JP2006097967A - Heat storage type gas treating device, and method of purifying heat storage material layer in the same - Google Patents

Heat storage type gas treating device, and method of purifying heat storage material layer in the same Download PDF

Info

Publication number
JP2006097967A
JP2006097967A JP2004284326A JP2004284326A JP2006097967A JP 2006097967 A JP2006097967 A JP 2006097967A JP 2004284326 A JP2004284326 A JP 2004284326A JP 2004284326 A JP2004284326 A JP 2004284326A JP 2006097967 A JP2006097967 A JP 2006097967A
Authority
JP
Japan
Prior art keywords
gas
heat storage
storage material
combustion chamber
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004284326A
Other languages
Japanese (ja)
Other versions
JP4526912B2 (en
Inventor
Yoshiaki Matsui
義明 松井
Satoshi Horisawa
さと志 堀沢
Yuji Nagata
雄二 永田
Tomotaka Miwa
朋孝 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004284326A priority Critical patent/JP4526912B2/en
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to US11/630,933 priority patent/US7740026B2/en
Priority to CN2009101491141A priority patent/CN101603603B/en
Priority to PCT/JP2005/011793 priority patent/WO2006001437A1/en
Priority to CN2009101491156A priority patent/CN101603604B/en
Priority to KR1020127012009A priority patent/KR101185512B1/en
Priority to KR1020127012008A priority patent/KR101220126B1/en
Priority to KR1020067026836A priority patent/KR101185511B1/en
Publication of JP2006097967A publication Critical patent/JP2006097967A/en
Application granted granted Critical
Publication of JP4526912B2 publication Critical patent/JP4526912B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve versatility and reliability of a heat storage type gas treating device. <P>SOLUTION: In the heat storage type gas treating device, gas permeable heat storage material layers are arranged at a plurality of gas inlet/outlet parts 3 to a combustion chamber 6, and a gas supply/exhaust air duct to/from the combustion chamber 6 is provided with a switching means V for sequentially switching the heat storage material layer 4 allowing the passage of gas G to be treated, to the combustion chamber 6, and the heat storage material layer 4 allowing the passage of treated gas G' from the combustion chamber 6 in the form of allowing the gas G to be treated and fed to the combustion chamber 6 in a following stroke, to pass through the heat storage material layer 4 through which the treated gas of high temperature delivered from the combustion chamber 6, has passed in a preceding stroke, out of the heat storage material layers 4. A cooling means 5 is provided for cooling the treated gas G' at an air duct part leading to the switching means V from an outlet of the treated gas G' in each of the heat storage material layers 4 out of the gas supply/exhaust air duct, or at an inlet part of the treated gas G' of the switching means V. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、蓄熱式ガス処理装置、及び、蓄熱材層浄化方法に係り、詳しくは、燃焼室に対する複数のガス出入口部のそれぞれに通気性の蓄熱材層を配置し、これら蓄熱材層のうち先の行程で前記燃焼室から送出される高温の処理済ガスを通過させた蓄熱材層に、次の行程で前記燃焼室へ送る被処理ガスを通過させる形態で、前記燃焼室への被処理ガスを通過させる蓄熱材層と前記燃焼室からの処理済ガスを通過させる蓄熱材層とを順次に切り換える切換手段を、前記燃焼室に対するガス給排風路に設けてある蓄熱式ガス処理装置、及び、その蓄熱式ガス処理装置で実施する蓄熱材層浄化方法に係る。   The present invention relates to a heat storage type gas processing device and a method of purifying a heat storage material layer. Specifically, a breathable heat storage material layer is disposed in each of a plurality of gas inlet / outlet portions with respect to a combustion chamber, and among these heat storage material layers, In the form in which the gas to be processed to be sent to the combustion chamber in the next stroke is passed through the heat storage material layer through which the high-temperature processed gas delivered from the combustion chamber in the previous stroke has been passed, the treatment to the combustion chamber is performed. A regenerative gas processing device provided with a switching means for sequentially switching a heat storage material layer through which gas passes and a heat storage material layer through which treated gas from the combustion chamber passes; provided in a gas supply / exhaust air passage to the combustion chamber; And it concerns on the thermal storage material layer purification method implemented with the thermal storage type gas processing apparatus.

この種の蓄熱式ガス処理装置は、燃焼室への被処理ガスを通過させる蓄熱材層と燃焼室からの処理済ガスを通過させる蓄熱材層とを切換手段により切り換えることで、燃焼室からの高温の処理済ガスの通過によって蓄熱した蓄熱材層に次の行程で被処理ガスを通過させて被処理ガスを予熱し、その予熱した被処理ガスを燃焼室において燃焼処理することで、被処理ガスの燃焼処理に必要な燃焼室での加熱量を低減するものであるが、従来、この種の蓄熱式ガス処理装置では、蓄熱のために蓄熱材層に通過させた燃焼室からの高温の処理済ガスをガス給排風路における切換手段の介装部を通じてそのまま外部に排出するようにしていた(例えば、特許文献1,2参照。)。
特開2001-304531 特開平9-217918号
This type of heat storage type gas processing apparatus switches the heat storage material layer through which the gas to be processed to the combustion chamber passes and the heat storage material layer through which the treated gas from the combustion chamber passes through the switching means, thereby switching from the combustion chamber. Pretreatment gas is preheated by passing the gas to be treated in the next process through the heat storage material layer that stores heat by passing the high temperature treated gas, and the preheated gas to be treated is combusted in the combustion chamber. Conventionally, this type of regenerative gas processing device reduces the amount of heating in the combustion chamber required for gas combustion treatment. The treated gas is discharged to the outside as it is through the interposing part of the switching means in the gas supply / exhaust air passage (see, for example, Patent Documents 1 and 2).
JP 2001-304531 A JP-A-9-217918

従来の蓄熱式ガス処理装置では、漏出による処理済ガスへの被処理ガスの混入や各ガスの外部への漏出を防止するために種々の構成のシール部材が切換手段に装備されるが、このシール部材の熱損傷を回避する上で、燃焼室から送出される処理済ガスの温度が制限され、このため、装置に導入する被処理ガスの温度(蓄熱式ガス処理装置における入口温度)や燃焼室での燃焼温度にも制限が生じて、処理可能な被処理ガスが限定されていた。また、燃焼室において十分な燃焼処理が行えない場合があった。   In a conventional heat storage type gas processing apparatus, in order to prevent the gas to be processed from being mixed into the processed gas due to leakage and leakage of each gas to the outside, various switching members are provided in the switching means. In order to avoid thermal damage to the seal member, the temperature of the processed gas delivered from the combustion chamber is limited. For this reason, the temperature of the gas to be processed introduced into the apparatus (inlet temperature in the regenerative gas processing apparatus) and combustion The combustion temperature in the chamber is also limited, and the gas to be processed is limited. Further, there are cases where sufficient combustion treatment cannot be performed in the combustion chamber.

この実情に鑑み、本発明の主たる課題は、合理的な改良をもって上記問題を効果的に解消する点にある。   In view of this situation, the main problem of the present invention is to effectively solve the above problems with a rational improvement.

本発明の第1特徴構成は、蓄熱式ガス処理装置に係り、その特徴は、
燃焼室に対する複数のガス出入口部のそれぞれに通気性の蓄熱材層を配置し、
これら蓄熱材層のうち先の行程で前記燃焼室から送出される高温の処理済ガスを通過させた蓄熱材層に、次の行程で前記燃焼室へ送る被処理ガスを通過させる形態で、
前記燃焼室への被処理ガスを通過させる蓄熱材層と前記燃焼室からの処理済ガスを通過させる蓄熱材層とを順次に切り換える切換手段を、前記燃焼室に対するガス給排風路に設けてある蓄熱式ガス処理装置において、
前記ガス給排風路のうち、前記蓄熱材層のそれぞれにおける処理済ガスの出口から前記切換手段に至る風路部分、又は、前記切換手段における処理済ガスの入口部分において前記燃焼室からの処理済ガスを冷却する冷却手段が設けられている点にある。
The first characteristic configuration of the present invention relates to a regenerative gas processing apparatus,
Arranging a breathable heat storage material layer in each of a plurality of gas inlets and outlets to the combustion chamber,
Of these heat storage material layers, in the form in which the gas to be processed to be sent to the combustion chamber is passed through the heat storage material layer through which the high-temperature processed gas sent from the combustion chamber is passed in the previous step,
The gas supply / exhaust air passage for the combustion chamber is provided with switching means for sequentially switching the heat storage material layer through which the gas to be processed to the combustion chamber passes and the heat storage material layer through which the treated gas from the combustion chamber passes. In a regenerative gas processing device,
Of the gas supply / exhaust air passages, the processing from the combustion chamber in the air passage portion from the treated gas outlet to the switching means in each of the heat storage material layers or the treated gas inlet portion in the switching means. The cooling means for cooling the spent gas is provided.

つまり、この構成であれば、ガス給排風路のうち、蓄熱材層のそれぞれにおける処理済ガスの出口から切換手段に至る風路部分、又は、切換手段における処理済ガスの入口部分において高温の処理済ガスが冷却手段により冷却される、つまり、高温の処理済ガスが切換手段におけるシール部材の介在箇所を通過する前に冷却されるので、熱損傷を起こし易い高温雰囲気下にシール部材を存在させることを防止することができる。   In other words, with this configuration, in the gas supply / exhaust air passage, a high temperature is generated in the air passage portion from the treated gas outlet to the switching means in each of the heat storage material layers, or in the treated gas inlet portion in the switching means. Since the treated gas is cooled by the cooling means, that is, the high-temperature treated gas is cooled before passing through the place where the sealing member is interposed in the switching means, the sealing member exists in a high-temperature atmosphere that easily causes thermal damage. Can be prevented.

これによって、装置に導入する被処理ガスの温度や燃焼室での燃焼温度の制限が緩和されることで、処理可能な被処理ガスの限定が緩和されて装置の汎用性が向上するとともに、燃焼処理の処理性能も向上し、また、切換手段に装備されたシール部材の熱損傷を効果的に防止することができるので、シール部材の交換等のメンテナンスの負担を軽減することができ、更に、シール面において装置の信頼性も向上させることができる。   This relaxes restrictions on the temperature of the gas to be treated introduced into the apparatus and the combustion temperature in the combustion chamber, thereby relaxing the limitation on the gas to be treated that can be processed and improving the versatility of the apparatus. The processing performance of the processing is also improved, and the thermal damage of the sealing member provided in the switching means can be effectively prevented, so that the burden of maintenance such as replacement of the sealing member can be reduced. The reliability of the device can also be improved on the sealing surface.

本発明の第2特徴構成は、第1特徴構成の実施において好適な構成であり、その特徴は、
互いの対向面どうしを近接させた状態で相対回転する主弁部材と副弁部材とを設け、
その副弁部材の前記主弁部材に対する対向面部に、前記ガス出入口部のそれぞれと各別に連通する複数の通気口を、前記相対回転の回転軸心周りで回転方向に並べて形成し、
前記主弁部材に被処理ガス風路と処理済ガス風路とを区画した状態で形成するとともに、
前記主弁部材の前記副弁部材に対する対向面部に、前記被処理ガス風路の風路口である給気用開口と前記処理済ガス風路の風路口である排気用開口とを、それら給気用開口と排気用開口とが前記相対回転に伴って複数の前記通気口に対して順次対向し、かつ、同一の前記通気口に対して同時に対向しない配置にして、前記回転軸芯周りで回転方向に並べて形成し、
それら主弁部材と副弁部材とを、それらの対向面部間にシール部材を介在させた状態で相対回転させることにより、前記蓄熱材層のそれぞれを、前記燃焼室への被処理ガスを通過させる状態と前記燃焼室からの処理済ガスを通過させる状態とに切り換える構成にし、
これら主弁部材及び副弁部材により構成される回転式切換弁を前記切換手段にしてある点にある。
The second feature configuration of the present invention is a preferred configuration in the implementation of the first feature configuration.
A main valve member and a sub-valve member that rotate relative to each other in a state where the opposing surfaces are close to each other,
A plurality of vents communicating with each of the gas inlet / outlet portions are arranged in a rotational direction around the rotation axis of the relative rotation on a surface of the sub valve member facing the main valve member,
The main valve member is formed in a state in which a gas gas passage to be treated and a treated gas air passage are partitioned,
On the surface of the main valve member facing the sub-valve member, an air supply opening which is an air passage opening of the treated gas air passage and an exhaust opening which is an air passage opening of the treated gas air passage are supplied. The opening for exhaust and the opening for exhaust are arranged so as to sequentially face the plurality of vents in association with the relative rotation and do not simultaneously face the same vent, and rotate around the rotation axis. Form side by side,
The main valve member and the sub-valve member are rotated relative to each other with the seal member interposed between the opposing surface portions, thereby allowing the gas to be processed to pass through the combustion chamber through each of the heat storage material layers. A state and a state where the treated gas from the combustion chamber is allowed to pass through,
A rotary switching valve constituted by these main valve member and sub-valve member is used as the switching means.

つまり、切換手段として上記の回転式切換弁を採用すれば、複数の蓄熱材層に対して個別に切換弁を設けて、それら複数の切換弁により被処理ガスを通過させる蓄熱材層と処理済ガスを通過させる蓄熱材層とを切り換える多弁式の蓄熱式ガス処理装置に比べて、主弁部材と副弁部材とを相対回転させるだけで被処理ガスを通過させる蓄熱材層と処理済ガスを通過させる蓄熱材層とを順次切り換えることができるので、装置全体を簡素な構造にできると共にコンパクト化することができる利点がある。   In other words, if the rotary switching valve described above is adopted as the switching means, a switching valve is provided for each of the plurality of heat storage material layers, and the heat storage material layer that allows the gas to be processed to pass through the plurality of switching valves and the processed material. Compared to a multi-valve regenerative gas processing device that switches between heat storage material layers that allow gas to pass through, the heat storage material layer that passes the gas to be processed and the treated gas by simply rotating the main valve member and sub-valve member relative to each other. Since the heat storage material layer to be passed can be sequentially switched, there is an advantage that the entire apparatus can be made simple and compact.

ところが、回転式切換弁であると、主弁部材に区画形成されている被処理ガス風路と処理済ガス風路とにおける風路内温度の差によって主弁部材に大なり小なり歪みが生じ、それによって、主弁部材と副弁部材との対向面部間(すなわち、シール部材の介装部)におけるシール性が多少なりとも低下する恐れがあった。   However, in the case of a rotary switching valve, the main valve member is more or less distorted due to the difference in temperature in the air passage between the gas flow passage to be treated and the treated gas air passage formed in the main valve member. As a result, the sealing performance between the opposing surface portions of the main valve member and the sub-valve member (that is, the interposed portion of the seal member) may be somewhat deteriorated.

しかしながら、この構成(すなわち、前記第1特徴構成の実施において切換手段に回転式切換弁を用いる上記第2特徴構成)であれば、冷却手段により冷却した処理済ガスを主弁部材における処理済ガス風路に通過させることができるので、主弁部材内の被処理ガス風路と処理済ガス風路との風路内の温度差による主弁部材の歪みを効果的に抑止することができ、これによって、回転式切換弁を用いることの利点を活かしながら、装置のシール面における信頼性をより一層向上させることができる。   However, in this configuration (that is, the second feature configuration in which the rotary switching valve is used as the switching means in the implementation of the first feature configuration), the processed gas cooled by the cooling means is treated gas in the main valve member. Since it can be passed through the air passage, distortion of the main valve member due to a temperature difference in the air passage between the treated gas air passage and the treated gas air passage in the main valve member can be effectively suppressed, Thereby, the reliability in the sealing surface of the apparatus can be further improved while taking advantage of the use of the rotary switching valve.

本発明の第3特徴構成は、第1又は第2特徴構成の実施において好適な構成であり、その特徴は、
前記冷却手段が、前記燃焼室からの処理済ガスに対して冷却水を噴射することで処理済ガスを冷却する構成になっている点にある。
The third feature configuration of the present invention is a preferred configuration in the implementation of the first or second feature configuration.
The cooling means is configured to cool the treated gas by injecting cooling water to the treated gas from the combustion chamber.

つまり、この構成であれば、高温の処理済ガスを冷却するのに、顕熱だけでなく、潜熱(水の気化熱)も利用することができるので、冷風を吹きかける空冷装置や、処理済ガスと冷却用熱媒とを伝熱壁を介して熱交換させる熱交換器などの他の構成の冷却手段に比べて、より効果的かつ効率的に処理済ガスを冷却することができるとともに、水を噴射するだけの簡単な構成なので、その製造コストやランニングコストの面においても有利にすることができる。   In other words, with this configuration, not only sensible heat but also latent heat (water vaporization heat) can be used to cool the high-temperature processed gas, so an air-cooling device that blows cold air or a processed gas can be used. Compared with other means of cooling such as a heat exchanger that exchanges heat with the cooling heat medium via the heat transfer wall, the treated gas can be cooled more effectively and efficiently, Therefore, the manufacturing cost and running cost can be advantageous.

本発明の第4特徴構成は、第3特徴構成の実施において好適な構成であり、その特徴は、
前記冷却手段が、前記排気用開口の近傍に位置する前記シール部材に向けて冷却水を噴射することで、前記燃焼室からの処理済ガスと共に排気用開口の近傍の前記シール部材を冷却する構成になっている点にある。
The fourth feature configuration of the present invention is a preferred configuration in the implementation of the third feature configuration.
A configuration in which the cooling means cools the seal member in the vicinity of the exhaust opening together with the processed gas from the combustion chamber by injecting cooling water toward the seal member in the vicinity of the exhaust opening. It is in the point.

つまり、この構成であれば、冷却手段が、冷却水を噴射して高温の処理済ガスを冷却しながら、シール部材にも直接冷却水をかける形態で冷却作用するので、より一層効果的にシール部材の熱損傷を防止することができ、よって、シール部材の交換等のメンテナンスの負担を一層効果的に軽減することができるとともに、シール面における装置の信頼性も一層高めることができる。   In other words, with this configuration, the cooling means cools the high-temperature treated gas by injecting the cooling water, and cools the sealing member in such a manner that the cooling water is directly applied to the sealing member. The member can be prevented from being damaged by heat, so that the burden of maintenance such as replacement of the seal member can be more effectively reduced, and the reliability of the device on the seal surface can be further improved.

本発明の第5特徴構成は、第3又は第4特徴構成の実施において好適な構成であり、その特徴は、
前記冷却手段が、前記主弁部材の処理済ガス風路内で前記排気用開口に向かって冷却水を噴射することで、前記燃焼室からの処理済ガスを冷却する構成になっている点にある。
The fifth feature configuration of the present invention is a preferred configuration in the implementation of the third or fourth feature configuration.
The cooling means is configured to cool the treated gas from the combustion chamber by injecting cooling water toward the exhaust opening in the treated gas air passage of the main valve member. is there.

つまり、この構成であれば、冷却水の噴射により処理済ガスを冷却する冷却手段を、常時、処理済ガスが通過する主弁部材の処理済ガス風路内から排気用開口に向かって冷却水を噴射するように設けるので、蓄熱材層のそれぞれにおける処理済ガスの出口から切換手段(回転式切換弁)に到る並列状態の風路部分(すなわち、通過するガスが順次切り換わる箇所)の各々に冷却手段を装備するなどに比べて、冷却手段の装備数を減少させることができて、装置構造を簡素にすることができ、よって、製造コストの面で有利な装置にすることができる。   In other words, with this configuration, the cooling means for cooling the treated gas by jetting the cooling water is always used as the cooling water from the treated gas air passage of the main valve member through which the treated gas passes toward the exhaust opening. Of the air passage portion in parallel state from the treated gas outlet to the switching means (rotary switching valve) in each of the heat storage material layers (that is, where the passing gas is sequentially switched). The number of cooling means can be reduced and the structure of the apparatus can be simplified as compared with the case where each is equipped with a cooling means, so that the apparatus can be advantageous in terms of manufacturing cost. .

本発明の第6特徴構成は、第1〜第4特徴構成のいずれか1つの特徴構成の実施において好適な構成であり、その特徴は、
前記蓄熱材層のそれぞれにおける処理済ガスの出口から前記切換手段に至る並列状態の前記風路部分の各々に、又は、前記蓄熱材層に対して各別に装備された複数の前記切換手段のそれぞれにおける処理済ガス入口部分の各々に設けられた複数の前記冷却手段を、前記切換手段によるガス通過状態の切り換えに伴って切り換わり作動させる連動手段が設けられてある点にある。
The sixth feature configuration of the present invention is a preferred configuration in the implementation of any one of the first to fourth feature configurations.
Each of the plurality of switching means equipped separately for each of the air passage portions in parallel state extending from the treated gas outlet to the switching means in each of the heat storage material layers, or for each of the heat storage material layers. In other words, there are provided interlocking means for switching and operating the plurality of cooling means provided at each of the treated gas inlet portions in accordance with the switching of the gas passage state by the switching means.

つまり、この構成であれば、蓄熱材層のそれぞれにおける処理済ガスの出口から切換手段に至る並列状態の風路部分の各々に、又は、各蓄熱材層に対して各別に装備された複数の切換手段のそれぞれにおける処理済ガス入口部分の各々に冷却手段を設ける構成の場合において、それら冷却手段のうち冷却作動させるものを切換手段によるガス通過状態の切り換えに伴って連動手段により順次に切り換えるので、その切換操作を手動により行うのに比べ、処理済ガスが非通過の状態にある箇所の冷却手段を無駄に冷却作動させてしまうといったことを確実に防止でき、また、逆に冷却の必要がある箇所の冷却手段を不用意に非作動状態にしてしまうことも確実に防止でき、これによって、省エネ面及び運転コスト面で一層有利にすることができるとともに、熱損傷の防止面で装置の信頼性を一層向上させることができる。   In other words, with this configuration, each of the heat storage material layers in each of the parallel air passage portions from the treated gas outlet to the switching means, or each of the heat storage material layers is equipped with a plurality of In the case where the cooling means is provided at each of the treated gas inlet portions in each of the switching means, the cooling means among those cooling means are sequentially switched by the interlocking means as the gas passage state is switched by the switching means. Compared with the manual switching operation, it is possible to reliably prevent the cooling means where the processed gas is in a non-passing state from being unnecessarily cooled, and conversely, there is a need for cooling. It is possible to reliably prevent the cooling means at a certain point from being inadvertently deactivated, and this can further improve the energy saving and operation cost. Together, the reliability of the apparatus in preventing surface heat damage can be further improved.

本発明の第7特徴構成は、第1〜第6特徴構成のいずれか1つの特徴構成の実施において好適な構成であり、その特徴は、
前記燃焼室から送出される処理済ガスの温度を、前記冷却手段による冷却箇所よりも処理済ガス流れ方向の上流側で検出する温度センサを設け、
その温度センサによる検出温度に基づいて、前記冷却手段を作動させる構成にしてある点にある。
The seventh feature configuration of the present invention is a preferred configuration in the implementation of any one of the first to sixth feature configurations.
A temperature sensor is provided for detecting the temperature of the processed gas delivered from the combustion chamber on the upstream side in the processed gas flow direction from the cooling portion by the cooling means;
The cooling means is configured to operate based on the temperature detected by the temperature sensor.

つまり、この構成であれば、冷却手段による冷却箇所よりも処理済ガス流れ方向の上流側で温度センサにより検出される処理済ガスの温度に基づいて冷却手段を作動させるから、処理済ガスが冷却を要しない温度状態にあるときは冷却手段を非作動にし、かつ、処理済ガスが冷却を要する温度状態にあるときには冷却手段を冷却作動させるといったことを自動的にかつ確実に実現することができる。   In other words, with this configuration, the cooling means is operated based on the temperature of the processed gas detected by the temperature sensor upstream of the cooling portion by the cooling means in the processed gas flow direction. It is possible to automatically and reliably realize that the cooling means is deactivated when the temperature is not required and the cooling means is cooled when the treated gas is at a temperature requiring cooling. .

従って、被処理ガスの風量変化やVOC濃度(揮発性有機化合物濃度)の変化などを原因として処理済ガスの温度が変化することに対し、シール部材の熱損傷を防止する上で、冷却手段の冷却作動が必要になったときには、冷却手段を自動的にかつ確実に冷却作動させることができ、また、冷却手段の冷却作動が不要になったときは、冷却手段を自動的にかつ確実に非作動状態にすることができ、これにより、熱損傷の防止面で装置の信頼性を高く確保しながら、省エネ面及び運転コスト面で一層有利な装置にすることができる。   Therefore, the temperature of the treated gas changes due to a change in the flow rate of the gas to be treated or a change in the VOC concentration (volatile organic compound concentration). When the cooling operation becomes necessary, the cooling means can be automatically and reliably cooled. When the cooling operation of the cooling means becomes unnecessary, the cooling means is automatically and reliably turned off. Thus, it is possible to make the apparatus more advantageous in terms of energy saving and operation cost while ensuring high reliability of the apparatus in terms of preventing thermal damage.

また、例えば、蓄熱材層のそれぞれにおける処理済ガスの出口から切換手段に至る並列状態の風路部分の各々に、又は、各蓄熱材層に対して各別に装備された複数の切換手段のそれぞれにおける処理済ガス入口部分の各々に冷却手段を設ける構成において、それら冷却手段と共に温度センサを各冷却手段による冷却箇所よりも処理済ガスの流れ方向の上流側に位置させる状態で上記風路部分の各々、又は、上記処理済ガス入口部分の各々に設け、そして、各温度センサによる検出温度に基づいて、対応の冷却手段を作動させる構成にすれば、前記連動手段の機能も合わせて得ることができる。   Further, for example, each of the plurality of switching means equipped in each of the parallel air path portions from the exit of the treated gas to the switching means in each of the heat storage material layers or separately for each heat storage material layer In the configuration in which the cooling means is provided at each of the treated gas inlet portions in the above, the temperature sensor and the cooling means are positioned at the upstream side in the flow direction of the treated gas from the cooling portion by each cooling means. If each or each of the treated gas inlet portions is configured to operate corresponding cooling means based on the temperature detected by each temperature sensor, the function of the interlocking means can also be obtained. it can.

本発明の第8特徴構成は、第1〜第7特徴構成のいずれか1つの特徴構成の実施において好適な構成であり、その特徴は、
前記燃焼室から送出される処理済ガスの温度を、前記冷却手段による冷却箇所よりも処理済ガス流れ方向の上流側で検出する温度センサを設け、
その温度センサによる検出温度に基づいて、前記冷却手段による冷却量を調整する構成にしてある点にある。
The eighth feature configuration of the present invention is a preferred configuration in the implementation of any one of the first to seventh feature configurations.
A temperature sensor is provided for detecting the temperature of the processed gas delivered from the combustion chamber on the upstream side in the processed gas flow direction from the cooling portion by the cooling means;
The cooling amount is adjusted by the cooling means based on the temperature detected by the temperature sensor.

つまり、この構成であれば、温度センサによって検出される処理済ガスの温度に基づいて、冷却手段による冷却量(すなわち、処理済ガスに対する冷却量)を調整するので、処理済ガスの温度変化による必要冷却量の変化に対して自動的に対応することができる。   That is, with this configuration, the amount of cooling by the cooling means (that is, the amount of cooling with respect to the processed gas) is adjusted based on the temperature of the processed gas detected by the temperature sensor. It is possible to automatically respond to changes in the required cooling amount.

すなわち、被処理ガスの風量変化やVOC濃度(揮発性有機化合物濃度)の変化などにより処理済ガスの温度が上昇して、シール部材の熱損傷を防止するのに要する冷却手段の冷却量が大きくなったときには、上記温度センサによる検出温度に基づいて処理済ガスに対する冷却手段の冷却量を自動的に増大させることができ、また、処理済ガスの温度が低下して、シール部材の熱損傷を防止するのに要する冷却手段の冷却量が小さくなったときには、上記温度センサによる検出温度に基づいて処理済ガスに対する冷却手段の冷却量を自動的に減少させることができ、これにより、熱損傷の防止面で装置の信頼性を高く確保しながら、省エネ面及び運転コスト面で更に有利な装置にすることができる。   That is, the temperature of the treated gas rises due to changes in the air volume of the gas to be treated and changes in the VOC concentration (volatile organic compound concentration), and the cooling amount of the cooling means required to prevent thermal damage to the seal member is large. When this happens, the cooling amount of the cooling means for the treated gas can be automatically increased based on the temperature detected by the temperature sensor, and the temperature of the treated gas is lowered to cause thermal damage to the seal member. When the cooling amount of the cooling means required for prevention becomes small, the cooling amount of the cooling means with respect to the treated gas can be automatically reduced based on the temperature detected by the temperature sensor. It is possible to make the apparatus more advantageous in terms of energy saving and operation cost while ensuring high reliability of the apparatus in terms of prevention.

本発明の第9特徴構成は、第1〜第8特徴構成のいずれか1つの特徴構成に係る蓄熱式ガス処理装置における蓄熱材層浄化方法に係り、その特徴は、
前記燃焼室で加熱した浄化用ガスの通風により前記蓄熱材層における処理済ガスの出口側部分の温度を所定の浄化温度に保つ状態にして、蓄熱材層における処理済ガスの出口側部分に蓄積した被浄化物を燃焼又は蒸発させる点にある。
A ninth characteristic configuration of the present invention relates to a heat storage material layer purification method in a heat storage type gas treatment device according to any one of the first to eighth characteristic configurations,
The temperature of the outlet side portion of the treated gas in the heat storage material layer is maintained at a predetermined purification temperature by ventilation of the purification gas heated in the combustion chamber, and accumulated in the outlet side portion of the treated gas in the heat storage material layer. The point is to burn or evaporate the purified object.

従来の蓄熱式ガス処理装置における蓄熱材層浄化方法においても、上記のように燃焼室で加熱した浄化用ガスの通風により蓄熱材層における処理済ガスの出口部分の温度を所定の浄化温度に保つ状態にして、蓄熱材層における処理済ガスの出口側部分に蓄積した脂成分などの被浄化物を燃焼又は蒸発させていたが、被浄化物を燃焼又は蒸発させる浄化温度は高温であるため、浄化対象の蓄熱材層を通過させた浄化作用後の浄化用ガス(すなわち、浄化温度以上の高温ガス)はシール部材の熱損傷を防止する必要から切換手段に通過させることができず、このため、従来装置では、浄化作用後の未だ高温の浄化用ガスを切換手段を経由せずに直接外部へ放出するために、浄化運転を実施する度に浄化用ガス放出風路を別途設けなければならなかった。   Also in the heat storage material layer purification method in the conventional heat storage type gas processing apparatus, the temperature of the outlet portion of the treated gas in the heat storage material layer is maintained at a predetermined purification temperature by the ventilation of the purification gas heated in the combustion chamber as described above. In the state, the purification object such as the fat component accumulated in the outlet side portion of the treated gas in the heat storage material layer was burned or evaporated, but the purification temperature for burning or evaporating the purification object is high, The purifying gas after the purifying action that has passed through the heat storage material layer to be purified (that is, high-temperature gas higher than the purifying temperature) cannot be passed to the switching means because it is necessary to prevent thermal damage of the seal member, and therefore In the conventional apparatus, a purification gas discharge air passage must be provided every time the purification operation is performed in order to discharge the high-temperature purification gas after the purification action directly to the outside without passing through the switching means. Inside It was.

しかし、この蓄熱材層浄化方法を第1〜第8特徴構成のいずれか1つの特徴構成に係る蓄熱式ガス処理装置において実施するのであれば、燃焼室からの処理済ガスを冷却する前記冷却手段が設けられているので、その冷却手段を利用して浄化作用後の高温の浄化用ガスを蓄熱材層のそれぞれにおける処理済ガスの出口から切換手段に到る風路部分、又は、切換手段における処理済ガスの入口部分において冷却することができ、これによって、浄化作用後の浄化用ガスを通常運転時の処理済ガスと同様に蓄熱式ガス処理装置のガス給排風路における切換手段の介装部を通過させて外部に排出することができて、従来装置のように浄化運転の度に別途、浄化用ガス放出風路を設ける負担を省くことができる。   However, if this heat storage material layer purification method is implemented in the heat storage type gas processing device according to any one of the first to eighth characteristic configurations, the cooling means for cooling the treated gas from the combustion chamber Since the cooling means is used, the high temperature purifying gas after the purifying action is supplied to the switching means from the exit of the treated gas in each of the heat storage material layers, or in the switching means. It is possible to cool the treated gas at the inlet portion, so that the purified gas after the purification action can be passed through the switching means in the gas supply / exhaust air passage of the regenerative gas processing apparatus in the same manner as the treated gas during normal operation. It is possible to pass through the equipment and discharge to the outside, and it is possible to eliminate the burden of providing a separate gas discharge air passage for purification at every purification operation as in the conventional apparatus.

本発明の第10特徴構成は、第9特徴構成の実施において好適な構成であり、その特徴は、
前記浄化用ガスを前記蓄熱材層に通風する浄化運転を、前記切換手段によるガス通過状態の切換により複数の前記蓄熱材層に対して順次に実施する点にある。
The tenth characteristic configuration of the present invention is a preferable configuration in the implementation of the ninth characteristic configuration.
The purifying operation of passing the purifying gas through the heat storage material layer is performed sequentially on the plurality of heat storage material layers by switching the gas passage state by the switching means.

つまり、前述の第9特徴構成によれば、浄化作用後の浄化用ガスを切換手段の介装部を通じて外部に排出できることから、浄化運転時にも切換手段の使用が可能になる。このことに着目して、上記第10特徴構成では、浄化用ガスを蓄熱材層に通風する浄化運転を切換手段によるガス通風状態の切り換えにより複数の蓄熱材層に対して順次に実施するから、例えば、別途に設ける前記浄化用ガス放出風路を複数の蓄熱材層に対して順次に接続切り換えしながら、それら蓄熱材層に対して浄化用ガスを通風させる浄化運転を順次に実施するのに比べ、浄化運転を能率よく行うことができる。   In other words, according to the ninth characteristic configuration described above, the purifying gas after the purifying action can be discharged to the outside through the interposition part of the switching means, so that the switching means can be used even during the purifying operation. Focusing on this, in the tenth feature configuration, the purification operation for passing the purification gas through the heat storage material layer is sequentially performed on the plurality of heat storage material layers by switching the gas ventilation state by the switching means. For example, in order to sequentially carry out a purification operation in which the purification gas discharge air passage is separately connected to a plurality of heat storage material layers and the purification gas is passed through the heat storage material layers. In comparison, the purification operation can be performed efficiently.

〔第1実施形態〕
図1〜図8は本発明の蓄熱式ガス処理装置の第1実施形態を示し、装置上部に配置したハウジング1の内部を仕切壁2により仕切ることで、蓄熱室3の室群として、平面視で並列配置の8室の蓄熱室3をハウジング1内に形成し、このハウジング1の下方には、各蓄熱室3に対して連通させる風路の切り換えを行う回転式切換弁Vを配置してある。
[First Embodiment]
FIGS. 1-8 shows 1st Embodiment of the thermal storage type gas processing apparatus of this invention, and the inside of the housing 1 arrange | positioned at the apparatus upper part is divided by the partition wall 2, and is planarly viewed as a room group of the thermal storage chamber 3. FIG. The eight heat storage chambers 3 arranged in parallel are formed in the housing 1, and a rotary switching valve V for switching the air path communicating with each heat storage chamber 3 is arranged below the housing 1. is there.

各蓄熱室3には蓄熱材4aの通気性充填層からなる蓄熱材層4を収容しているとともに、各蓄熱室3はハウジング1内の上部に形成した燃焼室6に対するガス出入口部として、それらの上端を燃焼室6に開口させて風路接続状態にし、この燃焼室6には燃焼手段としてバーナーBを装備しており、一部の蓄熱材層4を通じて燃焼室6に導いた被処理ガスGをバーナーBにより燃焼処理した後、その処理済ガスG′を他の蓄熱材層4に通過させることによって、その蓄熱材層4に蓄熱させ、そして、回転式切換弁Vにより各蓄熱室3に対して連通する風路を切り換えることで、先の行程において処理済ガスG′を通過させた蓄熱材層4に対し次の行程で被処理ガスGを通過させて、被処理ガスGを予熱する。   Each heat storage chamber 3 accommodates a heat storage material layer 4 composed of a breathable packed layer of the heat storage material 4 a, and each heat storage chamber 3 serves as a gas inlet / outlet portion for the combustion chamber 6 formed in the upper part of the housing 1. The combustion chamber 6 is equipped with a burner B as a combustion means, and the gas to be treated led to the combustion chamber 6 through a part of the heat storage material layer 4. After G is burned by the burner B, the treated gas G ′ is passed through the other heat storage material layer 4 to store heat in the heat storage material layer 4, and each heat storage chamber 3 is rotated by the rotary switching valve V. By switching the air path that communicates with the heat treatment material G in the previous stroke, the gas G to be treated is passed through the heat storage material layer 4 through which the treated gas G ′ has been passed in the previous stroke. To do.

各蓄熱材層4の処理済ガス出口(すなわち、蓄熱材層4の下端部)から回転式切換弁Vに至る風路部分のうち蓄熱室3それぞれにおける蓄熱材層4の下部には、蓄熱材層4を通過するガスの温度tを検出する温度センサsと、蓄熱材層通過後の処理済ガスG′に対して冷却水Wを噴射して処理済ガスG′を冷却する噴水ノズル5とが、その順に処理済ガス流れ方向の上流側から並べて設けられており、冷却水WはポンプPにより給水路5Aを通じて各噴水ノズル5に対して供給される。   Of the air passage portion from the treated gas outlet of each heat storage material layer 4 (that is, the lower end portion of the heat storage material layer 4) to the rotary switching valve V, the heat storage material 4 is located below the heat storage material layer 4 in each of the heat storage chambers 3. A temperature sensor s for detecting the temperature t of the gas passing through the layer 4, and a fountain nozzle 5 for injecting the cooling water W to the treated gas G 'after passing through the heat storage material layer to cool the treated gas G'. However, the cooling water W is arranged in that order from the upstream side in the processed gas flow direction, and the cooling water W is supplied to each fountain nozzle 5 by the pump P through the water supply path 5A.

各噴水ノズル5に対する給水路5Aには、各噴水ノズル5における冷却水Wの噴射を作動及び停止するための開閉弁7が設けられており、開閉弁7は、各温度センサsによる検出温度t及び設定温度tsに基づいて、制御装置Cにより開閉制御される。   The water supply path 5A for each fountain nozzle 5 is provided with an on-off valve 7 for operating and stopping the injection of the cooling water W at each fountain nozzle 5, and the on-off valve 7 has a temperature t detected by each temperature sensor s. On the basis of the set temperature ts, the control device C performs open / close control.

詳しくは、いずれかの温度センサsによる検出温度tが設定温度ts以上になった(t≧ts)とき、その温度センサsに対応する開閉弁7を開いて、対応の噴水ノズル5から冷却水Wを噴射し、かつ、いずれかの温度センサsによる検出温度tが設定温度ts未満になった(t<ts)とき、その温度センサsに対応する開閉弁7を閉じて、対応の噴水ノズル5から冷却水Wの噴射を停止する。   Specifically, when the temperature t detected by any one of the temperature sensors s is equal to or higher than the set temperature ts (t ≧ ts), the on-off valve 7 corresponding to the temperature sensor s is opened, and the cooling water is discharged from the corresponding fountain nozzle 5. When W is injected and the temperature t detected by any one of the temperature sensors s becomes lower than the set temperature ts (t <ts), the on-off valve 7 corresponding to the temperature sensor s is closed and the corresponding fountain nozzle The injection of the cooling water W is stopped from 5.

回転式切換弁Vは、図3〜図7に示す如く、平面視で環状配置の8個の給排室8を仕切壁9により内部に形成した8角筒状の分配器10と、主弁部材としての回転弁体11を収容した円筒状の弁体器12と、被処理ガスGを受け入れる円筒状の気室器13とからなり、設置架台14の上部に弁体器12を固定的に取り付けるとともに、分配器10を弁体器12の上方に同芯状に配置して弁体器12に対し固定的に連結し、気室器13は、弁体器12の下方に同芯状に配置して弁体器12の環状底板12aに吊り下げ状に連結するとともに、設置架台14の下部フレーム14aにより下方から支持してある。   As shown in FIGS. 3 to 7, the rotary switching valve V includes an octagonal tubular distributor 10 in which eight supply / discharge chambers 8 having an annular arrangement in a plan view are formed inside by a partition wall 9, and a main valve It consists of a cylindrical valve body 12 containing a rotary valve body 11 as a member and a cylindrical air chamber 13 for receiving the gas G to be treated. The valve body 12 is fixedly attached to the upper part of the installation base 14. At the same time, the distributor 10 is arranged concentrically above the valve body 12 and fixedly connected to the valve body 12, and the air chamber 13 is concentrically below the valve body 12. It is arranged and connected to the annular bottom plate 12 a of the valve body 12 in a suspended manner, and is supported from below by the lower frame 14 a of the installation base 14.

8室の蓄熱室3は、それらの下端を上端閉塞の分配器10における8個の給排室8に対し給排路15を通じて個別に風路接続してあり、弁体器12の天板及び分配器10の底板を兼ねる副弁部材としての弁座板10aには、8個の扇状の通気口16を、回転弁体11の回転軸芯Z周りでその回転方向に均等に並べて各給排室8に対し個別に対応位置させた環状配置で形成してある。   The eight heat storage chambers 3 are individually connected to the eight supply / discharge chambers 8 in the distributor 10 whose upper end is closed through the supply / discharge passages 15 at the lower ends thereof, and the top plate of the valve body 12 and In the valve seat plate 10a serving as a sub-valve member that also serves as the bottom plate of the distributor 10, eight fan-shaped vent holes 16 are arranged evenly around the rotation axis Z of the rotary valve body 11 in the rotation direction thereof. It is formed in an annular arrangement individually corresponding to the chamber 8.

また、分配器10の中央部には、パージ用ガスG″を受け入れる中央室18を仕切筒19により形成し、この中央室18には分配器10の上端側からパージ用ガス供給路20を接続してある。   Further, a central chamber 18 for receiving the purge gas G ″ is formed in the central portion of the distributor 10 by a partition cylinder 19, and a purge gas supply path 20 is connected to the central chamber 18 from the upper end side of the distributor 10. It is.

弁体器12に収容する回転弁体11は、弁周壁21と弁天板22と弁底板23と縦姿勢の筒状回転軸24とを備える逆向き円錐台状に形成してあり、弁天板22の上面部xを分配器10における弁座板10aの下面部yに対して近接対向させ、かつ、弁底板23の下面を気室器13の上端開口の周縁部に対して近接対向させた状態で、弁体器12内において回転弁体11を縦軸芯Z周りで図中矢印Rの方向に回転させる。   The rotary valve body 11 housed in the valve body 12 is formed in a reverse truncated cone shape including a valve peripheral wall 21, a valve top plate 22, a valve bottom plate 23, and a vertical cylindrical rotary shaft 24. The upper surface portion x of the distributor 10 is in close proximity to the lower surface portion y of the valve seat plate 10 a in the distributor 10, and the lower surface of the valve bottom plate 23 is in close proximity to the peripheral edge portion of the upper end opening of the air chamber 13. Thus, the rotary valve body 11 is rotated around the vertical axis Z in the direction of the arrow R in the figure within the valve body 12.

回転弁体11の内部は、弁周壁21と筒状回転軸24とにわたる2枚の仕切壁26により平面視で、処理済ガス風路であるガス排出用の内部風路28と被処理ガス風路であるガス供給用の内部風路27とに区画し、また、回転弁体11内の上部において一方の仕切壁26の隣接箇所には、中底板29と上部仕切壁30とによりパージ用の内部風路31を区画形成し、これにより、回転弁体11の上部では、内部区画室の環状列として、ガス供給用の内部風路27とパージ用の内部風路31とガス排出用の内部風路28とが、その順で回転弁体11の回転下手側から並ぶ構造にしてある。なお、32は室内連通用の連通口32aを形成してある補強リブ板であり、上部仕切壁30の下方に連なる部分も同様の補強リブ板構造にしてある。   The inside of the rotary valve body 11 is a gas discharge internal air passage 28 which is a treated gas air passage and a gas gas to be treated which are treated gas air passages in plan view by two partition walls 26 extending between the valve peripheral wall 21 and the cylindrical rotating shaft 24. It is divided into an internal air passage 27 for supplying gas, which is a passage, and in the upper part in the rotary valve body 11, a portion for purging is provided by an intermediate bottom plate 29 and an upper partition wall 30 at a location adjacent to one partition wall 26. The internal air passage 31 is partitioned and, as a result, the gas supply internal air passage 27, the purge internal air passage 31, and the gas exhaust internal are formed as an annular row of internal compartments in the upper part of the rotary valve body 11. The air passage 28 is arranged in this order from the lower rotation side of the rotary valve body 11. Reference numeral 32 denotes a reinforcing rib plate in which a communication port 32a for indoor communication is formed, and the portion connected below the upper partition wall 30 has a similar reinforcing rib plate structure.

そして、弁天板22には、ガス供給用内部風路27の風路口とする給気用開口33とパージ用内部風路31の風路口とするパージ用の掃気用開口34とガス排出用内部風路28の風路口とする排気用開口35とを、回転弁体11の回転に伴い弁座板10aの通気口16に対して各々順次に対向連通させる状態にその順で回転方向下手側から回転弁体11の回転方向に並べた配置で、かつ、回転方向で隣り合う2つのものが弁座板10aにおける同一の通気口16に対して同時に対向しない配置で形成してある。   The valve top plate 22 includes an air supply opening 33 serving as an air passage opening of the gas supply internal air passage 27, a purge scavenging opening 34 serving as an air passage opening of the purge internal air passage 31, and a gas exhausting internal air. The exhaust opening 35 serving as the air passage opening of the passage 28 is rotated from the lower side in the rotation direction in that order so as to sequentially communicate with the vent 16 of the valve seat plate 10a as the rotary valve body 11 rotates. Two valve elements 11 arranged in the rotation direction of the valve body 11 and adjacent to each other in the rotation direction are formed so as not to simultaneously face the same vent 16 in the valve seat plate 10a.

また、軸上端を分配器10の中央室18内に位置させる筒状回転軸24には、その内部空間をパージ用内部風路31に連通させるパージ用連通口36を形成し、弁底板23には、回転弁体11の回転に伴う弁体回転方向への移動においてガス供給用の内部風路27を気室器13の内部空間13rに対し常時連通させるガス供給用の連通口37を形成し、弁周壁21には、回転弁体11の回転に伴う弁体回転方向への移動においてガス排出用の内部風路28を弁体器12内における回転弁体11周りの器内空間12rに対し常時連通させるガス排出用の連通口38を形成し、この構成において、気室器13の内部空間13rでそれの弁体回転方向における一部箇所に開口させたガス供給用の接続口13sに対し被処理ガスGの供給路39を気室器13の外部から接続するとともに、弁体器12内における回転弁体11周りの器内空間12rでそれの弁体回転方向における一部箇所に開口させたガス排出用の接続口12sに対し処理済ガスG′の排出路40を弁体器12の外部から接続してある。   The cylindrical rotary shaft 24 whose upper end is located in the central chamber 18 of the distributor 10 is formed with a purge communication port 36 that communicates the internal space with the purge internal air passage 31. Forms a gas supply communication port 37 that allows the gas supply internal air passage 27 to always communicate with the internal space 13r of the air chamber 13 during movement in the valve body rotation direction accompanying the rotation of the rotary valve body 11. In the valve peripheral wall 21, an internal air passage 28 for discharging gas in the movement in the valve body rotation direction accompanying the rotation of the rotary valve body 11 is provided with respect to the internal space 12 r around the rotary valve body 11 in the valve body 12. A gas discharge communication port 38 that is always in communication is formed, and in this configuration, a gas supply connection port 13 s opened in a part of the internal space 13 r of the air chamber 13 in the valve body rotation direction is formed. The supply path 39 for the gas G to be processed is an air chamber 13 is connected to the outside of the valve body 12 and processed into the gas discharge connection port 12s opened in a part of the valve body 12 around the rotary valve body 11 in the valve body rotation direction. A discharge path 40 for the gas G ′ is connected from the outside of the valve body 12.

そして、分配器10と回転弁体11との間には、弁座板10aの下面部yと弁天板22の上面部xとの間の隙間を通じて被処理ガスGが処理済ガスG′やパージ用ガスG″に混入するのを防止する面間シール部材17を介在させ、また、回転弁体11と気室器13との間には、弁底板23の下面と気室器11の上端開口周縁部との間の隙間を通じて気室器13内の被処理ガスGが弁体器12内の処理済ガスG′に混入するのを防止する気室器用の環状シール部材25を介在させてあり、これらの混入防止により、被処理ガスG中に含まれる汚染物質や悪臭物質が未処理のままで処理済ガスG′とともに装置から排出されてしまうのを防止する。   Then, between the distributor 10 and the rotary valve body 11, the gas to be processed G passes through the gap between the lower surface portion y of the valve seat plate 10 a and the upper surface portion x of the valve top plate 22, and the processed gas G ′ or purge A face-to-face seal member 17 for preventing the gas G ″ from being mixed is interposed, and the lower surface of the valve bottom plate 23 and the upper end opening of the air chamber 11 are provided between the rotary valve body 11 and the air chamber 13. An annular seal member 25 for the air chamber is provided to prevent the gas to be processed G in the air chamber 13 from entering the processed gas G ′ in the valve body 12 through a gap between the peripheral portion. By preventing these contaminations, it is possible to prevent contaminants and malodorous substances contained in the gas G to be processed from being discharged from the apparatus together with the processed gas G ′ without being processed.

つまり、この蓄熱式ガス処理装置では(図8参照)、供給路39から供給される被処理ガスG(例えば、有機溶剤を含む塗装ブースからの排出空気)を、ガス供給用の接続口13s、気室器13の器内空間13r、及び、ガス供給用の連通口37を通じて回転弁体11のガス供給用内部風路27に導入し、続いて、この被処理ガスGを、給気用開口33、その給気用開口33に対向連通している弁座板10a側の通気口16、その通気口16に連通する給排室8、及び、その給排室8に連通する給排路15を通じ一部の蓄熱室3に通過させて燃焼室6に至らせ、この燃焼室6において被処理ガスG中の汚染物質や悪臭物質などを燃焼により処理する。   That is, in this regenerative gas processing apparatus (see FIG. 8), the gas G to be processed (for example, exhaust air from a painting booth containing an organic solvent) supplied from the supply path 39 is supplied to the gas supply connection port 13s, The gas is introduced into the gas supply internal air passage 27 of the rotary valve body 11 through the internal space 13r of the air chamber 13 and the gas supply communication port 37, and then the gas to be treated G is supplied to the air supply opening. 33, the vent 16 on the side of the valve seat plate 10a facing and communicating with the supply opening 33, the supply / discharge chamber 8 communicating with the vent 16, and the supply / discharge passage 15 communicating with the supply / discharge chamber 8. Then, it passes through a part of the heat storage chamber 3 to reach the combustion chamber 6, and in this combustion chamber 6, pollutants and malodorous substances in the gas G to be treated are processed by combustion.

また、処理済ガスG′は、燃焼室6から他の蓄熱室3に通過させて、その蓄熱室3に収容の蓄熱材4aに対し蓄熱を行わせ、その後、その蓄熱室3に連通する給排路15、その給排路15に連通する給排室8、その給排室8に連通する弁座板10a側の通気口16、及び、その通気口16に対向連通している排気用開口35を通じて回転弁体11のガス排出用内部風路28へ導入し、これに続き、ガス排出用の連通口38、及び、弁体器12における回転弁体11周りの器内空間12rを通じてガス排出用の接続口12sから排出路40へ排出する。   Further, the treated gas G ′ is passed from the combustion chamber 6 to the other heat storage chamber 3 to cause the heat storage chamber 3 to store heat with respect to the stored heat storage material 4 a, and then to supply the heat storage chamber 3. The exhaust passage 15, the supply / discharge chamber 8 communicating with the supply / discharge passage 15, the vent 16 on the valve seat plate 10 a side communicating with the supply / exhaust chamber 8, and the exhaust opening communicating with the vent 16 in opposition to each other 35 is introduced into the gas exhaust internal air passage 28 of the rotary valve body 11, followed by gas exhaust through the communication port 38 for gas exhaust and the internal space 12 r around the rotary valve body 11 in the valve body 12. Is discharged from the connection port 12s to the discharge path 40.

さらに、パージ用ガス供給路20から分配器10の中央室18に導入するパージ用ガスG″は、回転弁体11における筒状回転軸24の上端部に形成の連通孔24a、筒状回転軸24の内部、及び、その筒状回転軸24に形成のパージ用連通口36を通じて回転弁体11のパージ用内部風路31に導入し、それに続き、パージ用の掃気用開口34、それに対向連通している弁座板10a側の通気口16、その通気口16に連通している給排室8、及び、その給排室8に連通している給排路15を通じ、更に他の蓄熱室3に通過させて燃焼室6に至らせ、その後は処理済ガスG′に合流させる。   Further, the purge gas G ″ introduced from the purge gas supply passage 20 into the central chamber 18 of the distributor 10 is formed with a communication hole 24 a formed in the upper end portion of the cylindrical rotary shaft 24 in the rotary valve body 11, the cylindrical rotary shaft. 24 and the purge internal air passage 31 of the rotary valve body 11 through the purge communication port 36 formed in the cylindrical rotary shaft 24, and subsequently, the purge scavenging opening 34 and the counter communication therewith. Through the vent 16 on the valve seat plate 10a side, the supply / exhaust chamber 8 communicating with the vent 16 and the supply / exhaust passage 15 communicating with the supply / exhaust chamber 8. 3 is allowed to reach the combustion chamber 6 and then merged with the treated gas G ′.

そして、この処理において、主弁部材としての回転弁体11における給気用開口33、掃気用開口34、排気用開口35の各々を対向連通させる副弁部材としての弁座板10a側の通気口16を回転弁体11の回転により順次に切り換えることで、被処理ガスGを通過させる蓄熱室3、パージ用ガスG″を通過させる蓄熱室3、処理済ガスG′を通過させる蓄熱室3を順次に切り換える(換言すれば、各ガスG,G′,G″を通過させる蓄熱材層4を順次に切り換える)形態で、各蓄熱室3を被処理ガスG′の通過状態、パージ用ガスG″の通過状態、処理済ガスG′の通過状態にその順で順次に切り換え、これにより、処理済ガスG′の通過をもって先に蓄熱した蓄熱材4aにより被処理ガスGを各蓄熱室3の通過過程において予熱する。   In this process, the vent on the valve seat plate 10a side serving as a sub-valve member that makes the supply opening 33, the scavenging opening 34, and the exhaust opening 35 of the rotary valve body 11 as the main valve member communicate with each other. 16 are sequentially switched by the rotation of the rotary valve body 11, so that the heat storage chamber 3 through which the gas G to be processed passes, the heat storage chamber 3 through which the purge gas G ″ passes, and the heat storage chamber 3 through which the treated gas G ′ passes are arranged. In the form of switching sequentially (in other words, sequentially switching the heat storage material layer 4 through which each gas G, G ′, G ″ is passed), each heat storage chamber 3 is passed through the gas to be treated G ′, purge gas G ”And the processed gas G ′ are sequentially switched in this order, whereby the gas G to be processed is stored in each of the heat storage chambers 3 by the heat storage material 4a that has previously stored heat with the passage of the processed gas G ′. Preheat in the passing process.

更に、被処理ガスGの通過後、次に処理済ガスG′を通過させるに先立ち各蓄熱室3にパージ用ガスG″を通過させるようにし、これにより、蓄熱室3内に残る被処理ガスGを次の処理済ガスG′の通過の前に燃焼室6へ排出して、次にその蓄熱室3を通過する処理済ガスG′に残留被処理ガスGが混入することを防止する。   Further, after passing the gas to be processed G, the purge gas G ″ is allowed to pass through each heat storage chamber 3 before passing the processed gas G ′ next, whereby the gas to be processed remaining in the heat storage chamber 3. G is discharged to the combustion chamber 6 before the passage of the next treated gas G ′, and the residual treated gas G is prevented from being mixed into the treated gas G ′ that passes through the heat storage chamber 3 next.

なお、パージ用ガス供給路20は排出路40から分岐した風路であり、この風路分岐により、排出路40へ排出した処理済ガスG′の一部をパージ用ガスG″として使用するようにしてある。   The purge gas supply passage 20 is an air passage branched from the discharge passage 40, and a part of the treated gas G ′ discharged to the discharge passage 40 by this air passage branch is used as the purge gas G ″. It is.

また、この回転式切換弁Vの場合、分配器10と回転弁体11との間の面間シール部材17については、弁天板22の上面部xに面間シール部材17を取り付けて、その面間シール部材17を回転弁体11の回転に伴い弁座板10aの下面部yに摺接させる構造にしてあり、一方、気室器用の環状シール部材25については、気室器11の上端開口周縁部に環状シール部材25を取り付けて、その環状シール部材25を回転弁体11の回転に伴い弁底板23の下面に摺接させる構造にしてある。   Further, in the case of this rotary switching valve V, the inter-surface seal member 17 between the distributor 10 and the rotary valve body 11 is attached to the upper surface portion x of the valve top plate 22 and the surface thereof. The intermediate seal member 17 is slidably brought into contact with the lower surface portion y of the valve seat plate 10 a as the rotary valve body 11 rotates. On the other hand, the annular seal member 25 for the air chamber is opened at the upper end of the air chamber 11. An annular seal member 25 is attached to the peripheral portion, and the annular seal member 25 is configured to be in sliding contact with the lower surface of the valve bottom plate 23 as the rotary valve body 11 rotates.

そして、噴水ノズル5からの冷却水噴射における前記設定温度tsとして適当な温度を設定しておくことにより、各蓄熱室3について高温の処理済ガスG′が通過するときには、その蓄熱室3の噴水ノズル5から冷却水Wを噴射させることで、処理済ガスG″を冷却して、その高温の処理済みガスG′による面間シール部材17及び環状シール部材25の熱損傷を防止するようにしてある。   Then, by setting an appropriate temperature as the set temperature ts in the cooling water injection from the fountain nozzle 5, when the high temperature treated gas G ′ passes through each heat storage chamber 3, the fountain of the heat storage chamber 3. By injecting the cooling water W from the nozzle 5, the treated gas G ″ is cooled to prevent thermal damage of the inter-face seal member 17 and the annular seal member 25 due to the high temperature treated gas G ′. is there.

また、各蓄熱室3に設けた温度センサsの検出温度tに基づき、対応の噴水ノズル5を作動させることにより、処理済ガスG′が通過する蓄熱室3が順次に切り換わることに対応させて、冷却水Wを噴射させる噴水ノズル5も順次に切り換えるようにしてある。   Further, by operating the corresponding fountain nozzle 5 based on the detected temperature t of the temperature sensor s provided in each heat storage chamber 3, the heat storage chamber 3 through which the treated gas G ′ passes is sequentially switched. Thus, the fountain nozzle 5 for injecting the cooling water W is also sequentially switched.

なお、上記の設定温度tsに適当な温度を設定すれば、被処理ガスGやパージ用ガスG″が蓄熱室3を通過する際の噴水ノズル5からの不要な冷却水噴射を防止でき、また、シール部材17,25の熱損傷を招来することのない程度の温度の処理済ガスG′が蓄熱室3を通過する際の噴水ノズル5からの無駄な冷却水噴射も防止することができる。   If an appropriate temperature is set as the set temperature ts, unnecessary cooling water injection from the fountain nozzle 5 when the gas to be processed G or the purge gas G ″ passes through the heat storage chamber 3 can be prevented. In addition, useless cooling water injection from the fountain nozzle 5 when the treated gas G ′ having a temperature that does not cause thermal damage to the seal members 17 and 25 passes through the heat storage chamber 3 can be prevented.

処理済ガスG′の排出路40を接続するガス排出用接続口12sを弁体器12の周壁における弁体回転方向の一部箇所に形成するのに対し、弁体器12内における回転弁体11周りの器内空間12rには、弁体回転方向においてガス排出用接続口12sの上手側及び下手側にわたる所定の角度範囲で回転弁体11の弁周壁21に対し沿わせる状態に配置した弧状の固定抵抗板50を設けてあり、ガス排出用接続口12sに対するガス排出用連通口38の近付きと遠ざかりとに原因して生じる通過ガス(処理済ガスG′及び被処理ガスG)の周期的な風量変動を防止して、その風量変動に原因する装置性能の低下や運転トラブルを防止するようにしてある。   The gas discharge connection port 12 s for connecting the discharge path 40 for the treated gas G ′ is formed at a part of the peripheral wall of the valve body 12 in the valve body rotation direction, whereas the rotary valve body in the valve body 12 is formed. The inner space 12r around 11 has an arcuate shape arranged so as to be along the valve peripheral wall 21 of the rotary valve body 11 in a predetermined angular range extending from the upper side to the lower side of the gas discharge connection port 12s in the valve body rotation direction. The fixed resistance plate 50 is provided, and the passing gas (processed gas G ′ and gas to be processed G) generated due to the gas discharge communication port 38 approaching or moving away from the gas discharge connection port 12s is periodically generated. The air flow is prevented from fluctuating to prevent the deterioration of the apparatus performance and the operation trouble caused by the air flow fluctuation.

なお、50aはガス排出用接続口12sとの間に離間間隙を確保した状態で固定抵抗板50を弁体器12の周壁に連結支持する脚部材である。   Reference numeral 50a denotes a leg member that connects and supports the fixed resistance plate 50 to the peripheral wall of the valve body 12 in a state in which a clearance is secured between the gas discharge connection port 12s.

気室器13を連結する弁体器12の環状底板12aには、強靭で可撓性の高い金属板を用いてあり、この可撓性により、気室器13及びその気室器13に載置した状態の回転弁体11の上下方向での変位(すなわち、分配器10に対する遠近方向への変位)を自在にしてある。   A strong and flexible metal plate is used for the annular bottom plate 12a of the valve body 12 to which the air chamber unit 13 is connected, and the air chamber unit 13 and the air chamber unit 13 are mounted by this flexibility. The rotary valve body 11 in the placed state can be freely displaced in the vertical direction (that is, displacement in the perspective direction with respect to the distributor 10).

また、気室器13を設置架台14の下部フレーム14aにより下方から支持するのに、下部フレーム14aと気室器13との間には、支持具として気室器13を弾性的に上方へ押圧(すなわち、回転弁体11の側へ押圧)するコイルスプリング41を介装してあり、上記の如く気室器13及び回転弁体11の上下方向での変位を許す支持状態の下で、このコイルスプリング41により気室器13を上方へ押圧することで、気室器13を介して回転弁体11をコイルスプリング41により上方へ押圧(すなわち、分配器10の側へ押圧)するようにしてある。   In addition, while the air chamber unit 13 is supported from below by the lower frame 14a of the installation base 14, the air chamber unit 13 is elastically pressed upward as a support between the lower frame 14a and the air chamber unit 13. The coil spring 41 is interposed (that is, pressed toward the rotary valve body 11), and this is under a supporting state that allows the vertical displacement of the air chamber unit 13 and the rotary valve body 11 as described above. By pressing the air chamber 13 upward by the coil spring 41, the rotary valve body 11 is pressed upward by the coil spring 41 (that is, pressed toward the distributor 10) via the air chamber 13. is there.

つまり、このように回転弁体11を分配器10の側へ押圧することで、回転弁体11の弁天板22に装備の面間シール部材17を回転弁体11により押圧する形態で分配器10の弁座板10aに対して確実に圧接させ、また、気室器13をコイルスプリング41により回転弁体11の側に押圧することで、気室器13の上端開口周縁部に装備の気室器用の環状シール部材25も気室器13により押圧する形態で回転弁体11の弁底板23に対し確実に圧接させ、これにより、これらシール部材17,25を一層確実にシール機能させるようにしてある。   That is, by pressing the rotary valve body 11 toward the distributor 10 in this way, the distributor 10 is configured in such a manner that the inter-surface seal member 17 provided on the valve top plate 22 of the rotary valve body 11 is pressed by the rotary valve body 11. The pressure chamber is securely brought into pressure contact with the valve seat plate 10a, and the air chamber unit 13 is pressed against the rotary valve body 11 by the coil spring 41, so that the air chamber of the air chamber unit 13 is provided at the peripheral edge of the upper end opening. The annular seal member 25 for the vessel is also pressed against the valve bottom plate 23 of the rotary valve body 11 in such a manner that the annular seal member 25 is pressed by the air chamber device 13, so that the seal members 17, 25 are more reliably sealed. is there.

なお、図中42は、コイルスプリング41に対する受座43の位置を調整するダブルナット機構であり、この受座43の位置調整により、気室器13及び回転弁体11に対するコイルスプリング41の付勢力(換言すれば、弁座板10aに対する面間シール部材17の圧接力、及び、回転弁体11の弁底板23に対する気室器用環状シール部材25の圧接力)を調整するようにしてある。   In the figure, reference numeral 42 denotes a double nut mechanism for adjusting the position of the receiving seat 43 with respect to the coil spring 41. By adjusting the position of the receiving seat 43, the biasing force of the coil spring 41 with respect to the air chamber 13 and the rotary valve body 11 is shown. (In other words, the pressure contact force of the inter-surface seal member 17 with respect to the valve seat plate 10 a and the pressure contact force of the air chamber annular seal member 25 with respect to the valve bottom plate 23 of the rotary valve body 11) are adjusted.

44は回転弁体11の筒状回転軸24に連結した駆動軸、45は減速機46及び駆動軸44を介して回転弁体11を回転動作させるモーターである。   A drive shaft 44 is connected to the cylindrical rotary shaft 24 of the rotary valve body 11, and a motor 45 rotates the rotary valve body 11 via the speed reducer 46 and the drive shaft 44.

また、気室器13及び回転弁体11の上下方向での変位を自在にするのに、回転弁体11における筒状回転軸24の上端部は、対象軸の軸芯方向への滑りを許す軸受47を介して分配器10により支持し、同様に、駆動軸44は対象軸の軸芯方向への滑りを許す軸継手48を介して減速機46に接続してある。   Further, in order to allow the vertical displacement of the air chamber 13 and the rotary valve body 11, the upper end portion of the cylindrical rotary shaft 24 in the rotary valve body 11 allows the target shaft to slide in the axial direction. It is supported by the distributor 10 via a bearing 47, and similarly, the drive shaft 44 is connected to the speed reducer 46 via a shaft coupling 48 that allows the object shaft to slide in the axial direction.

要するに、本実施形態において、主弁部材としての回転弁体11と副弁部材としての弁座板10aとで構成される回転式切換弁Vは、燃焼室6への被処理ガスGを通過させる蓄熱材層4と燃焼室6からの処理済ガスG′を通過させる蓄熱材層4とを順次に切り換える切換手段を構成する。   In short, in this embodiment, the rotary switching valve V composed of the rotary valve body 11 as the main valve member and the valve seat plate 10a as the auxiliary valve member allows the gas G to be processed to the combustion chamber 6 to pass through. A switching means for sequentially switching between the heat storage material layer 4 and the heat storage material layer 4 through which the treated gas G ′ from the combustion chamber 6 passes is configured.

また、噴水ノズル5、給水路5A、開閉弁7、ポンプP、温度センサs及び制御装置Cは、燃焼室6に対するガス給排風路のうち、蓄熱材層4のそれぞれにおける処理済ガスG′の出口から切換手段に至る風路部分、又は、切換手段における処理済ガスGの入口部分において燃焼室6からの処理済ガスG′を冷却する冷却手段を構成する。   In addition, the fountain nozzle 5, the water supply path 5 </ b> A, the on-off valve 7, the pump P, the temperature sensor s, and the control device C are the processed gas G ′ in each of the heat storage material layers 4 in the gas supply / exhaust air path to the combustion chamber 6. The cooling means for cooling the treated gas G ′ from the combustion chamber 6 is configured at the air passage portion extending from the outlet of the combustion chamber to the switching means or at the inlet portion of the treated gas G in the switching means.

そしてまた、温度センサs及び制御装置Cは、蓄熱材層4のそれぞれにおける処理済ガスG′の出口から切換手段に至る並列状態の風路部分の各々に、又は、蓄熱材層4に対して各別に装備された複数の切換手段のそれぞれにおける処理済ガス入口部分の各々に設けられた複数の冷却手段を、切換手段によるガス通過状態の切り換えに伴って切り換わり作動させる連動手段を構成する。   Further, the temperature sensor s and the control device C are provided in each of the parallel air passage portions from the outlet of the treated gas G ′ to the switching means in each of the heat storage material layers 4 or to the heat storage material layer 4. A plurality of cooling means provided in each of the treated gas inlet portions of each of the plurality of switching means provided separately are configured to operate in conjunction with switching of the gas passage state by the switching means.

更に、本実施形態においては、温度センサsを冷却手段による冷却箇所よりも処理済ガス流れ方向の上流側で温度検出する状態に配置し、この温度センサsによる検出温度tに基づいて冷却手段を作動させる構成にしてある。   Further, in the present embodiment, the temperature sensor s is arranged in a state in which the temperature is detected upstream of the portion cooled by the cooling means in the direction of the treated gas flow, and the cooling means is based on the temperature t detected by the temperature sensor s. It is configured to operate.

次に、上記の蓄熱式ガス処理装置における蓄熱材層4の浄化方法を説明する。   Next, a method for purifying the heat storage material layer 4 in the heat storage type gas processing apparatus will be described.

上記の蓄熱式ガス処理装置においては、被処理ガスGを燃焼室6での燃焼により処理して処理済ガスG′を排出路40へ排出するガス処理運転をある期間実施すると、各蓄熱材層4における下側部分(すなわち、処理済ガスG′の出口側部分)にヤニ状の燃焼副生物や塵埃等が蓄積して、この蓄積により、蓄熱材層4の通過抵抗が大きくなる等のことで、ガス処理能力が低下してしまうため、それらヤニ状の燃焼副生物や塵埃等の堆積物を被浄化物として燃焼や蒸発により蓄熱材層4から除去する浄化運転を定期的に実行するが、その浄化運転は次のように行う。   In the above-described heat storage type gas processing apparatus, when the gas processing operation for processing the gas G to be processed by combustion in the combustion chamber 6 and discharging the processed gas G ′ to the discharge path 40 is performed for a certain period, each heat storage material layer 4 is accumulated in the lower part (that is, the outlet side part of the treated gas G ′), and by this accumulation, the passage resistance of the heat storage material layer 4 is increased. However, since the gas processing capacity is reduced, the purification operation for removing the deposits such as dust-like combustion by-products and dust from the heat storage material layer 4 by combustion or evaporation as the substance to be purified is periodically executed. The purification operation is performed as follows.

ガス処理運転時における処理済ガスG′に代えて、燃焼室6で加熱した浄化用ガスgを一部の蓄熱材層4(回転弁体11の排気用開口35に通過する蓄熱材層4)に対して、ガス処理運転時における被処理ガスGや処理済ガスG′の通過時間よりも長時間に亘って通風し、この浄化用ガスgの通風により、それら蓄熱材層4における処理済ガスG′の出口側部分の温度を所定の浄化温度に保つことで、その出口部分における被浄化物(ヤニ状の燃焼副生物や塵埃)を燃焼又は蒸発させ、それら燃焼又は蒸発させた被浄化物を浄化作用後の浄化用ガスg′と共にガス処理運転時における処理済ガスG′と同一経路で回転式切換弁Vを通じて排出路40へ排出することで、蓄熱材層4を浄化する。   Instead of the treated gas G ′ during the gas treatment operation, a part of the heat storage material layer 4 (the heat storage material layer 4 that passes through the exhaust opening 35 of the rotary valve body 11) is heated in the combustion chamber 6. In contrast, the treated gas G in the heat storage material layer 4 is ventilated for a longer time than the passage time of the gas G to be treated and the treated gas G ′ during the gas treatment operation. By maintaining the temperature of the outlet side portion of G ′ at a predetermined purification temperature, the object to be purified (smear-like combustion by-product and dust) at the outlet part is burned or evaporated, and these substances to be cleaned or burned are burned or evaporated. Is discharged to the discharge path 40 through the rotary switching valve V through the same path as the processed gas G ′ during the gas processing operation together with the purifying gas g ′ after the purifying action, thereby purifying the heat storage material layer 4.

そして、回転式切換弁Vによるガス通過状態の切り換えにより、浄化用ガスgを通風する蓄熱材層4を切り換えることで、各蓄熱材層4に対して上記と同様の浄化運転を順次に実施し、これにより、全ての蓄熱材層4を浄化する。   Then, by switching the gas passage state by the rotary switching valve V, the heat storage material layer 4 that passes the purification gas g is switched to sequentially perform the purification operation similar to the above on each heat storage material layer 4. Thereby, all the heat storage material layers 4 are purified.

また、この浄化運転においては、ガス処理運転の場合と同様に、温度センサsの検出温度tに基づく噴水ノズル5からの冷却水噴射を制御装置Cに実行させ、これにより、浄化作用後の浄化用ガスg′による面間シール部材17及び環状シール部材25の熱損傷を防止する。   Further, in this purification operation, as in the case of the gas processing operation, the control device C is caused to execute the cooling water injection from the fountain nozzle 5 based on the detection temperature t of the temperature sensor s, whereby the purification after the purification action is performed. This prevents thermal damage of the inter-surface seal member 17 and the annular seal member 25 due to the working gas g ′.

以上、本実施形態の蓄熱式ガス処理装置によれば、ガス処理運転時及び浄化運転時のいずれにおいても、回転式切換手段Vにおける面間シール部材17及び環状シール部材25の熱損傷を効果的に防止することができる。   As described above, according to the regenerative gas processing apparatus of the present embodiment, thermal damage to the face-to-face seal member 17 and the annular seal member 25 in the rotary switching means V is effective both during the gas processing operation and during the purification operation. Can be prevented.

そして、ガス処理運転時において処理済ガスG′によるシール部材17,25の熱損傷を防止できることにより、装置に導入する被処理ガスGの温度や燃焼室6での燃焼温度の制限が緩和されて、装置の汎用性及び燃焼処理の処理性能も向上し、更に、両シール部材17,25の交換等のメンテナンスの負担を軽減することができるとともに、シール面において装置の信頼性も向上させることができる。   Further, by preventing thermal damage of the seal members 17 and 25 due to the processed gas G ′ during the gas processing operation, the temperature of the gas G to be processed introduced into the apparatus and the combustion temperature limit in the combustion chamber 6 are alleviated. In addition, the versatility of the apparatus and the processing performance of the combustion treatment can be improved, and further, the burden of maintenance such as replacement of both seal members 17 and 25 can be reduced, and the reliability of the apparatus can be improved on the sealing surface. it can.

また、浄化運転時において浄化作用後の浄化用ガスg′によるシール部材17,25の熱損傷を防止できることにより、浄化作用後の浄化用ガスg′を排出する専用の浄化用ガス放出風路を別途設置せずとも、浄化作用後の浄化用ガスg′を回転式切換弁Vを通じて排出することができ、その回転式切換弁Vによる切り換えにより、各蓄熱材層4に対する浄化運転を能率よく行うことができる。   Further, since the heat damage of the sealing members 17 and 25 due to the purifying gas g ′ after the purifying action can be prevented during the purifying operation, a dedicated purifying gas discharge air passage for discharging the purifying gas g ′ after the purifying action is provided. Even if it is not separately installed, the purifying gas g ′ after the purifying action can be discharged through the rotary switching valve V, and by the switching by the rotary switching valve V, the purification operation for each heat storage material layer 4 is efficiently performed. be able to.

〔第2実施形態〕
図9〜図12は本発明の蓄熱式ガス処理装置の第2実施形態を示し、冷却手段である噴水ノズル5を回転弁体11のガス排出用内部風路28内に設け、排気用開口35に向けて冷却水Wを噴射して、弁座板10aの通気口16を通じて分配器10内の処理済ガスG′を冷却する構成になっている。
[Second Embodiment]
FIGS. 9-12 shows 2nd Embodiment of the thermal storage type gas processing apparatus of this invention, the fountain nozzle 5 which is a cooling means is provided in the gas exhaust internal air path 28 of the rotary valve body 11, and the exhaust opening 35 is shown. The cooling water W is sprayed toward the end to cool the treated gas G ′ in the distributor 10 through the vent hole 16 of the valve seat plate 10a.

噴水ノズル5は、回転弁体11のガス排出用内部風路28において筒状回転軸24から径方向に等間隔で3本延設されていて、筒状回転軸24内に配設された給水路5Aと接続され、給水路5Aを通じて供給される冷却水Wを排気用開口35の全域から分配器10内に冷却水Wが進入するように噴射して、分配器10内の処理済ガスG′を冷却する。   Three fountain nozzles 5 are provided at equal intervals in the radial direction from the cylindrical rotary shaft 24 in the gas discharge internal air passage 28 of the rotary valve body 11, and are provided in the cylindrical rotary shaft 24. The cooling water W connected to the channel 5A and supplied through the water supply channel 5A is injected so that the cooling water W enters the distributor 10 from the entire area of the exhaust opening 35, and the treated gas G in the distributor 10 is injected. ′ Is cooled.

噴水ノズル5及び給水路5Aは、回転弁体11の回転に連動して回転するため、冷却水Wは、気室器13の下方位置の筒状回転軸24に相対回転自在に巻設されている供給部5BにポンプPによって供給され、その供給部5Bから筒状回転軸24の供給部配設位置に形成されている給水路5Aの流入口5aを通じて給水路5Aに流入して、噴水ノズル5から噴射される。   Since the fountain nozzle 5 and the water supply channel 5 </ b> A rotate in conjunction with the rotation of the rotary valve body 11, the cooling water W is wound around the cylindrical rotary shaft 24 below the air chamber 13 so as to be relatively rotatable. The supply portion 5B is supplied by the pump P, and flows from the supply portion 5B into the water supply passage 5A through the inlet 5a of the water supply passage 5A formed at the supply portion disposition position of the cylindrical rotating shaft 24. 5 is injected.

ポンプPは、各蓄熱室3における蓄熱材層4の下方に設けられた温度センサsによる検出温度tに基づいて、制御装置Cにより冷却水Wの送出作動を制御されており、制御装置Cは、複数の温度センサsのうち少なくとも1つの温度センサsの検出温度tが、設定温度ts以上のとき(すなわち、シール部材17,25の熱損傷を招来する恐れのある温度の処理済ガスG′がいずれかの蓄熱室3を通過しているとき)、ポンプPを作動して冷却水Wを噴水ノズル5から噴射させ、かつ、全ての温度センサsの検出温度tが、設定温度ts未満のとき、ポンプPを停止して噴水ノズル5からの冷却水Wの噴射を停止する。   The pump P is controlled to send out the cooling water W by the control device C based on the temperature t detected by the temperature sensor s provided below the heat storage material layer 4 in each heat storage chamber 3. When the detected temperature t of at least one temperature sensor s among the plurality of temperature sensors s is equal to or higher than the set temperature ts (that is, the processed gas G ′ having a temperature that may cause thermal damage to the seal members 17 and 25). Is passing through any one of the heat storage chambers 3), the pump P is operated to inject the cooling water W from the fountain nozzle 5, and the detected temperatures t of all the temperature sensors s are less than the set temperature ts. At this time, the pump P is stopped and the injection of the cooling water W from the fountain nozzle 5 is stopped.

この構成であれば、装置に設ける噴水ノズル5、給水管5a及び開閉弁7の数を減少させることができながら、回転式切換弁Vに設けられている面間シール部材17及び環状シール部材25をそれら両シール部材17,25が熱損傷を起こし易い高温雰囲気下に存在させることを防止できる。   With this configuration, the number of fountain nozzles 5, water supply pipes 5a, and on-off valves 7 provided in the apparatus can be reduced, while the inter-surface seal member 17 and the annular seal member 25 provided in the rotary switching valve V are provided. Can be prevented from being present in a high temperature atmosphere where both of the seal members 17 and 25 are likely to cause thermal damage.

なお、その他の構成は、前記第1実施形態と同一であり、第1実施形態で記載した構成部分と同一構成又は同一機能を有する構成部分には同一番号を付記してそれの説明を省略する。   The other configurations are the same as those in the first embodiment, and the same components as those described in the first embodiment or components having the same functions are denoted by the same reference numerals and description thereof is omitted. .

〔別実施形態〕
次に別実施形態を列記する。
[Another embodiment]
Next, another embodiment will be listed.

上述の第1実施形態では、切換手段として回転式切換弁Vを採用した構成にしていたが、切換手段としては、複数の蓄熱材層4に対して個別に切換弁を設けて、それら複数の切換弁により被処理ガスGを通過させる蓄熱材層4と処理済ガスG′を通過させる蓄熱材層4とを切り換える多弁式の蓄熱式ガス処理装置を採用したものであってもよい。   In the first embodiment described above, the rotary switching valve V is adopted as the switching means. However, as the switching means, the switching valves are individually provided for the plurality of heat storage material layers 4, and the plurality of these switching valves are provided. You may employ | adopt the multi-valve type thermal storage type gas processing apparatus which switches the thermal storage material layer 4 which allows the to-be-processed gas G to pass, and the thermal storage material layer 4 which passes processed gas G 'by a switching valve.

上述の第1及び第2実施形態では、燃焼室6からの処理済ガスG′を冷却する冷却手段として噴水ノズル5を採用し、噴水ノズル5から冷却水Wを処理済ガスG′に対して噴射して、処理済ガスG′を冷却していたが、この構成に限るものではなく、冷風を吹きかける空冷装置や、処理済ガスと冷却用熱媒とを伝熱壁を介して熱交換させる熱交換器等のその他の冷却手段を採用して処理済ガスG′を冷却する構成であってもよく、また、冷却手段として冷却水Wを噴射するノズルを採用する場合、冷却水Wの噴射形態は霧状やシャワー状等、どのような形態を採用してもよい。   In the first and second embodiments described above, the fountain nozzle 5 is employed as a cooling means for cooling the treated gas G ′ from the combustion chamber 6, and the cooling water W is supplied from the fountain nozzle 5 to the treated gas G ′. Although the treated gas G ′ has been cooled by spraying, the present invention is not limited to this configuration, and an air cooling device that blows cold air, or heat exchange between the treated gas and the cooling heat medium via the heat transfer wall. Other cooling means such as a heat exchanger may be used to cool the treated gas G ′. When a nozzle for injecting the cooling water W is used as the cooling means, the cooling water W is injected. Any form such as a mist form or a shower form may be adopted.

また、冷却手段として冷却水Wを噴射するノズルを採用する場合、噴射した冷却水Wを、切換手段におけるシール部材(特に排気用開口35の近傍に位置するシール部材17)に直接かけるようにして、処理済ガスG′と共にシール部材を直接冷却する構成にしてもよい。   Further, when a nozzle for injecting the cooling water W is employed as the cooling means, the injected cooling water W is directly applied to the seal member in the switching means (particularly the seal member 17 located in the vicinity of the exhaust opening 35). The sealing member may be directly cooled together with the treated gas G ′.

上述の第1実施形態では冷却手段としての噴水ノズル5を各蓄熱室3における蓄熱材層4の下部に設け、第2実施形態では噴水ノズル5を回転式切換弁Vにおける回転弁体11のガス排出用内部風路28に設けた構成にしていたが、冷却手段の配設位置は、燃焼室6に対するガス給排風路のうち、蓄熱材層4のそれぞれにおける蓄熱室3の処理済ガスG′の出口から、回転式切換弁Vに至る風路部分(給排路15及び給排室8)、又は、切換手段における処理済ガスG′の入口部分(排気用開口35の部分)であればよい。   In the first embodiment described above, the fountain nozzle 5 as a cooling means is provided below the heat storage material layer 4 in each heat storage chamber 3, and in the second embodiment, the fountain nozzle 5 is a gas of the rotary valve body 11 in the rotary switching valve V. The cooling unit is disposed in the exhaust internal air passage 28. The gas supply / exhaust air passage with respect to the combustion chamber 6 is disposed at the treated gas G in the heat storage chamber 3 in each of the heat storage material layers 4. ′ Outlet to the rotary switching valve V (supply / discharge path 15 and supply / discharge chamber 8) or treated gas G ′ inlet part (portion of the exhaust opening 35) in the switching means. That's fine.

上述の第1実施形態では、各温度センサsによる検出温度tに基づいて、冷却手段を作動状態と非作動状態とに切り換えていたが、冷却手段を作動状態と非作動状態とに切り換える構成はこの構成に限るものではなく、種々の構成を採用してもよい。   In the first embodiment described above, the cooling means is switched between the operating state and the non-operating state based on the temperature t detected by each temperature sensor s. However, the configuration for switching the cooling means between the operating state and the non-operating state is as follows. The present invention is not limited to this configuration, and various configurations may be adopted.

また、燃焼室3から送出される処理済ガスG′の温度を、冷却手段による冷却箇所よりも処理済ガス流れ方向の上流側で温度センサsによって検出し、その検出温度tに基づいて、冷却手段の処理済ガスG′に対する冷却量(例えば、噴水ノズル5からの噴射水量)を調整する構成にしてもよい。   Further, the temperature of the processed gas G ′ delivered from the combustion chamber 3 is detected by the temperature sensor s upstream of the cooling portion by the cooling means in the direction of the processed gas flow, and cooling is performed based on the detected temperature t. You may make it the structure which adjusts the cooling amount (For example, the amount of jet water from the fountain nozzle 5) with respect to processed gas G 'of a means.

そしてまた、複数の冷却手段を切換手段によるガス通過状態の切り換えに伴って切り換わり作動させる連動手段を装備する場合、その連動手段には、前述の第1実施形態で示したように温度検出に基づく冷却手段の切り換わり作動に限らず、種々の切換方式を適用できる。   In addition, when equipped with interlocking means for switching and operating a plurality of cooling means as the gas passage state is switched by the switching means, the interlocking means is used for temperature detection as shown in the first embodiment. Not only the switching operation of the cooling means based but also various switching methods can be applied.

本発明の蓄熱式ガス処理装置の第1実施形態を示す側面図The side view which shows 1st Embodiment of the thermal storage type gas processing apparatus of this invention. 第1実施形態における蓄熱室部分の平面視断面図Plan view sectional drawing of the thermal storage chamber part in 1st Embodiment 第1実施形態における分配器部分の平面視断面図Plan view sectional drawing of the divider | distributor part in 1st Embodiment. 第1実施形態における切換弁部分の側面視断面図Side view sectional drawing of the switching valve part in 1st Embodiment 第1実施形態における切換弁部分の分解平面図Exploded plan view of a switching valve portion in the first embodiment 第1実施形態における切換弁部分の分解斜視図The disassembled perspective view of the switching valve part in 1st Embodiment 第1実施形態における回転弁体部分の分解斜視図The disassembled perspective view of the rotary valve body part in 1st Embodiment 第1実施形態における蓄熱式ガス処理装置の機能説明図Functional explanatory diagram of the regenerative gas processing apparatus in the first embodiment 本発明の蓄熱式ガス処理装置の第2実施形態における切換弁部分を示す側面視断面図Side surface sectional drawing which shows the switching valve part in 2nd Embodiment of the thermal storage type gas processing apparatus of this invention. 第2実施形態における切換弁部分を示す側面視断面図Side view sectional drawing which shows the switching valve part in 2nd Embodiment 第2実施形態における切換弁部分の分解平面図Exploded plan view of the switching valve portion in the second embodiment 第2実施形態における蓄熱式ガス処理装置の機能説明図Functional explanatory diagram of a regenerative gas processing apparatus in the second embodiment

符号の説明Explanation of symbols

3 ガス出入口部
4 蓄熱材層
5 冷却手段
5a 冷却手段
6 燃焼室
7 冷却手段
10a 副弁部材
11 主弁部材
16 通気口
27 被処理ガス風路
28 処理済ガス風路
34 給気用開口
35 排気用開口
C 連動手段
G 被処理ガス
G′ 処理済ガス
P 冷却手段
s 温度センサ
t 検出温度
V 切換手段
W 冷却水
x 対向面部
y 対向面部

3 Gas Inlet / Outlet Port 4 Heat Storage Material Layer 5 Cooling Means 5a Cooling Means 6 Combustion Chamber 7 Cooling Means 10a Sub-valve Member 11 Main Valve Member 16 Vent 27 Treated Gas Air Path 28 Treated Gas Air Path 34 Supply Air Opening 35 Exhaust Opening C Interlocking means G Processed gas G 'Processed gas P Cooling means s Temperature sensor t Detected temperature V Switching means W Cooling water x Opposing surface part y Opposing surface part

Claims (10)

燃焼室に対する複数のガス出入口部のそれぞれに通気性の蓄熱材層を配置し、
これら蓄熱材層のうち先の行程で前記燃焼室から送出される高温の処理済ガスを通過させた蓄熱材層に、次の行程で前記燃焼室へ送る被処理ガスを通過させる形態で、
前記燃焼室への被処理ガスを通過させる蓄熱材層と前記燃焼室からの処理済ガスを通過させる蓄熱材層とを順次に切り換える切換手段を、前記燃焼室に対するガス給排風路に設けてある蓄熱式ガス処理装置であって、
前記ガス給排風路のうち、前記蓄熱材層のそれぞれにおける処理済ガスの出口から前記切換手段に至る風路部分、又は、前記切換手段における処理済ガスの入口部分において前記燃焼室からの処理済ガスを冷却する冷却手段が設けられている蓄熱式ガス処理装置。
Arranging a breathable heat storage material layer in each of a plurality of gas inlets and outlets to the combustion chamber,
Of these heat storage material layers, in the form in which the gas to be processed to be sent to the combustion chamber is passed through the heat storage material layer through which the high-temperature processed gas sent from the combustion chamber is passed in the previous step,
The gas supply / exhaust air passage for the combustion chamber is provided with switching means for sequentially switching the heat storage material layer through which the gas to be processed to the combustion chamber passes and the heat storage material layer through which the treated gas from the combustion chamber passes. A heat storage type gas processing device,
Of the gas supply / exhaust air passages, the processing from the combustion chamber in the air passage portion from the treated gas outlet to the switching means in each of the heat storage material layers or the treated gas inlet portion in the switching means. A regenerative gas processing apparatus provided with cooling means for cooling the spent gas.
互いの対向面どうしを近接させた状態で相対回転する主弁部材と副弁部材とを設け、
その副弁部材の前記主弁部材に対する対向面部に、前記ガス出入口部のそれぞれと各別に連通する複数の通気口を、前記相対回転の回転軸心周りで回転方向に並べて形成し、
前記主弁部材に被処理ガス風路と処理済ガス風路とを区画した状態で形成するとともに、
前記主弁部材の前記副弁部材に対する対向面部に、前記被処理ガス風路の風路口である給気用開口と前記処理済ガス風路の風路口である排気用開口とを、それら給気用開口と排気用開口とが前記相対回転に伴って複数の前記通気口に対して順次対向し、かつ、同一の前記通気口に対して同時に対向しない配置にして、前記回転軸芯周りで回転方向に並べて形成し、
それら主弁部材と副弁部材とを、それらの対向面部間にシール部材を介在させた状態で相対回転させることにより、前記蓄熱材層のそれぞれを、前記燃焼室への被処理ガスを通過させる状態と前記燃焼室からの処理済ガスを通過させる状態とに切り換える構成にし、
これら主弁部材及び副弁部材により構成される回転式切換弁を前記切換手段にしてある請求項1記載の蓄熱式ガス処理装置。
A main valve member and a sub-valve member that rotate relative to each other in a state where the opposing surfaces are close to each other,
A plurality of vents communicating with each of the gas inlet / outlet portions are arranged in a rotational direction around the rotation axis of the relative rotation on a surface of the sub valve member facing the main valve member,
The main valve member is formed in a state in which a gas gas passage to be treated and a treated gas air passage are partitioned,
On the surface of the main valve member facing the sub-valve member, an air supply opening which is an air passage opening of the treated gas air passage and an exhaust opening which is an air passage opening of the treated gas air passage are supplied. The openings for exhaust and the openings for exhaust are arranged so as to sequentially face the plurality of vents according to the relative rotation and do not face the same vents at the same time, and rotate around the rotation axis. Form side by side,
The main valve member and the sub-valve member are rotated relative to each other with the seal member interposed between the opposing surface portions, thereby allowing the gas to be treated to pass through the combustion chamber through each of the heat storage material layers. A state and a state where the treated gas from the combustion chamber is allowed to pass through,
The regenerative gas processing apparatus according to claim 1, wherein a rotary switching valve constituted by the main valve member and the sub valve member is used as the switching means.
前記冷却手段が、前記燃焼室からの処理済ガスに対して冷却水を噴射することで処理済ガスを冷却する構成になっている請求項1又は2記載の蓄熱式ガス処理装置。   The regenerative gas processing apparatus according to claim 1 or 2, wherein the cooling means is configured to cool the processed gas by injecting cooling water to the processed gas from the combustion chamber. 前記冷却手段が、前記排気用開口の近傍に位置する前記シール部材に向けて冷却水を噴射することで、前記燃焼室からの処理済ガスと共に排気用開口の近傍の前記シール部材を冷却する構成になっている請求項3記載の蓄熱式ガス処理装置。   A configuration in which the cooling means cools the seal member in the vicinity of the exhaust opening together with the processed gas from the combustion chamber by injecting cooling water toward the seal member in the vicinity of the exhaust opening. The regenerative gas processing apparatus according to claim 3. 前記冷却手段が、前記主弁部材の処理済ガス風路内で前記排気用開口に向かって冷却水を噴射することで、前記燃焼室からの処理済ガスを冷却する構成になっている請求項3又は4記載の蓄熱式ガス処理装置。   The cooling means is configured to cool the treated gas from the combustion chamber by injecting cooling water toward the exhaust opening in the treated gas air passage of the main valve member. The regenerative gas processing apparatus according to 3 or 4. 前記蓄熱材層のそれぞれにおける処理済ガスの出口から前記切換手段に至る並列状態の前記風路部分の各々に、又は、前記蓄熱材層に対して各別に装備された複数の前記切換手段のそれぞれにおける処理済ガス入口部分の各々に設けられた複数の前記冷却手段を、前記切換手段によるガス通過状態の切り換えに伴って切り換わり作動させる連動手段が設けられてある請求項1〜4のいずれか1項に記載の蓄熱式ガス処理装置。   Each of the plurality of switching means equipped separately for each of the air passage portions in parallel state extending from the treated gas outlet to the switching means in each of the heat storage material layers, or for each of the heat storage material layers. 5. Interlocking means for switching and operating the plurality of cooling means provided at each of the treated gas inlet portions in accordance with switching of the gas passage state by the switching means is provided. The regenerative gas processing apparatus according to item 1. 前記燃焼室から送出される処理済ガスの温度を、前記冷却手段による冷却箇所よりも処理済ガス流れ方向の上流側で検出する温度センサを設け、
その温度センサによる検出温度に基づいて、前記冷却手段を作動させる構成にしてある請求項1〜6のいずれか1項に記載の蓄熱式ガス処理装置。
A temperature sensor is provided for detecting the temperature of the processed gas delivered from the combustion chamber on the upstream side in the processed gas flow direction from the cooling portion by the cooling means;
The regenerative gas processing apparatus according to any one of claims 1 to 6, wherein the cooling unit is configured to operate based on a temperature detected by the temperature sensor.
前記燃焼室から送出される処理済ガスの温度を、前記冷却手段による冷却箇所よりも処理済ガス流れ方向の上流側で検出する温度センサを設け、
その温度センサによる検出温度に基づいて、前記冷却手段による冷却量を調整する構成にしてある請求項1〜7のいずれか1項に記載の蓄熱式ガス処理装置。
A temperature sensor is provided for detecting the temperature of the processed gas delivered from the combustion chamber on the upstream side in the processed gas flow direction from the cooling portion by the cooling means;
The regenerative gas processing apparatus according to any one of claims 1 to 7, wherein a cooling amount by the cooling means is adjusted based on a temperature detected by the temperature sensor.
請求項1〜8のいずれか1項に記載の蓄熱式ガス処理装置における蓄熱材層浄化方法であって、
前記燃焼室で加熱した浄化用ガスの通風により前記蓄熱材層における処理済ガスの出口側部分の温度を所定の浄化温度に保つ状態にして、蓄熱材層における処理済ガスの出口側部分に蓄積した被浄化物を燃焼又は蒸発させる蓄熱材層浄化方法。
It is the thermal storage material layer purification method in the thermal storage-type gas processing apparatus of any one of Claims 1-8,
The temperature of the outlet side portion of the treated gas in the heat storage material layer is maintained at a predetermined purification temperature by ventilation of the purification gas heated in the combustion chamber, and accumulated in the outlet side portion of the treated gas in the heat storage material layer The heat storage material layer purification method which burns or evaporates the to-be-purified material.
前記浄化用ガスを前記蓄熱材層に通風する浄化運転を、前記切換手段によるガス通過状態の切換により複数の前記蓄熱材層に対して順次に実施する請求項9記載の蓄熱材層浄化方法。

The heat storage material layer purification method according to claim 9, wherein the purification operation of passing the purification gas through the heat storage material layer is sequentially performed on the plurality of heat storage material layers by switching the gas passage state by the switching unit.

JP2004284326A 2004-06-28 2004-09-29 Operation method of regenerative gas treatment device and regenerative gas treatment device used in the operation method Expired - Fee Related JP4526912B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004284326A JP4526912B2 (en) 2004-09-29 2004-09-29 Operation method of regenerative gas treatment device and regenerative gas treatment device used in the operation method
CN2009101491141A CN101603603B (en) 2004-06-28 2005-06-28 Rotary directional control valve and heat accumulating gas processing system
PCT/JP2005/011793 WO2006001437A1 (en) 2004-06-28 2005-06-28 Heat storage type gas processing apparatus
CN2009101491156A CN101603604B (en) 2004-06-28 2005-06-28 Rotary directional control valve and heat accumulating gas processing system
US11/630,933 US7740026B2 (en) 2004-06-28 2005-06-28 Thermal storage type gas treating apparatus
KR1020127012009A KR101185512B1 (en) 2004-06-28 2005-06-28 Heat storage type gas processing apparatus
KR1020127012008A KR101220126B1 (en) 2004-06-28 2005-06-28 Heat storage type gas processing apparatus
KR1020067026836A KR101185511B1 (en) 2004-06-28 2005-06-28 Heat storage type gas processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004284326A JP4526912B2 (en) 2004-09-29 2004-09-29 Operation method of regenerative gas treatment device and regenerative gas treatment device used in the operation method

Publications (2)

Publication Number Publication Date
JP2006097967A true JP2006097967A (en) 2006-04-13
JP4526912B2 JP4526912B2 (en) 2010-08-18

Family

ID=36237963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004284326A Expired - Fee Related JP4526912B2 (en) 2004-06-28 2004-09-29 Operation method of regenerative gas treatment device and regenerative gas treatment device used in the operation method

Country Status (1)

Country Link
JP (1) JP4526912B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210259A (en) * 2008-02-29 2009-09-17 Schedler Johannes Exhaust gas treating apparatus and treating method
JP2011099592A (en) * 2009-11-04 2011-05-19 Scivax Kk Flow channel switch valve, and heat exchanger and gas treatment device using the same
JP2013194948A (en) * 2012-03-16 2013-09-30 Taikisha Ltd Heat accumulating gas processor
JP2013204915A (en) * 2012-03-28 2013-10-07 Taikisha Ltd Operation method for heat storage type gas treatment device and heat storage type gas treatment device
JP2014181881A (en) * 2013-03-21 2014-09-29 Taikisha Ltd Heat storage type gas treatment device and method for operating heat storage type gas treatment device
CN110274256A (en) * 2019-06-13 2019-09-24 岳阳恒盛石化科技有限公司 A kind of nothing alters wind regenerative air preheater
KR102495639B1 (en) * 2022-02-21 2023-02-06 주식회사 조일플랜트 Rotary type gas distribution apparatus
CN115899725A (en) * 2023-02-03 2023-04-04 山西鑫瑞华机电设备有限公司 External RTO equipment of switching-over valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166124A (en) * 1994-10-14 1996-06-25 Toyota Motor Corp Industrial furnace, burner for heat storage combustion and combustion method for the industrial furnace
JPH1061940A (en) * 1996-08-22 1998-03-06 Chugai Ro Co Ltd Distribution valve for heat storage combustion apparatus
JPH116616A (en) * 1997-06-17 1999-01-12 Osaka Gas Co Ltd Metal deposition preventing method for heat storage type alternating incinerator
JP2001074225A (en) * 1999-09-03 2001-03-23 Fueroo:Kk Regenerative treating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166124A (en) * 1994-10-14 1996-06-25 Toyota Motor Corp Industrial furnace, burner for heat storage combustion and combustion method for the industrial furnace
JPH1061940A (en) * 1996-08-22 1998-03-06 Chugai Ro Co Ltd Distribution valve for heat storage combustion apparatus
JPH116616A (en) * 1997-06-17 1999-01-12 Osaka Gas Co Ltd Metal deposition preventing method for heat storage type alternating incinerator
JP2001074225A (en) * 1999-09-03 2001-03-23 Fueroo:Kk Regenerative treating device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210259A (en) * 2008-02-29 2009-09-17 Schedler Johannes Exhaust gas treating apparatus and treating method
JP2011099592A (en) * 2009-11-04 2011-05-19 Scivax Kk Flow channel switch valve, and heat exchanger and gas treatment device using the same
JP2013194948A (en) * 2012-03-16 2013-09-30 Taikisha Ltd Heat accumulating gas processor
JP2013204915A (en) * 2012-03-28 2013-10-07 Taikisha Ltd Operation method for heat storage type gas treatment device and heat storage type gas treatment device
JP2014181881A (en) * 2013-03-21 2014-09-29 Taikisha Ltd Heat storage type gas treatment device and method for operating heat storage type gas treatment device
CN110274256A (en) * 2019-06-13 2019-09-24 岳阳恒盛石化科技有限公司 A kind of nothing alters wind regenerative air preheater
CN110274256B (en) * 2019-06-13 2024-04-30 岳阳恒盛石化科技有限公司 Heat accumulating type air preheater without wind channeling
KR102495639B1 (en) * 2022-02-21 2023-02-06 주식회사 조일플랜트 Rotary type gas distribution apparatus
CN115899725A (en) * 2023-02-03 2023-04-04 山西鑫瑞华机电设备有限公司 External RTO equipment of switching-over valve

Also Published As

Publication number Publication date
JP4526912B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
WO2006001437A1 (en) Heat storage type gas processing apparatus
JP3866919B2 (en) Regenerative heat source fully integrated web dryer
WO2010024321A1 (en) Exhaust recycle system
US9726373B2 (en) Heat storage type waste gas purification apparatus
JP4526912B2 (en) Operation method of regenerative gas treatment device and regenerative gas treatment device used in the operation method
EP1290392B1 (en) Switching valve and a regenerative thermal oxidizer including the switching valve
JP4121457B2 (en) Module VOC containment chamber for two-chamber regenerative oxidizer
US6899121B2 (en) Switching valve seal
JP4881925B2 (en) Exhaust gas recycling system
JPH09217918A (en) Heat accumulation type gas treating device
KR20010013834A (en) Trap device and trap system
JP3932382B2 (en) Thermal storage combustion processing equipment for volatile organic compounds
JP3917403B2 (en) Rotary distribution type heat storage combustion equipment
JP2007183019A (en) Heat storage type deodorizing device
JP2003074826A (en) Thermal storage combustion device
JP3583024B2 (en) Thermal storage deodorizer
JP4204499B2 (en) Rotary switching valve and heat storage type gas processing apparatus using the same
JP3893532B2 (en) Regenerative combustion gas treatment device
JP2004069164A (en) Deodorizing device
JP2023085615A (en) Three-way valve, exhaust gas treatment apparatus, exhaust gas treatment system and exhaust gas treatment method
JP2001355979A (en) Heat storage type deodorizing apparatus
JP2000193227A (en) Combustion type deodorizer
JP2001153331A (en) Incinerator of air polluting toxic substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees