性有機化合物を含んだ排ガスが発生する。このようなVOCガスは、せいぜい数十ppm から数%程度の濃度であるが、環境への影響がかなり大きいことが明らかになってきた。例えば、(1)NOxと反応して光化学スモッグが発生し、森林が枯死したり人体へ悪影響を及ぼす、(2)発ガン性など人体に健康障害を起こさせる、(3)光化学オキシダントの主成分であるオゾンの対流圏内での増加により地球温暖化が生じるなどである。このため、前記業界ではVOC排ガスを処理し、無害化して大気に排出する傾向にある。
【0003】
従来、VOC処理方法としては、直接燃焼式、触媒燃焼式、触媒燃焼/蓄熱方式、濃縮方式、生物処理方式があるが、VOC濃度量変動への対応、ランニングコスト、保守保全を考慮すると蓄熱触媒燃焼および蓄熱燃焼式が有力視されている。
【0004】
蓄熱式の熱交換に必要なガスの切替装置には、切替弁方式と回転分配弁方式が挙げられる。この中でも回転分配弁方式はコンパクト化が可能であり、ガスを連続的に分配できるという特長を有しているため、広く普及しつつある。
【0005】
回転分配式蓄熱燃焼装置の構成を図2、図6、図7および図8により説明する。図6は、従来技術における回転分配式蓄熱燃焼装置の全体構成斜視図、図7は該蓄熱燃焼装置における回転分配器の分配室、固定弁および回転弁の説明図、図8は分配室の下部ガス流通開口部に設けられた固定弁の下方から見た平面図である。
【0006】
図6、図7、図8および図2に示すように、この装置は、分配器13は円筒状本体9aを軸方向に沿って軸を含む面(壁面)で8等分に分割された仕切室よりなる分配室9と、分配室の下部に固定された固定弁7と、該固定弁と摺動する回転弁6と、各仕切室と蓄熱室とを連結する連結管8と、被処理ガスヘッダ4および処理済みガスヘッダ5を有する。
固定弁7は図8に示すように分配室下端入口部に設けられ、8個の扇形開口は8個の仕切室のそれぞれの入口部を構成する。7aは開口部である。
【0007】
回転弁6は図6に示すように回転軸15と結合され、スプロケット16、チェーン17により回転駆動される。また、図7に示すように、被処理ガス開口61、処理済みガス開口62、閉塞部63と、開口61と開口62の中間に設けられたパージ空気開口64を有し、回転弁6と固定弁7の摺動面間にはガス漏洩防止用シール部材が設けられている。
【0008】
分配室により分配された被処理ガス1は連結管8を通り蓄熱室10に入る。蓄熱室は隔壁により複数の蓄熱塔10−1、10−2、10−3……に分割されており、各塔には熱媒体となる蓄熱体10aが装填されている。被処理ガス1は蓄熱塔を通過中、蓄熱体により加熱され昇温する。その後、燃焼触媒23を通過することにより、被処理ガス中の有機ガス成分は燃焼炉11内の燃焼室を通過する間に完全燃焼し処理される。また、蓄熱塔においての被処理ガスの昇温が不充分な場合(触媒温度検出器24または炉内温度制御用温度検出器35で検出)、燃焼室に設置された補助熱源(バーナ、電熱ヒータ等)12を用いて被処理ガスを完全燃焼させる。
【0009】
完全燃焼した処理済みガス3は、燃焼炉内燃焼室から反転して被処理ガスが通過した蓄熱塔とは別の蓄熱塔の上端から下向きに流入する。該高温の処理済みガスはこの蓄熱塔を通過中に蓄熱体によって熱が回収され、蓄熱塔出口では低温となる。蓄熱塔通過後の処理済みガスは連結管8により分配室9に導かれる。これらの動作を連続させるために、高温の処理済みガスにより加熱された蓄熱塔には低温の被処理ガスを流入させて昇温させるという具合に、被処理ガスと高温の処理済みガスを交互に切替える必要がある。分配器13はこのガスの入替えの機能を持つ。また、被処理ガスの昇温に用いられた蓄熱塔において、通過ガスを被処理ガスからそのまま処理済みガスに切替えた場合、蓄熱塔内に残っている未燃の被処理ガスが処理済みガスに混入するため装置のガス浄化効率が低下する。これを防ぐために、蓄熱塔が被処理ガス昇温工程から処理済みガス通過に切替わる間に、VOCを含まないパージ用空気をこの蓄熱塔内に送り、蓄熱塔内の未燃被処理ガスを燃焼炉内に押し込む機構が必要となる。分配器はこのパージ空気を分配する機能もあわせ持つ。
【0010】
分配器の構成、機能を図7および図2を用いてさらに説明する。分配器13は大まかに被処理ガスヘッダ4、処理済みガスヘッダ5、回転弁6、分配室9により構成される。分配室9は、図2に示すように8個の室に隔壁で仕切られ、各仕切室はそれぞれ1個の連結管により1個の蓄熱塔に連結されている。被処理ガスヘッダ4、処理済みガスヘッダ5は回転弁6により仕切室とは隔てられている。回転弁6には、被処理ガス用開口61、処理済みガス用開口62が設けられており、各開口を介して被処理ガスヘッダ4と複数の仕切室、処理済みガスヘッダ5と別の複数の仕切室が連通している。被処理ガス1は被処理ガスヘッダ4に流入後回転弁6の被処理ガス用開口61と連通した仕切室(図2の(a)の(イ)、(ロ)、(ハ))に入る。その後、被処理ガス1は連結管8により蓄熱塔に導かれる。また、処理済みガス3は蓄熱塔から連結管8により仕切室(図2の(a)の(ホ)、(ヘ)、(ト))に導かれた後、回転弁6の処理済みガス用開口62を通過し処理済みガスヘッダ5に入り、その後、排ガスダクトを通り排出される。パージ用空気開口64は、前記開口61と開口62の中間位置の回転弁内に設けられ、蓄熱塔内の被処理ガスをパージ空気供給口27から供給された空気2により燃焼炉に押し込む。図2を用いて分配弁が連続的に各ガスを分配する機能をさらに説明する。図2(a)では仕切室(イ)、(ロ)、(ハ)が被処理ガス用開口61を経て被処理ガスヘッダ4と連通し、仕切室(ホ)、(ヘ)、(ト)が処理済みガス用開口62を経て処理済みガスヘッダ5と連通している。図2(b)は図2(a)よりも時間が進み回転弁6がある程度回転した時点を示す。この場合仕切室(ロ)、(ハ)、(ニ)が被処理ガスヘッダ4と連通し、仕切室(ヘ)、(ト)、(チ)が処理済みガスヘッダ5と連通している。このように回転弁が時間の経過とともに回転し、仕切室と連通するガス室(被処理ガスヘッダ、処理済みガスヘッダ)を切替えることにより、回転弁は連続的にガスを分配する。
【0011】
【発明が解決しようとする課題】
図2(c)に図2(a)と図2(b)の中間時点での回転弁の状態を示す。この場合では仕切室(イ)、(ロ)、(ハ)、(ニ)が前記開口61を介して被処理ガスヘッダ4と連通し、仕切室(ホ)、(ヘ)、(ト)、(チ)が前記開口62を介して処理済みガスヘッダ5と連通している。この場合、蓄熱塔の4室が被処理ガス用として使われ、残りの4室が処理済みガス用として使われる。また、図2(a)、図2(b)の場合では3室が被処理ガス用として使われ、3室が処理済みガス用として使われる。このように回転弁を用いたガス分配では分配される部屋数が経時的に変化する。
【0012】
上記のように処理に使われる部屋数が変化した場合、処理されるガス量は一定であると仮定した場合、蓄熱塔内でのガス流速が変化する。図2の場合では処理に用いられる蓄熱塔の数が3つと4つの間で変化するため、3つの場合を基準とすると4つの場合では蓄熱塔の合計断面積が4/3となり、蓄熱塔内のガス流速が3/4となる。蓄熱体の圧力損失は流速の1乗に比例するので(3/4)=0.75倍に低減する。蓄熱塔内の蓄熱体における圧力損失は装置全体の大部分を占めるため、蓄熱塔内でのガス流速が変化するとガス処理装置全体での流動抵抗が大きく変化することになる。この圧力変動が上流のVOC排出設備まで伝達すると、その装置に悪影響を及ぼす場合がある。例えば塗装工場から出るVOC含有ガスを処理する場合、圧力変動が塗装設備まで伝達すると塗装ムラなどの原因となることが知られている。本発明の課題は、この圧力変動を抑制することにある。
【0013】
【課題を解決するための手段】
上記課題を解決するため、本願で特許請求する発明は以下のとおりである。
(1)被処理ガスを燃焼する燃焼炉と、該燃焼炉と連通し、かつ仕切壁により仕切られ内部に蓄熱材を収容した複数の蓄熱塔を有する蓄熱室と、周方向に均等に仕切られ配置された前記蓄熱室の蓄熱塔と同数の仕切室を有する分配室と、相対応する蓄熱塔と仕切室とを連結する連結管と、各仕切室の下部ガス流通開口部を形成する固定弁と、該固定弁に対向配置されて被処理ガス供給用開口、処理済みガス排出用開口およびパージガス供給用開口を周方向に設けた回転弁と、該回転弁の被処理ガス供給用開口と連通する被処理ガス供給手段と、回転弁の処理済みガス排出用開口と連通するガス排出手段とを有し、前記回転弁の回転によるガス切替えにより被処理ガスを固定弁と分配室を介して各蓄熱塔に順次的に供給して加熱し、加熱された被処理ガスを燃焼炉で燃焼処理するとともに、処理済みガスを他の蓄熱塔に通して塔内蓄熱材を加熱したのち排出する回転分配式蓄熱燃焼装置において、前記回転弁の回転によるガス切替えに伴う蓄熱燃焼装置入口部のガス圧力変動を抑制する、回転弁の回転位置信号により出力調整される圧力補正手段を設けたことを特徴とする回転分配式蓄熱燃焼装置。
【0014】
(2) 前記圧力補正手段が回転弁のガス切替えに伴う圧力変動に対して、その変動する圧力の最大値を基準に、該圧力からの偏差分に相当する圧損を付加し、前記燃焼装置の被処理ガス取入れ点の静圧を時間に対して一定に抑制する手段であることを特徴とする(1)記載の回転分配式蓄熱燃焼装置。
【0015】
(3) 被処理ガスを燃焼する燃焼炉と、該燃焼炉と連通し、かつ仕切壁により仕切られ内部に蓄熱材を収容した複数の蓄熱塔を有する蓄熱室と、周方向に均等に仕切られ配置された前記蓄熱室の蓄熱塔と同数の仕切室を有する分配室と、相対応する蓄熱塔と仕切室とを連結する連結管と、各仕切室の下部ガス流通開口部を形成する固定弁と、該固定弁に対向配置されて被処理ガス供給用開口、処理済みガス排出用開口およびパージガス供給用開口を周方向に設けた回転弁と、該回転弁の被処理ガス供給用開口と連通する被処理ガス供給手段と、回転弁の処理済みガス排出用開口と連通するガス排出手段とを有し、前記回転弁の回転によるガス切替えにより被処理ガスを固定弁と分配室を介して各蓄熱塔に順次的に供給して加熱し、加熱された被処理ガスを燃焼炉で燃焼処理するとともに、処理済みガスを他の蓄熱塔に通して塔内蓄熱材を加熱したのち排出する回転分配式蓄熱燃焼装置において、回転分配式燃焼装置への被処理ガス流入経路に外部ガス流入口を設け、この外部ガス流入口から吸込む流体量を回転弁と機械的に同期された弁手段または回転弁の回転位置信号により操作される弁手段により調節し、かつ前記回転弁の回転によるガス切替えに伴う蓄熱塔部ガス通路断面積の変化に対応して、回転弁の被処理ガス供給用開口部からのガス供給量を調整して、該燃焼装置におけるガス通過圧力損失の変動を抑制する手段を設けたことを特徴とする回転分配式蓄熱燃焼装置。
【0017】
(4)被処理ガスを燃焼する燃焼炉と、該燃焼炉と連通し、かつ仕切壁により仕切られ内部に蓄熱材を収容した複数の蓄熱塔を有する蓄熱室と、周方向に均等に仕切られ配置された前記蓄熱室の蓄熱塔と同数の仕切室を有する分配室と、相対応する蓄熱塔と仕切室とを連結する連結管と、各仕切室の下部ガス流通開口部を形成する固定弁と、該固定弁に対向配置されて被処理ガス供給用開口、処理済みガス排出用開口およびパージガス供給用開口を周方向に設けた回転弁と、該回転弁の被処理ガス供給用開口と連通する被処理ガス供給手段と、回転弁の処理済みガス排出用開口と連通するガス排出手段とを有し、回転弁の回転によるガス切替えにより被処理ガスを固定弁と分配室を介して各蓄熱塔に順次的に供給して加熱し、加熱された被処理ガスを燃焼炉で燃焼処理するとともに、処理済みガスを他の蓄熱塔に通して塔内蓄熱材を加熱したのち排出する回転分配式蓄熱燃焼装置において、前記回転弁の被処理ガス供給用開口と連通する被処理ガス供給路に流動抵抗体を設け、その流動抵抗量を回転弁の回転と同期させて調節して、前記蓄熱式燃焼装置の被処理ガス取入口の静圧を時間に対して一定に抑制する手段を設けたことを特徴とする回転分配式蓄熱燃焼装置。
【0018】
【発明の実施の形態】
本願発明になる回転分配式蓄熱燃焼装置の圧力損失変動抑制、すなわち前記装置入口被処理ガス圧力の変動を抑制する要領を図3を用いて説明する。図3におけるAの線は、圧力変動の抑制を行わない従来の方式での回転分配式蓄熱燃焼装置の入口−出口間の圧力損失の変動を示す。回転分配式蓄熱燃焼装置では、処理に使われる蓄熱室の数が周期的に変動することにより圧力損失変動も周期的に発生する。処理ガス量が一定と仮定すると圧損の最大値、最小値は常に一定である。Bの線は前記圧損の最大値との差の水位を示す。この差は周期的に変化するが、この圧損差分を補償するものを回転分配式蓄熱燃焼装置に付加すれば、全体の圧力損失はCの線のようにほぼ一定になる。以上のように、圧損の最大値からの圧力差分を付加すことにより装置全体の圧力変動を抑制することができる。
【0019】
圧力損失変動を流動抵抗付与によって緩和する場合は、次のようなメカニズムとなる。被処理ガス流入経路、例えば入口ダクトに開度可変ダンパ等による圧力損失を付与する。そして、この付与圧力損失を分配器による圧力損失変動の周期に合わせ変化させる。このことにより周期的に発生する圧力変動に対し、この圧力変動を抑制することができる。また、この方法はフィードバック制御とは異なり、既知の回転分配式蓄熱燃焼装置の圧力変動波形をもとに圧損を付加するため、制御遅れが発生せず被処理ガス流量、圧力変動に関して安定な運転を可能にする。
【0020】
圧力変動をガス量の増減で緩和する場合は、次の原理による。外部から流入するガス流量を調節し蓄熱体を通過するガス流速を一定にすることにより、圧力変動を緩和するものである。例えば処理される蓄熱塔の数が3室と4室の間で変化する場合、4室のときに蓄熱室断面積が3室のときの4/3倍になり1/3増加する。これに対応して被処理ガス流量の1/3の外部ガスを流入させる。このことにより処理される蓄熱塔の数が変化しても、蓄熱室内でのガス流速を一定に保つことができ、また蓄熱室内でのガス流速を一定に保つことにより、蓄熱室で発生する圧力損失変動を一定に保つことができる。
また、ガス流量を変化させることで分配器内の圧力損失が変動するが、分配器内での圧損は蓄熱室に較べて非常に小さいので、装置全体の圧力変動には影響をほとんど与えない。
【0021】
流速で圧力変動緩和する方法には分配器内に外部ガス流入口を持つものと、被処理ガス流入経路上の外部ガス流入ダクトより外部ガスを流入させるものがある。外部ガス流入ダクトより外部ガスを流入させる場合は、該ダクト上に設けられた可変ダンパ等により吸込むガス量を調節し、分配器に流入するガス量を調節する。分配器内で外部ガスを流入させる場合は、分配器の回転板と動きを同期させた外部ガス吸込み弁より外部ガスを流入させる。
【0022】
【実施例】
以下、本発明の具体的実施例について説明する。
実施例1
本発明の第1の実施の形態を図1に従って示す。本実施の形態にかかる回転分配式蓄熱燃焼装置が従来構造と異なるところは、回転軸15の端部付近に設けられた発信機20より回転軸15の回転周期の信号を発信し、該信号をもとに被処理ガス1の入口ダクト上に設けられたダンパ18の開度を調節し、回転分配式燃焼蓄熱式VOC処理装置入口−出口間の圧力差を調節できるようになっていることである。図2は図1のII−II断面斜視図であり、回転弁6の回転位置により被処理ガス開口61、処理済みガス開口62と連通する仕切室の数が増減する。図2(a)、図2(b)のとき処理に用いられる蓄熱塔の数が最小(被処理ガス側3塔、処理済みガス側3塔)となるため、蓄熱室での圧損が最大になり、図2(c)のとき処理に用いられる蓄熱塔の数が最大(被処理ガス側4塔、処理済みガス側4塔)になるため、蓄熱室での圧損が最小になる。このように回転弁6の回転角度により、蓄熱室での圧損の値は決定される。そこで回転軸端付近の発信機20からの信号により、蓄熱室での圧損が最大になったとき(図2(a)、図2(b))ダンパ18が全開になり、蓄熱室での圧損が最小になったとき(図2(c))ダンパ18の開度が最小になるように調節されている。
【0023】
図3のAの線は圧力変動の抑制を行わない従来の方式での回転分配式蓄熱燃焼装置の入口−出口間の圧力損失変動を示す。被処理ガスの流量が一定であると仮定すると圧力変動波形は一様であることを利用し、被処理ガス入口ダクト上に設けられたダンパにより、変動する圧力損失の最大値を基準に、該波形からの偏差分に相当する圧損を付加し、被処理ガス取合い点70の静圧を時間に対して一定にする。図3のBの線は、ダンパの抵抗により付加された圧力損失の時間に対する推移を示す。圧力損失変動に対し、圧力損失変動と同じ周期で被処理ガスに圧損を付加することにより、回転分配式蓄熱燃焼装置の被処理ガス入口圧力の変動を抑制することができる。
【0024】
実施例2
本発明の第2の実施の形態を図4に従って示す。本実施例にかかる回転分配式蓄熱燃焼装置が従来構造と異なるところは、回転軸端付近に設けられた発信機20より回転軸の回転角の信号を発信し、該信号をもとに外部ガス流入ダクト22上に設けられたダンパ21の開度を調節し、回転分配式蓄熱燃焼装置に流入するガス流量を調節できるようになっていることである。図2は図4のII−II断面斜視図でもあり、回転弁6の回転位置により被処理ガス開口61、処理済みガス開口62と連通する分配室9の仕切室の数が増減する。図2(a)、図2(b)のとき処理に用いられる蓄熱塔の数が最小となり蓄熱室でのガス流速が最大、圧損が最大になり、図2(c)のとき処理に用いられる蓄熱塔の数が最大になるため、蓄熱室でのガス流速が最小、圧損が最小になる。このように回転弁の回転角度により、処理に用いられる蓄熱塔の数が変化し、蓄熱塔内でのガス流速が変化する。そこでダンパ21は発信機20からの回転軸の回転角度の信号をもとに動作させる。この実施例では処理に用いられる蓄熱塔の数が3室と4室の間で変化するが、4室のときに蓄熱室断面積が3室のときの4/3倍になる。そこで被処理ガス量の1/3の外部ガスを流入させることで全体の流量を4/3倍にする。
【0025】
このことにより処理される蓄熱塔の数が変化しても、蓄熱室内でのガス流速を時間に対して一定に保つことができ、蓄熱室で発生する圧力変動を抑制することができる。また、ガス流量を変化させることで分配器内の圧力損失が変動するが、分配器内での圧損は蓄熱塔に較べて非常に小さいので、装置全体の圧力変動には影響をほとんど与えない。
【0026】
実施例3
本発明の第3の実施の形態を図5に従って示す。本実施例が前記実施例2と違うところは、分配器自体が処理ガス量調節機能を持っていることである。回転分配器被処理ガス室底部30には1つの孔31があけられており、該底部に接し回転円板25が設けてあり、該円板25には8つの孔25aが設けてあり、回転円板25が1回転する間に、8回外部と被処理ガス室が連通し、外部からガスが被処理ガス室に入り込むようになっている。図2は図5のII−II断面斜視図でもある。図2(a)、図2(b)のとき処理に用いられる蓄熱塔の数が最小となり蓄熱室でのガス流速が最大、圧損が最大になり、図2(c)のとき処理に用いられる蓄熱塔の数が最大になるため、蓄熱室でのガス流速が最小、圧損が最小になる。このように回転弁の回転角度により、処理に用いられる蓄熱塔の数が変化し、蓄熱塔内でのガス流速が変化する。そこで処理に用いられる蓄熱塔の数が増大したときに分配器底部から外部ガスを吸込むタイミングを合わせる。この実施の形態では処理に用いられる蓄熱塔の数が3室と4室の間で変化するが、4室のときに蓄熱室断面積が3室のときの4/3倍になる。そこで被処理ガス量の1/3の外部ガスを吸込むことで全体の流量を4/3倍にする。
【0027】
このことにより処理される蓄熱塔の数が変化しても、蓄熱室内でのガス流速を時間に対して一定に保つことができ、蓄熱室で発生する圧力変動を抑制することができる。また、ガス流量を変化させることで分配器内の圧力損失が変動するが、分配器内での圧損は蓄熱室に較べて非常に小さいので、装置全体の圧力変動には影響をほとんど与えない。
【0028】
【発明の効果】
本願発明では、分配器内の回転弁の回転位置により発生する回転分配式蓄熱燃焼装置内通過ガス圧力損失の変動、それによる該装置入口被処理ガス圧力の変動に対し、それを補償抑制する手段、例えば追加ガス流量の調整、あるいはダンパなどによるガス通過抵抗の調整等を行うようにしているので、回転分配式蓄熱燃焼装置入口のガス圧力変動による被処理ガス発生源に対する悪影響を防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施例である回転分配式蓄熱燃焼装置の全体図。
【図2】分配室の断面斜視図。
【図3】回転分配式蓄熱燃焼装置の圧力変動と付加される圧損の時間に対する推移を示す説明図。
【図4】本発明の他の実施例である回転分配式蓄熱燃焼装置の全体図。
【図5】本発明の別の実施例である回転分配式蓄熱燃焼装置の全体構成斜視図。
【図6】従来技術における回転分配式蓄熱燃焼装置の全体図。
【図7】従来技術における回転分配式蓄熱燃焼装置の分配室、固定弁回転弁の説明図。
【図8】分配室下部ガス流通開口部に設けた固定弁の説明図。
【符号の説明】
1…被処理ガス、2…パージ空気、3…処理済みガス、4…被処理ガスヘッダ、5…処理済みガスヘッダ、6…回転弁、7…固定弁、8…連結管、9…分配室、10…蓄熱室、10a…蓄熱体、11…燃焼炉、12…熱源(バーナ)13…分配器、15…回転軸、16…スプロケット、17…チェーン、18…ダンパ、20…発信機、21…外部ガス流量制御用ダンパ、22…外部ガスダクト、23…燃焼触媒、24…触媒温度検出器、25…回転板、25a…回転板に設けた孔、26…パージ空気流量制御用ダンパ、27…パージ用空気供給口、30…被処理ガス室底部、31…被処理ガス室底部孔、35…炉内温度制御用温度検出器、61…被処理ガス開口、62…処理済みガス開口、63…回転板閉塞部、64…パージ空気用開口、70…被処理ガス取合い点。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotary distribution type heat storage combustion apparatus, in particular, a rotary distribution type heat storage combustion apparatus that burns a gas containing a volatile organic compound (hereinafter referred to as VOC) and recycles the heat thereof. The present invention relates to a rotary distributed heat storage combustion apparatus that suppresses pressure fluctuations in the apparatus during gas combustion processing and prevents adverse effects due to pressure fluctuations on the gas discharge source to be treated.
[0002]
[Prior art]
Exhaust gas containing volatile organic compounds such as toluene, xylene, and styrene is generated from automobile paint factories, metal cleaning devices, printing factories, and the like. Such VOC gas has a concentration of several tens of ppm to several percent at most, but it has become clear that the influence on the environment is considerably large. For example, (1) photochemical smog is generated by reacting with NOx, the forest is killed or has an adverse effect on the human body, (2) it causes health problems such as carcinogenicity, (3) the main component of photochemical oxidant The increase in ozone in the troposphere causes global warming. For this reason, the industry tends to treat VOC exhaust gas, render it harmless and discharge it to the atmosphere.
[0003]
Conventionally, as a VOC treatment method, there are a direct combustion method, a catalytic combustion method, a catalytic combustion / heat storage method, a concentration method, and a biological treatment method, but a heat storage catalyst is considered when dealing with fluctuations in VOC concentration, running costs, and maintenance. Combustion and regenerative combustion are considered promising.
[0004]
Examples of the gas switching device required for the heat storage type heat exchange include a switching valve method and a rotary distribution valve method. Among these, the rotary distribution valve system can be made compact, and has a feature that gas can be continuously distributed, and is therefore widely used.
[0005]
The configuration of the rotary distribution type heat storage and combustion apparatus will be described with reference to FIGS. 2, 6, 7 and 8. FIG. 6 is a perspective view of the overall configuration of a rotary distribution type heat storage combustion apparatus in the prior art, FIG. 7 is an explanatory view of a distribution chamber, a fixed valve and a rotary valve of the rotary distributor in the heat storage combustion apparatus, and FIG. It is the top view seen from the downward direction of the fixed valve provided in the gas distribution opening part.
[0006]
As shown in FIGS. 6, 7, 8, and 2, in this apparatus, the distributor 13 is a partition in which the cylindrical main body 9 a is divided into eight equal parts along a surface (wall surface) including an axis along the axial direction. A distribution chamber 9 composed of a chamber, a fixed valve 7 fixed to the lower part of the distribution chamber, a rotary valve 6 that slides with the fixed valve, a connecting pipe 8 that connects each partition chamber and the heat storage chamber, It has a gas header 4 and a processed gas header 5.
As shown in FIG. 8, the fixed valve 7 is provided at the lower inlet portion of the distribution chamber, and the eight fan-shaped openings constitute the inlet portions of the eight partition chambers. 7a is an opening.
[0007]
As shown in FIG. 6, the rotary valve 6 is coupled to a rotary shaft 15 and is driven to rotate by a sprocket 16 and a chain 17. Further, as shown in FIG. 7, there are a gas opening 61 to be processed, a gas opening 62 that has been processed, a blocking portion 63, and a purge air opening 64 provided between the opening 61 and the opening 62, which is fixed to the rotary valve 6. A sealing member for preventing gas leakage is provided between the sliding surfaces of the valve 7.
[0008]
The gas to be treated 1 distributed by the distribution chamber enters the heat storage chamber 10 through the connecting pipe 8. The heat storage chamber is divided into a plurality of heat storage towers 10-1, 10-2, 10-3,... By partition walls, and each tower is loaded with a heat storage body 10a serving as a heat medium. The gas 1 to be treated is heated by the heat storage body and raised in temperature while passing through the heat storage tower. Thereafter, by passing through the combustion catalyst 23, the organic gas component in the gas to be treated is completely burned and processed while passing through the combustion chamber in the combustion furnace 11. Further, when the temperature of the gas to be treated in the heat storage tower is insufficient (detected by the catalyst temperature detector 24 or the temperature detector 35 for controlling the furnace temperature), an auxiliary heat source (burner, electric heater) installed in the combustion chamber Etc.) 12 is used to completely burn the gas to be treated.
[0009]
The treated gas 3 that has been completely burned flows downward from the upper end of a heat storage tower that is reversed from the combustion chamber in the combustion furnace and through which the gas to be treated has passed. The high-temperature treated gas is recovered by the heat storage body while passing through the heat storage tower, and becomes low temperature at the outlet of the heat storage tower. The treated gas after passing through the heat storage tower is guided to the distribution chamber 9 through the connecting pipe 8. In order to continue these operations, the gas to be processed and the high temperature processed gas are alternately supplied, for example, the temperature of the low temperature processed gas is flown into the heat storage tower heated by the high temperature processed gas. It is necessary to switch. The distributor 13 has the function of replacing this gas. In addition, in the heat storage tower used to raise the temperature of the gas to be treated, when the passing gas is switched from the gas to be treated to the treated gas as it is, the unburned gas to be treated remaining in the heat accumulation tower becomes the treated gas. Since it mixes, the gas purification efficiency of an apparatus will fall. In order to prevent this, while the heat storage tower is switched from the treated gas heating step to the treated gas passage, purge air that does not contain VOCs is sent into this heat storage tower, and the unburned treated gas in the heat storage tower is sent to the heat storage tower. A mechanism for pushing into the combustion furnace is required. The distributor also has a function of distributing the purge air.
[0010]
The configuration and function of the distributor will be further described with reference to FIGS. The distributor 13 is roughly composed of a gas header 4 to be processed, a processed gas header 5, a rotary valve 6, and a distribution chamber 9. As shown in FIG. 2, the distribution chamber 9 is divided into eight chambers by partition walls, and each partition chamber is connected to one heat storage tower by one connection pipe. The treated gas header 4 and the treated gas header 5 are separated from the partition chamber by a rotary valve 6. The rotary valve 6 is provided with an opening 61 for the gas to be processed and an opening 62 for the gas to be processed, through which the gas header 4 to be processed and a plurality of partition chambers, and a plurality of partitions different from the gas header 5 to be processed. The room is in communication. The gas 1 to be processed flows into the gas header 4 to be processed and enters a partition chamber ((a), (b), (c) in (a) of FIG. 2) that communicates with the opening 61 for the gas to be processed of the rotary valve 6. Thereafter, the gas 1 to be treated is led to the heat storage tower by the connecting pipe 8. Further, after the treated gas 3 is led from the heat storage tower to the partition chamber ((e), (f), (f), (g) in FIG. 2A) by the connecting pipe 8, the treated gas 3 is used for the treated gas of the rotary valve 6. It passes through the opening 62 and enters the treated gas header 5 and is then discharged through the exhaust gas duct. The purge air opening 64 is provided in a rotary valve at an intermediate position between the opening 61 and the opening 62 and pushes the gas to be treated in the heat storage tower into the combustion furnace by the air 2 supplied from the purge air supply port 27. The function that the distribution valve continuously distributes each gas will be further described with reference to FIG. In FIG. 2A, the compartments (A), (B), and (C) communicate with the gas header 4 through the gas to be processed 61, and the compartments (E), (F), and (G) are connected. The processed gas header 5 communicates with the processed gas opening 62. FIG. 2B shows a point in time when the rotary valve 6 rotates to some extent as time advances from FIG. In this case, the partition chambers (B), (C), and (D) communicate with the gas header 4 to be processed, and the partition chambers (F), (G), and (C) communicate with the processed gas header 5. Thus, the rotary valve rotates with time, and the rotary valve continuously distributes the gas by switching the gas chamber (processed gas header, processed gas header) communicating with the partition chamber.
[0011]
[Problems to be solved by the invention]
FIG. 2 (c) shows the state of the rotary valve at an intermediate point between FIG. 2 (a) and FIG. 2 (b). In this case, the partition chambers (A), (B), (C), (D) communicate with the gas header 4 to be processed through the opening 61, and the partition chambers (E), (F), (G), (G) H) communicates with the treated gas header 5 through the opening 62. In this case, the four chambers of the heat storage tower are used for the gas to be processed, and the remaining four chambers are used for the processed gas. 2A and 2B, three chambers are used for the gas to be processed, and three chambers are used for the processed gas. As described above, in the gas distribution using the rotary valve, the number of distributed rooms changes with time.
[0012]
When the number of rooms used for processing changes as described above, the gas flow rate in the heat storage tower changes when it is assumed that the amount of gas to be processed is constant. In the case of FIG. 2, the number of heat storage towers used for processing varies between three and four. Therefore, when three cases are used as a reference, the total cross-sectional area of the heat storage tower is 4/3 in the four cases, and the inside of the heat storage tower The gas flow rate is 3/4. Since the pressure loss of the heat storage body is proportional to the first power of the flow velocity, it is reduced to (3/4) = 0.75 times. Since the pressure loss in the heat storage body in the heat storage tower occupies most of the entire apparatus, if the gas flow rate in the heat storage tower changes, the flow resistance in the entire gas processing apparatus changes greatly. If this pressure fluctuation is transmitted to the upstream VOC discharge facility, the apparatus may be adversely affected. For example, when processing a VOC-containing gas from a painting factory, it is known that if pressure fluctuation is transmitted to a painting facility, it causes coating unevenness. An object of the present invention is to suppress this pressure fluctuation.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, the invention claimed in the present application is as follows.
(1) A combustion furnace that combusts the gas to be treated, a heat storage chamber that communicates with the combustion furnace and has a plurality of heat storage towers that are partitioned by a partition wall and accommodates a heat storage material therein, and is equally partitioned in the circumferential direction. A distribution chamber having the same number of partition chambers as the heat storage towers of the heat storage chambers arranged, a connecting pipe connecting the corresponding heat storage towers and the partition chambers, and a fixed valve forming a lower gas flow opening of each partition chamber And a rotary valve disposed opposite to the fixed valve and provided with an opening for supplying a gas to be processed, an opening for discharging a processed gas and an opening for supplying a purge gas in the circumferential direction, and communicated with the gas supply opening for the gas to be processed of the rotary valve Gas supply means communicating with the processed gas discharge opening of the rotary valve, and the gas to be processed is switched through the fixed valve and the distribution chamber by gas switching by rotation of the rotary valve. Sequentially supplied to the heat storage tower and heated, heated In a rotary distribution type heat storage and combustion apparatus that discharges the processed gas through a combustion furnace and passes the processed gas through another heat storage tower to heat the heat storage material in the tower and then discharges it. A rotary distribution type heat storage combustion apparatus, characterized in that pressure correction means for adjusting the output based on a rotation position signal of a rotary valve, which suppresses a gas pressure fluctuation at an inlet portion of the heat storage combustion apparatus, is provided.
[0014]
(2) The pressure correction means adds a pressure loss corresponding to a deviation from the pressure with respect to the pressure fluctuation caused by the gas switching of the rotary valve on the basis of the maximum value of the fluctuating pressure. The rotary distribution type regenerative combustion apparatus as set forth in (1), characterized in that the static pressure at the treated gas intake point is a means for keeping the static pressure constant over time.
[0015]
(3) A combustion furnace that combusts the gas to be treated, a heat storage chamber that communicates with the combustion furnace and that has a plurality of heat storage towers that are partitioned by a partition wall and contains a heat storage material therein, and is equally partitioned in the circumferential direction. A distribution chamber having the same number of partition chambers as the heat storage towers of the heat storage chambers arranged, a connecting pipe connecting the corresponding heat storage towers and the partition chambers, and a fixed valve forming a lower gas flow opening of each partition chamber And a rotary valve disposed opposite to the fixed valve and provided with an opening for supplying a gas to be processed, an opening for discharging a processed gas and an opening for supplying a purge gas in the circumferential direction, and communicated with the gas supply opening for the gas to be processed of the rotary valve Gas supply means communicating with the processed gas discharge opening of the rotary valve, and the gas to be processed is switched through the fixed valve and the distribution chamber by gas switching by rotation of the rotary valve. Sequentially supplied to the heat storage tower and heated, heated With burning process gas to be treated in the combustion furnace, to be processed in the processed gas in the rotary distributor type regenerative combustion apparatus for discharging After heating tower heat storage material through another heat storage tower, to rotary distributor type combustion apparatus An external gas inlet is provided in the gas inflow path, and the amount of fluid sucked from the external gas inlet is adjusted by valve means mechanically synchronized with the rotary valve or by valve means operated by a rotational position signal of the rotary valve; and The gas passage in the combustion device is adjusted by adjusting the gas supply amount from the opening for supplying the gas to be treated of the rotary valve in response to the change in the gas passage sectional area of the heat storage tower accompanying the gas switching due to the rotation of the rotary valve. A rotation distribution type heat storage combustion apparatus characterized by comprising means for suppressing fluctuations in pressure loss.
[0017]
(4) A combustion furnace that combusts the gas to be treated, a heat storage chamber that communicates with the combustion furnace and has a plurality of heat storage towers that are partitioned by a partition wall and accommodates a heat storage material therein, and is equally partitioned in the circumferential direction. A distribution chamber having the same number of partition chambers as the heat storage towers of the heat storage chambers arranged, a connecting pipe connecting the corresponding heat storage towers and the partition chambers, and a fixed valve forming a lower gas flow opening of each partition chamber And a rotary valve disposed opposite to the fixed valve and provided with an opening for supplying a gas to be processed, an opening for discharging a processed gas and an opening for supplying a purge gas in the circumferential direction, and communicated with the gas supply opening for the gas to be processed of the rotary valve Gas supply means communicating with the treated gas discharge opening of the rotary valve, and the gas to be processed is stored in each heat storage through the fixed valve and the distribution chamber by gas switching by rotation of the rotary valve. To the tower in order to heat and heat the treated In the rotary distribution type heat storage combustion apparatus for burning the gas in a combustion furnace and discharging the processed gas through another heat storage tower and heating the heat storage material in the tower, A flow resistor is provided in the communicating gas supply path to be communicated, and the flow resistance amount is adjusted in synchronization with the rotation of the rotary valve, so that the static pressure at the gas inlet of the heat storage combustion apparatus with respect to time is adjusted. A rotation distribution type heat storage and combustion apparatus characterized in that a means for suppressing the rotation is provided.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The procedure for suppressing the pressure loss fluctuation of the rotary distribution type heat storage and combustion apparatus according to the present invention, that is, the fluctuation of the apparatus inlet gas pressure is described with reference to FIG. The line A in FIG. 3 shows the fluctuation of the pressure loss between the inlet and the outlet of the rotary distribution type heat storage combustion apparatus in the conventional system which does not suppress the pressure fluctuation. In the rotary distribution type heat storage combustion apparatus, fluctuations in pressure loss also occur periodically as the number of heat storage chambers used for processing fluctuates periodically. Assuming that the amount of processing gas is constant, the maximum and minimum values of pressure loss are always constant. The line B shows the water level of the difference from the maximum pressure loss. Although this difference changes periodically, if what compensates for this pressure loss difference is added to the rotary distribution type heat storage combustion apparatus, the overall pressure loss becomes almost constant as indicated by the C line. As described above, the pressure fluctuation of the entire apparatus can be suppressed by adding the pressure difference from the maximum value of the pressure loss.
[0019]
When mitigating pressure loss fluctuations by applying flow resistance, the mechanism is as follows. A pressure loss due to an opening variable damper or the like is applied to a gas flow path to be treated, for example, an inlet duct. Then, the applied pressure loss is changed in accordance with the period of the pressure loss fluctuation by the distributor. As a result, the pressure fluctuation can be suppressed against the pressure fluctuation periodically generated. In addition, this method differs from feedback control in that it adds pressure loss based on the pressure fluctuation waveform of a known rotary distribution type heat storage combustion device, so there is no control delay and stable operation with respect to the gas flow rate and pressure fluctuation. Enable.
[0020]
When mitigating pressure fluctuations by increasing or decreasing gas volume, the following principle is applied. By adjusting the flow rate of gas flowing in from the outside and making the gas flow rate passing through the heat accumulator constant, pressure fluctuation is alleviated. For example, when the number of heat storage towers to be processed varies between 3 and 4 chambers, the cross-sectional area of the heat storage chamber is 4/3 times that of 3 chambers and increases by 1/3. Correspondingly, an external gas having a flow rate of 1/3 of the gas to be processed is introduced. Even if the number of heat storage towers to be processed changes, the gas flow rate in the heat storage chamber can be kept constant, and the pressure generated in the heat storage chamber by keeping the gas flow rate in the heat storage chamber constant. Loss fluctuation can be kept constant.
In addition, the pressure loss in the distributor fluctuates by changing the gas flow rate, but the pressure loss in the distributor is much smaller than that in the heat storage chamber, and therefore hardly affects the pressure fluctuation of the entire apparatus.
[0021]
There are two methods for reducing the pressure fluctuation at the flow velocity, one having an external gas inlet in the distributor and the other having an external gas inflow from an external gas inflow duct on the gas inflow path. When the external gas is introduced from the external gas inflow duct, the amount of gas sucked by a variable damper or the like provided on the duct is adjusted, and the amount of gas flowing into the distributor is adjusted. When the external gas is caused to flow in the distributor, the external gas is caused to flow from an external gas suction valve whose movement is synchronized with the rotating plate of the distributor.
[0022]
【Example】
Hereinafter, specific examples of the present invention will be described.
Example 1
A first embodiment of the invention is shown according to FIG. The rotational distribution type heat storage combustion apparatus according to the present embodiment differs from the conventional structure in that a signal of the rotation period of the rotating shaft 15 is transmitted from the transmitter 20 provided near the end of the rotating shaft 15, and the signal is transmitted. Originally, the opening degree of the damper 18 provided on the inlet duct of the gas to be processed 1 is adjusted so that the pressure difference between the rotary distribution type combustion heat storage type VOC processing apparatus inlet and outlet can be adjusted. is there. FIG. 2 is a cross-sectional perspective view taken along the line II-II in FIG. 1, and the number of partition chambers communicating with the gas opening 61 to be processed and the gas opening 62 to be processed varies depending on the rotational position of the rotary valve 6. 2 (a) and 2 (b), the number of heat storage towers used for processing is minimized (three columns on the treated gas side and three towers on the treated gas side), so that the pressure loss in the heat storage chamber is maximized. Thus, in FIG. 2C, the number of heat storage towers used for processing becomes the maximum (4 columns to be treated gas side, 4 towers to be treated gas side), and therefore the pressure loss in the heat storage chamber is minimized. Thus, the value of the pressure loss in the heat storage chamber is determined by the rotation angle of the rotary valve 6. Therefore, when the pressure loss in the heat storage chamber is maximized by the signal from the transmitter 20 near the end of the rotating shaft (FIG. 2 (a), FIG. 2 (b)), the damper 18 is fully opened, and the pressure loss in the heat storage chamber. Is adjusted so that the opening degree of the damper 18 is minimized (FIG. 2 (c)).
[0023]
The line A in FIG. 3 shows the pressure loss fluctuation between the inlet and the outlet of the rotary distribution type heat storage combustion apparatus in the conventional system which does not suppress the pressure fluctuation. Assuming that the flow rate of the gas to be treated is constant, the fact that the pressure fluctuation waveform is uniform is utilized, and a damper provided on the gas inlet duct to be treated is used as a reference based on the maximum value of the fluctuating pressure loss. A pressure loss corresponding to the deviation from the waveform is added, and the static pressure of the gas to be processed 70 is made constant with respect to time. The line B in FIG. 3 shows the change over time of the pressure loss added by the resistance of the damper. By adding the pressure loss to the gas to be processed at the same cycle as the pressure loss fluctuation with respect to the pressure loss fluctuation, it is possible to suppress the fluctuation of the gas inlet pressure of the rotary distribution type heat storage combustion apparatus.
[0024]
Example 2
A second embodiment of the invention is shown according to FIG. The difference between the rotary distribution type heat storage combustion apparatus according to this embodiment and the conventional structure is that a signal of the rotation angle of the rotation shaft is transmitted from the transmitter 20 provided near the end of the rotation shaft, and the external gas is based on the signal. That is, the opening degree of the damper 21 provided on the inflow duct 22 is adjusted so that the flow rate of the gas flowing into the rotary distribution type heat storage combustion apparatus can be adjusted. 2 is also a cross-sectional perspective view taken along the line II-II in FIG. 4, and the number of partition chambers of the distribution chamber 9 communicating with the gas opening 61 to be processed and the gas opening 62 to be processed varies depending on the rotational position of the rotary valve 6. 2 (a) and 2 (b), the number of heat storage towers used in the process is minimized, the gas flow rate in the heat storage chamber is maximized, and the pressure loss is maximized. In FIG. 2 (c), the process is used for the process. Since the number of heat storage towers is maximized, the gas flow rate in the heat storage chamber is minimized and the pressure loss is minimized. As described above, the number of heat storage towers used for processing changes depending on the rotation angle of the rotary valve, and the gas flow rate in the heat storage tower changes. Therefore, the damper 21 is operated based on the signal of the rotation angle of the rotating shaft from the transmitter 20. In this embodiment, the number of heat storage towers used for processing varies between 3 and 4 chambers, but the cross-sectional area of the heat storage chamber is 4/3 times that of 3 chambers in the case of 4 chambers. Therefore, the entire flow rate is increased to 4/3 times by introducing an external gas that is 1/3 of the gas to be processed.
[0025]
Thus, even if the number of heat storage towers to be processed changes, the gas flow rate in the heat storage chamber can be kept constant with respect to time, and pressure fluctuations generated in the heat storage chamber can be suppressed. Moreover, although the pressure loss in the distributor fluctuates by changing the gas flow rate, the pressure loss in the distributor is much smaller than that of the heat storage tower, and therefore hardly affects the pressure fluctuation of the entire apparatus.
[0026]
Example 3
A third embodiment of the invention is shown according to FIG. The difference between the present embodiment and the second embodiment is that the distributor itself has a process gas amount adjustment function. The rotary distributor treated gas chamber bottom 30 has one hole 31, a rotating disc 25 is provided in contact with the bottom, and the disc 25 is provided with eight holes 25 a for rotation. While the disk 25 rotates once, the outside and the gas chamber to communicate are communicated 8 times, and the gas enters the gas chamber to be processed from the outside. 2 is also a cross-sectional perspective view taken along the line II-II in FIG. 2 (a) and 2 (b), the number of heat storage towers used in the process is minimized, the gas flow rate in the heat storage chamber is maximized, and the pressure loss is maximized. In FIG. 2 (c), the process is used for the process. Since the number of heat storage towers is maximized, the gas flow rate in the heat storage chamber is minimized and the pressure loss is minimized. As described above, the number of heat storage towers used for processing changes depending on the rotation angle of the rotary valve, and the gas flow rate in the heat storage tower changes. Therefore, when the number of heat storage towers used for processing increases, the timing for sucking in external gas from the bottom of the distributor is matched. In this embodiment, the number of heat storage towers used for the treatment changes between 3 and 4 chambers, but the cross-sectional area of the heat storage chamber is 4/3 times that when there are 4 chambers. Therefore, the entire flow rate is increased to 4/3 times by sucking an external gas that is 1/3 of the amount of gas to be processed.
[0027]
Thus, even if the number of heat storage towers to be processed changes, the gas flow rate in the heat storage chamber can be kept constant with respect to time, and pressure fluctuations generated in the heat storage chamber can be suppressed. In addition, the pressure loss in the distributor fluctuates by changing the gas flow rate, but the pressure loss in the distributor is much smaller than that in the heat storage chamber, and therefore hardly affects the pressure fluctuation of the entire apparatus.
[0028]
【The invention's effect】
In the present invention, means for compensating and suppressing fluctuations in the pressure loss of the gas passing through the rotary distribution type heat storage combustion apparatus caused by the rotational position of the rotary valve in the distributor and the fluctuations in the gas pressure to be treated at the inlet of the apparatus due to the fluctuations. Since, for example, adjustment of the flow rate of the additional gas or adjustment of the gas passage resistance by a damper or the like is performed, it is possible to prevent an adverse effect on the gas generation source to be treated due to the gas pressure fluctuation at the inlet of the rotary distribution type heat storage combustion device. it can.
[Brief description of the drawings]
FIG. 1 is an overall view of a rotary distribution type heat storage combustion apparatus according to an embodiment of the present invention.
FIG. 2 is a cross-sectional perspective view of a distribution chamber.
FIG. 3 is an explanatory diagram showing a change in pressure fluctuation and a pressure loss to be added with time in a rotary distribution type heat storage combustion apparatus.
FIG. 4 is an overall view of a rotary distribution type heat storage combustion apparatus according to another embodiment of the present invention.
FIG. 5 is a perspective view of the entire configuration of a rotary distribution type heat storage combustion apparatus according to another embodiment of the present invention.
FIG. 6 is an overall view of a rotation distribution type heat storage combustion apparatus in the prior art.
FIG. 7 is an explanatory view of a distribution chamber and a fixed valve rotary valve of a rotary distribution type heat storage combustion apparatus in the prior art.
FIG. 8 is an explanatory diagram of a fixed valve provided in a distribution chamber lower gas flow opening.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Processed gas, 2 ... Purge air, 3 ... Processed gas, 4 ... Processed gas header, 5 ... Processed gas header, 6 ... Rotary valve, 7 ... Fixed valve, 8 ... Connection pipe, 9 ... Distribution chamber, 10 ... thermal storage chamber, 10a ... thermal storage, 11 ... combustion furnace, 12 ... heat source (burner) 13 ... distributor, 15 ... rotating shaft, 16 ... sprocket, 17 ... chain, 18 ... damper, 20 ... transmitter, 21 ... external Gas flow control damper, 22 ... external gas duct, 23 ... combustion catalyst, 24 ... catalyst temperature detector, 25 ... rotary plate, 25a ... hole provided in the rotary plate, 26 ... purge air flow control damper, 27 ... purging Air supply port, 30 ... bottom of gas chamber to be processed, 31 ... bottom hole of gas chamber to be processed, 35 ... temperature detector for controlling furnace temperature, 61 ... gas opening to be processed, 62 ... gas opening for treatment, 63 ... rotating plate Blocking portion, 64... Purge air opening, 7 ... the gas to be treated tie-in point.

Claims (4)

被処理ガスを燃焼する燃焼炉と、該燃焼炉と連通し、かつ仕切壁により仕切られ内部に蓄熱材を収容した複数の蓄熱塔を有する蓄熱室と、周方向に均等に仕切られ配置された前記蓄熱室の蓄熱塔と同数の仕切室を有する分配室と、相対応する蓄熱塔と仕切室とを連結する連結管と、各仕切室の下部ガス流通開口部を形成する固定弁と、該固定弁に対向配置されて被処理ガス供給用開口、処理済みガス排出用開口およびパージガス供給用開口を周方向に設けた回転弁と、該回転弁の被処理ガス供給用開口と連通する被処理ガス供給手段と、回転弁の処理済みガス排出用開口と連通するガス排出手段とを有し、前記回転弁の回転によるガス切替えにより被処理ガスを固定弁と分配室を介して各蓄熱塔に順次的に供給して加熱し、加熱された被処理ガスを燃焼炉で燃焼処理するとともに、処理済みガスを他の蓄熱塔に通して塔内蓄熱材を加熱したのち排出する回転分配式蓄熱燃焼装置において、前記回転弁の回転によるガス切替えに伴う蓄熱燃焼装置入口部のガス圧力変動を抑制する、回転弁の回転位置信号により出力調整される圧力補正手段を設けたことを特徴とする回転分配式蓄熱燃焼装置。 A combustion furnace that combusts the gas to be treated, a heat storage chamber that communicates with the combustion furnace and has a plurality of heat storage towers that are partitioned by a partition wall and accommodates a heat storage material therein, and are equally partitioned in the circumferential direction. A distribution chamber having the same number of partition chambers as the heat storage tower of the heat storage chamber, a connecting pipe connecting the corresponding heat storage tower and the partition chamber, a fixed valve forming a lower gas flow opening of each partition chamber, A rotary valve disposed opposite to the fixed valve and provided with an opening for supplying a gas to be processed, an opening for discharging a processed gas and an opening for supplying a purge gas in the circumferential direction, and an object to be processed communicating with the gas supply opening for the gas to be processed of the rotary valve Gas supply means and gas discharge means communicating with the processed gas discharge opening of the rotary valve, and gas to be processed is switched to each heat storage tower via the fixed valve and the distribution chamber by gas switching by rotation of the rotary valve. Sequentially supply and heat, heated treatment In the rotary distributed heat storage combustion device, which heats the heat storage material in the tower by passing the treated gas through another heat storage tower and discharges it after the treated gas is combusted in the combustion furnace, the heat storage accompanying the gas switching by the rotation of the rotary valve A rotary distribution type heat storage combustion apparatus, characterized in that pressure correction means for adjusting the output based on a rotation position signal of a rotary valve, which suppresses a gas pressure fluctuation at an inlet portion of the combustion apparatus, is provided. 前記圧力補正手段が回転弁のガス切替えに伴う圧力変動に対して、その変動する圧力の最大値を基準に、該圧力からの偏差分に相当する圧損を付加し、前記燃焼装置の被処理ガス取入れ点の静圧を時間に対して一定に抑制する手段であることを特徴とする請求項1記載の回転分配式蓄熱燃焼装置。 The pressure correction means adds a pressure loss corresponding to a deviation from the pressure with respect to the pressure fluctuation caused by the gas switching of the rotary valve with reference to the maximum value of the fluctuating pressure. The rotary distribution type regenerative combustion apparatus according to claim 1 , wherein the static pressure at the intake point is a means for suppressing the static pressure at a constant time. 被処理ガスを燃焼する燃焼炉と、該燃焼炉と連通し、かつ仕切壁により仕切られ内部に蓄熱材を収容した複数の蓄熱塔を有する蓄熱室と、周方向に均等に仕切られ配置された前記蓄熱室の蓄熱塔と同数の仕切室を有する分配室と、相対応する蓄熱塔と仕切室とを連結する連結管と、各仕切室の下部ガス流通開口部を形成する固定弁と、該固定弁に対向配置されて被処理ガス供給用開口、処理済みガス排出用開口およびパージガス供給用開口を周方向に設けた回転弁と、該回転弁の被処理ガス供給用開口と連通する被処理ガス供給手段と、回転弁の処理済みガス排出用開口と連通するガス排出手段とを有し、前記回転弁の回転によるガス切替えにより被処理ガスを固定弁と分配室を介して各蓄熱塔に順次的に供給して加熱し、加熱された被処理ガスを燃焼炉で燃焼処理するとともに、処理済みガスを他の蓄熱塔に通して塔内蓄熱材を加熱したのち排出する回転分配式蓄熱燃焼装置において、回転分配式燃焼装置への被処理ガス流入経路に外部ガス流入口を設け、この外部ガス流入口から吸込む流体量を回転弁と機械的に同期された弁手段または回転弁の回転位置信号により操作される弁手段により調節し、かつ前記回転弁の回転によるガス切替えに伴う蓄熱塔部ガス通路断面積の変化に対応して、回転弁の被処理ガス供給用開口部からのガス供給量を調整して、該燃焼装置におけるガス通過圧力損失の変動を抑制する手段を設けたことを特徴とする回転分配式蓄熱燃焼装置。 A combustion furnace that combusts the gas to be treated, a heat storage chamber that communicates with the combustion furnace and has a plurality of heat storage towers that are partitioned by a partition wall and accommodates a heat storage material therein, and are equally partitioned in the circumferential direction. A distribution chamber having the same number of partition chambers as the heat storage tower of the heat storage chamber, a connecting pipe connecting the corresponding heat storage tower and the partition chamber, a fixed valve forming a lower gas flow opening of each partition chamber, A rotary valve disposed opposite to the fixed valve and provided with an opening for supplying a gas to be processed, an opening for discharging a processed gas and an opening for supplying a purge gas in the circumferential direction, and an object to be processed communicating with the gas supply opening for the gas to be processed of the rotary valve Gas supply means and gas discharge means communicating with the processed gas discharge opening of the rotary valve, and gas to be processed is switched to each heat storage tower via the fixed valve and the distribution chamber by gas switching by rotation of the rotary valve. Sequentially supply and heat, heated treatment A scan while combusted in a combustion furnace, in rotary distributor type regenerative combustion apparatus for discharging After heating tower heat storage material through the treated gas to the other heat storage tower, a gas to be treated flows into the rotary distributor type combustion apparatus An external gas inlet is provided in the path, and the amount of fluid sucked from the external gas inlet is adjusted by valve means mechanically synchronized with the rotary valve or by valve means operated by a rotary position signal of the rotary valve, and the rotation The gas passage pressure loss in the combustion device is adjusted by adjusting the gas supply amount from the opening for supplying the gas to be treated of the rotary valve in response to the change in the gas passage sectional area of the heat storage tower accompanying the gas switching due to the valve rotation. A rotation distribution type heat storage combustion apparatus characterized by comprising means for suppressing fluctuations in the temperature. 被処理ガスを燃焼する燃焼炉と、該燃焼炉と連通し、かつ仕切壁により仕切られ内部に蓄熱材を収容した複数の蓄熱塔を有する蓄熱室と、周方向に均等に仕切られ配置された前記蓄熱室の蓄熱塔と同数の仕切室を有する分配室と、相対応する蓄熱塔と仕切室とを連結する連結管と、各仕切室の下部ガス流通開口部を形成する固定弁と、該固定弁に対向配置されて被処理ガス供給用開口、処理済みガス排出用開口およびパージガス供給用開口を周方向に設けた回転弁と、該回転弁の被処理ガス供給用開口と連通する被処理ガス供給手段と、回転弁の処理済みガス排出用開口と連通するガス排出手段とを有し、回転弁の回転によるガス切替えにより被処理ガスを固定弁と分配室を介して各蓄熱塔に順次的に供給して加熱し、加熱された被処理ガスを燃焼炉で燃焼処理するとともに、処理済みガスを他の蓄熱塔に通して塔内蓄熱材を加熱したのち排出する回転分配式蓄熱燃焼装置において、前記回転弁の被処理ガス供給用開口と連通する被処理ガス供給路に流動抵抗体を設け、その流動抵抗量を回転弁の回転と同期させて調節して、前記蓄熱式燃焼装置の被処理ガス取入口の静圧を時間に対して一定に抑制する手段を設けたことを特徴とする回転分配式蓄熱燃焼装置。A combustion furnace that combusts the gas to be treated, a heat storage chamber that communicates with the combustion furnace and has a plurality of heat storage towers that are partitioned by a partition wall and accommodates a heat storage material therein, and are equally partitioned in the circumferential direction. A distribution chamber having the same number of partition chambers as the heat storage tower of the heat storage chamber, a connecting pipe connecting the corresponding heat storage tower and the partition chamber, a fixed valve forming a lower gas flow opening of each partition chamber, A rotary valve disposed opposite to the fixed valve and provided with an opening for supplying a gas to be processed, an opening for discharging a processed gas and an opening for supplying a purge gas in the circumferential direction, and an object to be processed communicating with the gas supply opening for the gas to be processed of the rotary valve Gas supply means and gas discharge means communicating with the treated gas discharge opening of the rotary valve, and gas to be processed is sequentially supplied to each heat storage tower via the fixed valve and the distribution chamber by gas switching by rotation of the rotary valve. Supply and heat, heated gas to be treated In a rotary distribution type heat storage combustion apparatus that performs combustion processing in a combustion furnace and discharges the processed gas through another heat storage tower and heats the heat storage material in the tower, and communicates with the gas supply opening of the rotary valve A flow resistor is provided in the gas supply path to be processed, and the amount of flow resistance is adjusted in synchronization with the rotation of the rotary valve so that the static pressure at the gas intake port of the heat storage combustion apparatus is constant with respect to time. A rotation distribution type heat storage and combustion apparatus characterized in that a means for suppressing is provided.
JP2001327962A 2001-10-25 2001-10-25 Rotary distribution type heat storage combustion equipment Expired - Fee Related JP3917403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001327962A JP3917403B2 (en) 2001-10-25 2001-10-25 Rotary distribution type heat storage combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001327962A JP3917403B2 (en) 2001-10-25 2001-10-25 Rotary distribution type heat storage combustion equipment

Publications (2)

Publication Number Publication Date
JP2003130323A JP2003130323A (en) 2003-05-08
JP3917403B2 true JP3917403B2 (en) 2007-05-23

Family

ID=19144113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001327962A Expired - Fee Related JP3917403B2 (en) 2001-10-25 2001-10-25 Rotary distribution type heat storage combustion equipment

Country Status (1)

Country Link
JP (1) JP3917403B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265234A (en) * 2004-03-17 2005-09-29 Babcock Hitachi Kk Ammonia containing exhaust gas treating device and method
JP5468359B2 (en) * 2009-11-10 2014-04-09 中外炉工業株式会社 Thermal storage combustion deodorizer
JP5616481B1 (en) * 2013-05-13 2014-10-29 中外炉工業株式会社 Pressure buffer device, heat storage combustion exhaust gas treatment device equipped with the pressure buffer device
KR101840665B1 (en) * 2017-02-17 2018-03-21 조명현 Regenerative Thermal Oxidizer
CN108087575B (en) * 2017-12-29 2024-01-26 江苏中研宜普科技有限公司 Efficient sealing device of ring rotary valve

Also Published As

Publication number Publication date
JP2003130323A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JP3866919B2 (en) Regenerative heat source fully integrated web dryer
US4280416A (en) Rotary valve for a regenerative thermal reactor
JP2716183B2 (en) Heating device for dryer
KR970000103B1 (en) Steel heating furnace
JP3917403B2 (en) Rotary distribution type heat storage combustion equipment
KR100678335B1 (en) Regenerative thermal oxidizer with no switching vlave
EP1029200B1 (en) Rotary oxidizer systems for control of restaurant emissions
JP4121457B2 (en) Module VOC containment chamber for two-chamber regenerative oxidizer
JP2007162995A (en) Coat baking drying furnace
KR101437828B1 (en) Highly Effective Regenerative Thermal Oxidizer Minimizing introduction of the Air
JP2003130328A (en) Method of controlling regenerative waste gas treatment equipment and regenerative waste gas treatment equipment
KR101754215B1 (en) Regenerator combustion and oxidization apparatus opening harmful gas pipe and clean gas pipe, and closing harmful gas pipe and clean gas pipe using an open/close unit
JP3932382B2 (en) Thermal storage combustion processing equipment for volatile organic compounds
JP2000193228A (en) Combustion type deodorizer
JPH09217918A (en) Heat accumulation type gas treating device
JP2002147735A (en) Heat storage combustion apparatus
JP4085298B2 (en) Thermal storage type exhaust gas treatment equipment
KR100530470B1 (en) Regenerative combustion apparatus for waste gas
KR20030012676A (en) Incinerator of Volatile Organic Compound Using Catalytic Combustion
KR970028062A (en) Combustion system and combustion furnace
JP2003139316A (en) Heat storage type volatile organic compound treatment device and treatment method
JP3583057B2 (en) Rotary heat exchanger
JPH1144416A (en) Regenerative exhaust gas processing device, and its operational method
JP2002048325A (en) Control method for volatile organic compound processing apparatus
JP3768733B2 (en) Processing equipment for volatile organic compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees