JP3916062B2 - Electric compressor - Google Patents

Electric compressor Download PDF

Info

Publication number
JP3916062B2
JP3916062B2 JP2002199784A JP2002199784A JP3916062B2 JP 3916062 B2 JP3916062 B2 JP 3916062B2 JP 2002199784 A JP2002199784 A JP 2002199784A JP 2002199784 A JP2002199784 A JP 2002199784A JP 3916062 B2 JP3916062 B2 JP 3916062B2
Authority
JP
Japan
Prior art keywords
refrigerant
holder
protective device
compressor
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002199784A
Other languages
Japanese (ja)
Other versions
JP2004044408A (en
Inventor
徹哉 今泉
育雄 水野
謙治 小田
秀樹 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ubukata Industries Co Ltd
Original Assignee
Ubukata Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ubukata Industries Co Ltd filed Critical Ubukata Industries Co Ltd
Priority to JP2002199784A priority Critical patent/JP3916062B2/en
Publication of JP2004044408A publication Critical patent/JP2004044408A/en
Application granted granted Critical
Publication of JP3916062B2 publication Critical patent/JP3916062B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【0001】
【産業上の利用分野】
本発明はエアコンや冷凍機などの冷媒圧縮に使用される保護装置を取付けられた冷媒圧縮用電動圧縮機に関するものであり、保護装置が冷媒温度をより効率よく検知するための構造を提唱するものである。
【0002】
【従来の技術】
従来からエアコンや冷凍機などの冷凍サイクルに使用される電動圧縮機において、過負荷による過電流や内部異常による発熱などを検出し、焼損などの危険から電動機を保護するための保護装置を取りつけたものが使用されている。この保護装置としては、電動圧縮機が有する圧力容器の外側に取りつけるものと圧力容器に内蔵するものとがあるが、冷媒の温度変化に対する応答性のよい内蔵型の方が保護性能等の上から有利である。
【0003】
このような保護装置を内蔵した電動圧縮機においては、従来は保護装置を電動機のコイルエンド上に縛り紐などで取り付けていた。この保護装置は電動圧縮機の圧力容器内の圧縮冷媒中に曝されるので金属製の気密容器構造とされ、気密容器内部にバイメタルなどの熱応動板による接点機構を有している。この接点機構は周囲からの熱を受けるとともに、電動機への通電電流を流す事によって内部の構成部品が自己発熱するようにされており、周囲の過熱や過負荷状態などにおける電流増加が発生すると熱応動板の温度が上昇して動作温度にまで達し、接点間を開放するようにされている。
【0004】
このように保護装置をコイルエンド上に取り付ける場合には、過負荷状態などにおいて電流上昇により保護装置の内部発熱量が増加すると同時にコイルの温度も上昇することにより保護装置に伝えられる熱も増加するので、異常を素早く検知することができる。しかしコイルエンド上に紐で縛り固定する作業は機械化が難しく製造作業が煩雑になるなどの問題がある。また常にコイルエンドからの熱を受けているので保護装置自体の通常温度も高くなるので熱応動板の動作温度も比較的に高く設定せねばならず、通常運転時と異常時の温度差を大きく取る事が難しくなる。このように通常運転時と異常時の温度差を充分に取る事ができないと、許容されるべき短時間の過負荷などによる一時的な電流増加にも過敏に反応するため、特に通常電流が大きいものやコイルの発熱量が多いものにおいては保護装置として使用しづらいものとなっていた。
【0005】
これに対して保護装置の取り付けを別の構成とした電動圧縮機の例として、圧力容器の内面や導電端子上に取付金具や端子等によって保護装置を取り付けるものが提案されている。このように保護装置を圧力容器の内面に取り付ける場合には、紐などで縛りつける場合と比較して取付作業を簡素化できる。また冷媒により冷却される構造となるので、コイル上に取りつけられた場合と比較して同じ保護装置でも比較的大きな電流で使用することができる。
【0006】
さらにこの場合には取付端子などによって保護装置の取付姿勢が決まり、それによって保護装置の金属製気密容器などの充電部分が圧縮機の金属部分などに近接する位置も決まる。そのため容器全体を絶縁体で覆う必要はなく、必要な部分だけを覆うようにして気密容器が冷媒に直接接触する面積を増やすことができる。圧力容器内を流れる吐出冷媒の温度は電動機のコイルよりも低く、コイルを冷却しながら吐出管方向へと流れている。つまり冷媒はコイルに加熱されているのでその下流に保護装置を配置することで、冷媒を介してコイルの過熱を検出することができる。
【0007】
また通常運転時に保護装置の自己発熱による熱を冷媒が奪って保護装置を冷却することで熱応動板が動作温度に至らないように設定しておくことにより、過電流による内部発熱量の増加や冷媒の温度上昇だけでなく、漏洩などによって冷媒が減少した場合にも保護装置が充分に冷却されなくなるので保護装置は動作し、電動機への通電を遮断することができる。
【0008】
【発明が解決しようとする課題】
しかしながら従来の保護装置の取付けにおいては、保護装置は圧力容器中にあり冷媒に曝されてはいるものの、必ずしも冷媒の流れを考慮されたものではないので、冷媒との熱交換と言う点においては充分に効率が良いとは言いきれない面があった。そこで本発明は保護装置と冷媒の熱交換関係を向上させた構造を有する電動圧縮機を提案するものである。
【0009】
【課題を解決するための手段】
本発明の電動圧縮機は、圧縮機からの吐出冷媒が圧力容器中を流通するいわゆる高圧式の電動圧縮機において、電動機と吐出管との間に保護装置を備え、この保護装置は金属製の気密容器を持つプロテクタ本体とそれを収納するホルダからなり、この保護装置のホルダを冷媒通路としたことを特徴としている。
【0010】
本発明によれば圧縮機から吐出され電動機を冷却した後の冷媒が、保護装置のホルダ内を流れることでプロテクタ本体に直接当るので、冷媒とプロテクタ本体との間の熱交換関係が向上する。そのため圧縮機の異常や電動機への過電流などによって冷媒が加熱されると、プロテクタ本体はその温度上昇を確実に検出することができる。
【0011】
また第2の発明は、保護装置のホルダを圧力容器の吐出管に接続し、冷媒がこのホルダ内を通って吐出管へ流れて行くようにしたことを特徴とする。本発明によれば保護装置のホルダが実質的に吐出管の一部となるので循環する冷媒は必ず保護装置内を通りプロテクタ本体と接触するので効率良くプロテクタと冷媒の熱交換をすることができる。
【0012】
また第3の発明は、圧力容器内には冷媒通路となる貫通孔を有した隔壁が設けられ、保護装置はこの隔壁上に配置されるとともに、保護装置のホルダが前記貫通孔に連通され、冷媒が直接ホルダ内に流入することを特徴としている。
【0013】
本発明によれば保護装置を隔壁に配置したことにより保護装置の取付けが容易になるとともに、冷媒を確実にホルダ中に流入させることができるので冷媒とプロテクタ本体との熱交換関係を向上することができる。
【0014】
さらに第4の発明の特徴は、保護装置のホルダ内に複数の冷媒通路を設け、各冷媒通路を通る冷媒がそれぞれプロテクタ本体の違う面に当るようにすることにより、特にプロテクタの流路下流側で冷媒が滞留することを抑えプロテクタ本体に全面に亘って効率良く接触するようにしたことにある。
【0015】
【発明の実施の形態】
以下、図を参照しながら本発明の電動圧縮機について説明する。この電動圧縮機1は例えばエアコンなどに使用される冷媒圧縮用のものであり、金属製の圧力容器2の内部に電動機3と圧縮機4が封入されている。圧力容器2には冷媒の吸入管5と吐出管6がそれぞれ容器を貫通して設けられており、吸入管5は直接圧縮機4に接続されている。この電動圧縮機は所謂高圧式であり、図示しない熱交換機などから吸入管5を通って吸入された冷媒は、圧縮機4によって圧縮されて圧力容器内に吐出される。そしてこの冷媒は電動機2の隙間を通って電動機の熱を奪いながら吐出管6を通して再び膨張弁や熱交換機などを含む冷凍サイクルに送られる。
【0016】
電動機3は容器に固定された固定子3Aと回転子3Bからなり、回転子3Bは駆動軸7で圧縮機4と接続されている。また駆動軸7の圧縮機とは逆の端部は軸受け板8によって支持されている。この軸受け板8はその中央に軸受け8Aを有して駆動軸7の端部を回転可能に保持する構造とされており、また冷媒や給電用のリード線が通る孔が設けられている。また軸受け8Aにはオイルポンプ9が配置され、圧力容器内に封入された潤滑油10を軸受けや圧縮機などの摺動部へ送っている。
【0017】
本発明においては吐出管6の圧力容器における開口部上に保護装置11が配置されている。この保護装置11は図2及び図3に示す様に、金属製の気密容器中にバイメタルなどの熱応動板による開閉機構を有するプロテクタ本体12と、このプロテクタ本体12を保持するための合成樹脂製の電気絶縁性ホルダから構成される。このホルダは円筒形の外部ホルダ13と内部ホルダ14からなり、外部ホルダ13の一端から円筒部13A内にプロテクタ12と内部ホルダ14が挿入されて保護装置11が構成されている。外部ホルダ13の他端には貫通孔13Bが設けられプロテクタ12の端子が挿通されているとともに、その円筒部13Aには複数の開口部13Cが設けられている。また内部ホルダ14は円筒部14Aの一端に複数の腕状部14Bが設けられ、外部ホルダ13内部で湾状部14Bの先端でプロテクタ12を保持するとともに冷媒の通路を確保している。
【0018】
この保護装置11は電動圧縮機1の圧力容器2の内面に取りつけられるものであり、この実施例では圧力容器2に固定された取付金具15によって外部ホルダ13の保持部13Dを保持することで保護装置11が固定されている。さらに保護装置11を吐出管6の開口部に取り付けられており、そのため圧力容器2中の冷媒は保護装置11のホルダ内を通ってから吐出管6へと導かれることになる。この実施例において冷媒は、図2に点線で示すように外部ホルダ13の開口部13Cを通り、さらに内部ホルダ14の腕状部14Bの間を通って内部ホルダ13の円筒部内に流入する。ここで外部ホルダ13の開口部13Cの位置をプロテクタ12の容器の少なくとも一部が直接露出する位置とすることにより、開口部13Cからホルダー内に流入した冷媒はプロテクタ12の金属表面に確実にあたることになる。
【0019】
この実施例の電動機3は三相誘導電動機であり、プロテクタ12に設けられた端子12A、12B及び12Cはそれぞれ接続線16を介して電動機3のコイルに接続されている。さらに電動機のコイルはリード線17を介して密閉端子18に接続され、圧力容器外部の電源と接続可能にされている。
【0020】
次にこの電動圧縮機1の動作について説明する。圧力容器2内の電動機3が回転を始めると駆動軸7を介して圧縮機4が駆動される。圧縮機4には冷媒の吸入管5が直接接続されており、圧縮機で圧縮された冷媒は圧力容器2内に吐出される。この吐出冷媒は電動機の回転子と固定子の隙間及び圧力容器内面と固定子の隙間を通ることで電動機3の熱を奪い冷却しながら圧力容器内を縦断し、吐出管6から図示しない熱交換器等へ送られる。
【0021】
本実施例においては保護装置11で吐出管6の開口部を覆い、保護装置のホルダ内を吐出管と事実上直結することによって、より多くの冷媒が保護装置内を通過するようにされている。さらに保護装置11内に導入された冷媒がプロテクタ本体12に接触しながら通過するようにしたことにより、通常運転中にはプロテクタ本体12を常に効率よく冷却することができる。
【0022】
具体的には図2に点線で示すように、外部ホルダ13の開口部13Cからホルダー内に流入した冷媒はプロテクタ12の容器表面に接触して熱交換を行う。さらに内部ホルダ14の腕状部14B間を通った冷媒は内部ホルダの円筒部14A内部を通って吐出管6から図示しない外部の熱交換器などに送られる。ここでプロテクタ12と冷媒が熱交換する際に、通常運転時には冷媒がプロテクタの熱を奪うので熱交換効率が良い本実施例においては従来のものよりも大きな定格電流を流すことができるようになる。また過電流等によって電動機3のコイル温度及びプロテクタ12の内部発熱が上昇した場合はもちろん、圧縮機の摩擦増大などにより冷媒温度が上昇した場合や冷媒漏れによる冷却能力の減少によってもプロテクタは動作温度に達するので確実に電動機への通電を遮断することができる。
【0023】
このように本実施例の電動圧縮機においては、圧力容器中に配置された保護装置を吐出管の端部に実質的に接続したことにより、圧縮機から吐出され電動機との熱交換をした後の冷媒がプロテクタに効率良く接触し熱交換関係を良好にすることができる。そのため通常運転時において保護装置はつねに効率良く冷却され、同一の動作温度のものを使用した場合であっても従来のものよりも運転電流の高い電動圧縮機に使用することが可能になる。また冷媒は圧縮機及び電動機を経て保護装置に達するので冷媒温度の上昇からこれらの機器の異常を検出することができる。
【0024】
従来は保護装置を冷媒の流れの中に配置しても冷媒の流れをコントロールしてはいなかったので冷媒とプロテクタ本体との接触量が充分あるとは限らず効率的な熱交換ができない可能性もあったが、本発明によれば保護装置のホルダを冷媒通路とし、流通する冷媒をこのホルダに集めて流す様にしたことにより、冷媒が効率的にプロテクタ本体の周囲に接触して熱交換関係が極めて良くなる。
【0025】
次に本発明の電動圧縮機における他の実施例について図4乃至図9を参照して説明する。なお前述の実施例と同一の部分には同一の記号を付してその詳細な説明は省略する。本実施例の電動圧縮機21も前述の例と同様に金属製の圧力容器2の内部に電動機3と圧縮機4を備えており、この電動機と圧縮機は駆動軸7を介して連結されている。駆動軸7の圧縮機とは逆の端部は軸受け板8の中央に設けられた軸受け8Aによって支持されている。この軸受け板8はほぼ容器内部に沿った円板状で圧力容器内を分ける隔壁を成しており、また図8に示す様に円板部分には冷媒や給電用のリード線が通る孔8B、8C及び8Dが設けられている。
【0026】
本実施例においては軸受け板8上に保護装置31が配置されている。この保護装置31は前述の実施例と同様に金属製の気密容器中にバイメタルなどの熱応動板による開閉機構を有するプロテクタ本体32を有し、このプロテクタ本体12を保持するための合成樹脂製の電気絶縁性ホルダから構成される。ホルダはさらに外部ホルダ33と内部ホルダ34からなり、筒状の内部ホルダ34にプロテクタ本体32を組み合わせてから外部ホルダ33を被せている。また内部ホルダ34に設けられた保持部34Aを外部ホルダ33の取付孔33Aに弾性的に嵌め込むことによって各ホルダとプロテクタ本体32は一体化されて保護装置31を構成する。さらに外部ホルダ33には端子を通すための貫通孔33Bが設けられており、プロテクタ本体32の端子32A、32B、32Cが挿通されている。
【0027】
外部ホルダ33はプロテクタ本体32を収納する収納部33Cと冷媒を導くための通路部33Dからなり、収納部33Cと通路部33Dは内部空間を連接されている。またこの実施例においては収納部33Cの側面に固定用の貫通孔を穿たれたフランジ33E、33Fが設けられており、保護装置31はネジ止めなどの方法で軸受け板8上に固定される。
【0028】
軸受け板8には前述した様に冷媒通路となる複数の貫通孔が開いており、保護装置31はこの貫通孔に被せるように配置されている。実施例では図9に示す様に、3個開いている貫通孔の内、冷媒通路となる2箇所の孔8Bと8Cに保護装置31がホルダを被せるようにして取付けられている。さらに残る貫通孔8Dには電動機3を外部の電源に密閉端子18を介して接続するリード線17や、保護装置を接続するための接続線16が挿通され(図示省略)、これらの接続線16とリード線17は電動機3の巻線に接続されている。
【0029】
冷媒は軸受け板8を通過する際には圧力容器内面との隙間及び貫通孔8B、8C、8Dを通過する。本発明においては保護装置31で貫通孔8B、8Cを覆うことにより保護装置の外部ホルダ33を冷媒通路とすることで、より多くの冷媒が保護装置内を通過するようにされている。さらに保護装置内に導入された冷媒がプロテクタ本体32に接触しながら通過するようにしたことにより、通常運転中にはプロテクタ本体32を常に効率よく冷却することができる。
【0030】
ここで冷媒は図5に点線で示すように軸受け板8の貫通孔8Cから内部ホルダ34内に導入され、プロテクタ本体32の金属容器に当たる。さらに冷媒は容器の外周部に接触しながら外部ホルダ34内面とプロテクタ本体32との隙間を通って外部ホルダ33の収納部33C内に抜け、貫通孔33Bから圧力容器内に吐出されて吐出管6へ向かう。また軸受け板8の貫通孔8Bから外部ホルダ33の通路部33D内へと導入された冷媒は、収納部33Cに流れこんでプロテクタ本体32の端子側表面に沿って接しながら貫通孔33Bへと抜け、吐出管6へ向かう。
【0031】
ここで本実施例においては外部ホルダ内に内部ホルダ34からプロテクタ32の金属容器に接触しさらに容器の外周部を通る冷媒通路と、外部ホルダ33の通路部33Dからプロテクタ32の端子側表面に沿って流れる冷媒通路をが設けられている。このように複数の冷媒通路を設け、各冷媒通路を通る冷媒がそれぞれプロテクタ本体の違う面に当るようにしたことにより、プロテクタ周囲における冷媒の滞留を抑え、プロテクタのほぼ全面に冷媒が接触するようになり効率良く熱交換することができるようになる。
【0032】
なお、上述した実施例においては密閉形電動圧縮機を例に説明したが、高圧式の構造であれば例えば半密閉形の電動圧縮機であってもよく、また電動機との熱交換後の冷媒を流通させることができるのであれば実施例の形態に限るものではない。
【0033】
【発明の効果】
以上述べた様に、本発明の電動圧縮機によれば、取り付けられた保護装置のホルダを冷媒通路としたことにより、冷媒とプロテクタ本体の熱交換関係が良好になる。そのため通常運転時にはプロテクタ本体は冷媒によって効率良く冷却されるようになり従来のものよりも通電電流を増加することができるので、従来のものよりも一回り小型の保護装置を使用することができ電動圧縮機全体を小型化することができる。さらに保護装置を吐出管開口部や容器内を分ける隔壁の孔に配置することにより、冷媒をより多くホルダ内に流すとともにプロテクタと冷媒がより効率的に熱交換できるようにすることができる。
【0034】
またホルダ内に複数の冷媒通路を設けそれぞれの通路を通った冷媒がプロテクタ本体の違う面にそれぞれ別の方向から当たる様にしたことにより、プロテクタ本体の下流側における冷媒が滞留する部分の発生を抑え、プロテクタ本体に全面に亘って冷媒が流れる様にして冷媒とプロテクタが効率良く接触させることができる。そのため、過電流によりプロテクタ内部の発熱量が増加した場合はもちろん、冷媒の過熱や冷媒量の減少によりプロテクタの熱が奪われなくなった場合にもプロテクタの温度は上昇して確実に接点機構を動作させることができる。そのため、保護装置の動作をより確実なものとすることができる。
【図面の簡単な説明】
【図1】本発明の電動圧縮機の一実施例を示す断面図
【図2】図1の電動圧縮機における保護装置の取付けを示す拡大断面図
【図3】図2の保護装置を説明するための分解斜視図
【図4】本発明の電動圧縮機における他の実施例を示す断面図
【図5】図4の電動圧縮機における保護装置の取付けを示す拡大断面図
【図6】図5の保護装置を示す斜視図
【図7】図6の保護装置を説明するための分解斜視図
【図8】図4の電動圧縮機を説明するための断面図
【図9】図8に保護装置を取るつけた状態を示す断面図
【符号の説明】
1、21:電動圧縮機
2:圧力容器
3:電動機
4:圧縮機
5:吸入管
6:吐出管
7:駆動軸
8:軸受け板(隔壁)
10:潤滑油
11、31:保護装置
12、32:プロテクタ本体
13、33:外部ホルダ
14、34:内部ホルダ
[0001]
[Industrial application fields]
The present invention relates to an electric compressor for compressing a refrigerant to which a protection device used for refrigerant compression such as an air conditioner or a refrigerator is attached, and proposes a structure for the protection device to detect the refrigerant temperature more efficiently. It is.
[0002]
[Prior art]
Conventionally, in electric compressors used in refrigeration cycles such as air conditioners and refrigerators, an overcurrent due to overload or heat generation due to internal abnormality was detected, and a protective device was installed to protect the motor from dangers such as burning. Things are used. There are two types of protective devices, one that is attached to the outside of the pressure vessel of the electric compressor and one that is built in the pressure vessel. It is advantageous.
[0003]
In an electric compressor incorporating such a protection device, conventionally, the protection device is attached to the coil end of the motor with a string or the like. Since this protective device is exposed to the compressed refrigerant in the pressure vessel of the electric compressor, it has a metal hermetic container structure, and has a contact mechanism using a thermally responsive plate such as a bimetal inside the hermetic vessel. This contact mechanism is designed to receive heat from the surroundings and to allow the internal components to self-heat by passing an energizing current to the motor. When current increases due to ambient overheating or overload, The temperature of the response plate rises to reach the operating temperature, and the contacts are opened.
[0004]
When the protective device is mounted on the coil end in this way, the heat generated by the protective device increases due to an increase in current in an overload state or the like, and at the same time, the heat transmitted to the protective device increases as the coil temperature also increases. Therefore, it is possible to detect abnormalities quickly. However, the work of tying and fixing on the coil end has problems such as difficulty in mechanization and complicated manufacturing work. In addition, since the heat from the coil end is always received, the normal temperature of the protective device itself also increases, so the operating temperature of the thermal response plate must be set relatively high, and the temperature difference between normal operation and abnormal conditions is increased. It becomes difficult to take. In this way, if the temperature difference between normal operation and abnormal condition cannot be taken sufficiently, it reacts sensitively to temporary current increase due to short-time overload that should be allowed, so the normal current is particularly large. Those having a large amount of heat generated by the coil or coil have been difficult to use as a protective device.
[0005]
On the other hand, as an example of the electric compressor in which the protection device is attached in another configuration, a device in which the protection device is attached to the inner surface of the pressure vessel or the conductive terminal by a mounting bracket or a terminal has been proposed. In this way, when the protective device is attached to the inner surface of the pressure vessel, the attaching operation can be simplified as compared with the case where the protective device is tied with a string or the like. Moreover, since it becomes a structure cooled with a refrigerant | coolant, it can be used with a comparatively big electric current also with the same protective device compared with the case where it mounts on a coil.
[0006]
Further, in this case, the mounting posture of the protection device is determined by the mounting terminal and the like, thereby determining the position where the charging part such as the metal airtight container of the protection device is close to the metal part of the compressor. Therefore, it is not necessary to cover the entire container with an insulator, and the area where the airtight container directly contacts the refrigerant can be increased by covering only the necessary part. The temperature of the discharge refrigerant flowing in the pressure vessel is lower than the coil of the electric motor, and flows toward the discharge pipe while cooling the coil. That is, since the refrigerant is heated by the coil, it is possible to detect overheating of the coil through the refrigerant by disposing a protective device downstream thereof.
[0007]
In addition, by setting the thermal reaction plate so that it does not reach the operating temperature by cooling the protective device by cooling the protective device due to the heat generated by the self-heating of the protective device during normal operation, Since the protective device is not sufficiently cooled not only when the temperature of the refrigerant is increased but also when the refrigerant is reduced due to leakage or the like, the protective device operates and can cut off the power supply to the motor.
[0008]
[Problems to be solved by the invention]
However, in the installation of the conventional protective device, the protective device is in the pressure vessel and exposed to the refrigerant, but the flow of the refrigerant is not necessarily taken into consideration, so in terms of heat exchange with the refrigerant, There were aspects that could not be said to be sufficiently efficient. Accordingly, the present invention proposes an electric compressor having a structure in which the heat exchange relationship between the protective device and the refrigerant is improved.
[0009]
[Means for Solving the Problems]
The electric compressor of the present invention is a so-called high-pressure electric compressor in which refrigerant discharged from the compressor circulates in the pressure vessel. The electric compressor includes a protective device between the electric motor and the discharge pipe, and the protective device is made of metal. It consists of a protector body having an airtight container and a holder for storing it, and the holder of this protective device is a refrigerant passage.
[0010]
According to the present invention, the refrigerant discharged from the compressor and cooling the electric motor directly hits the protector main body by flowing in the holder of the protective device, so that the heat exchange relationship between the refrigerant and the protector main body is improved. Therefore, when the refrigerant is heated due to an abnormality of the compressor or an overcurrent to the electric motor, the protector body can reliably detect the temperature rise.
[0011]
Further, the second invention is characterized in that the holder of the protective device is connected to the discharge pipe of the pressure vessel, and the refrigerant flows into the discharge pipe through the holder. According to the present invention, since the holder of the protection device is substantially a part of the discharge pipe, the circulating refrigerant always passes through the protection device and comes into contact with the protector main body, so that heat can be efficiently exchanged between the protector and the refrigerant. .
[0012]
According to a third aspect of the present invention, a partition having a through hole serving as a refrigerant passage is provided in the pressure vessel, and the protection device is disposed on the partition, and the holder of the protection device is communicated with the through hole. It is characterized in that the refrigerant flows directly into the holder.
[0013]
According to the present invention, since the protective device is arranged on the partition wall, the protective device can be easily attached and the refrigerant can be surely flowed into the holder, so that the heat exchange relationship between the refrigerant and the protector body is improved. Can do.
[0014]
Further, the fourth aspect of the invention is characterized in that a plurality of refrigerant passages are provided in the holder of the protective device so that the refrigerant passing through each refrigerant passage hits a different surface of the protector body, in particular, on the downstream side of the protector flow passage. Therefore, it is possible to prevent the refrigerant from staying and to efficiently contact the entire surface of the protector main body.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the electric compressor of the present invention will be described with reference to the drawings. The electric compressor 1 is for compressing a refrigerant used for an air conditioner, for example, and an electric motor 3 and a compressor 4 are enclosed in a metal pressure vessel 2. The pressure vessel 2 is provided with a refrigerant suction pipe 5 and a discharge pipe 6 penetrating the container, and the suction pipe 5 is directly connected to the compressor 4. This electric compressor is a so-called high pressure type, and the refrigerant sucked through the suction pipe 5 from a heat exchanger or the like (not shown) is compressed by the compressor 4 and discharged into the pressure vessel. Then, the refrigerant passes through the gap of the electric motor 2 and is sent again to the refrigeration cycle including the expansion valve and the heat exchanger through the discharge pipe 6 while taking the heat of the electric motor.
[0016]
The electric motor 3 includes a stator 3A and a rotor 3B fixed to a container, and the rotor 3B is connected to the compressor 4 by a drive shaft 7. The end of the drive shaft 7 opposite to the compressor is supported by a bearing plate 8. The bearing plate 8 has a bearing 8A at its center and is configured to hold the end of the drive shaft 7 rotatably, and is provided with a hole through which a refrigerant and a lead wire for power feeding pass. An oil pump 9 is disposed on the bearing 8A, and the lubricating oil 10 enclosed in the pressure vessel is sent to sliding parts such as a bearing and a compressor.
[0017]
In the present invention, the protection device 11 is disposed on the opening of the pressure vessel of the discharge pipe 6. As shown in FIGS. 2 and 3, the protective device 11 includes a protector body 12 having an opening / closing mechanism using a thermally responsive plate such as a bimetal in a metal airtight container, and a synthetic resin made to hold the protector body 12. It is comprised from the electrically insulating holder. The holder includes a cylindrical external holder 13 and an internal holder 14. The protector 11 is configured by inserting the protector 12 and the internal holder 14 into the cylindrical portion 13 </ b> A from one end of the external holder 13. The other end of the external holder 13 is provided with a through hole 13B through which the terminal of the protector 12 is inserted, and the cylindrical portion 13A is provided with a plurality of openings 13C. Further, the inner holder 14 is provided with a plurality of arm-like portions 14B at one end of the cylindrical portion 14A, holds the protector 12 at the tip of the bay-like portion 14B inside the outer holder 13 and secures a refrigerant passage.
[0018]
The protection device 11 is attached to the inner surface of the pressure vessel 2 of the electric compressor 1. In this embodiment, the protection device 11 is protected by holding a holding portion 13 </ b> D of the external holder 13 with a mounting bracket 15 fixed to the pressure vessel 2. The device 11 is fixed. Further, the protection device 11 is attached to the opening of the discharge pipe 6, so that the refrigerant in the pressure vessel 2 is guided to the discharge pipe 6 after passing through the holder of the protection device 11. In this embodiment, the refrigerant flows through the opening 13 </ b> C of the external holder 13 as shown by a dotted line in FIG. 2, and further passes between the arm-shaped portions 14 </ b> B of the internal holder 14 and flows into the cylindrical portion of the internal holder 13. Here, by setting the position of the opening 13C of the external holder 13 to a position where at least part of the container of the protector 12 is directly exposed, the refrigerant flowing into the holder from the opening 13C surely hits the metal surface of the protector 12. become.
[0019]
The electric motor 3 of this embodiment is a three-phase induction motor, and terminals 12A, 12B and 12C provided on the protector 12 are connected to the coil of the electric motor 3 via connection lines 16, respectively. Further, the coil of the electric motor is connected to the sealed terminal 18 via the lead wire 17 so that it can be connected to a power source outside the pressure vessel.
[0020]
Next, the operation of the electric compressor 1 will be described. When the electric motor 3 in the pressure vessel 2 starts to rotate, the compressor 4 is driven via the drive shaft 7. A refrigerant suction pipe 5 is directly connected to the compressor 4, and the refrigerant compressed by the compressor is discharged into the pressure vessel 2. The discharged refrigerant passes through the gap between the rotor and the stator of the motor and the gap between the inner surface of the pressure vessel and the stator so as to take the heat of the motor 3 and cool the inside of the pressure vessel while cooling, and exchange heat from the discharge pipe 6 (not shown). Sent to containers.
[0021]
In the present embodiment, the protective device 11 covers the opening of the discharge pipe 6 and the holder of the protective device is virtually directly connected to the discharge pipe, so that more refrigerant passes through the protective device. . Further, since the refrigerant introduced into the protection device 11 passes while contacting the protector body 12, the protector body 12 can always be efficiently cooled during normal operation.
[0022]
Specifically, as indicated by a dotted line in FIG. 2, the refrigerant flowing into the holder from the opening 13 </ b> C of the external holder 13 contacts the container surface of the protector 12 and performs heat exchange. Further, the refrigerant passing between the arm portions 14B of the inner holder 14 passes through the inside of the cylindrical portion 14A of the inner holder and is sent from the discharge pipe 6 to an external heat exchanger (not shown). Here, when heat is exchanged between the protector 12 and the refrigerant, the refrigerant takes the heat of the protector during normal operation, so that a higher rated current than the conventional one can flow in this embodiment with good heat exchange efficiency. . In addition, the protector operates at the operating temperature not only when the coil temperature of the electric motor 3 and the internal heat generation of the protector 12 increase due to overcurrent or the like, but also when the refrigerant temperature increases due to an increase in the friction of the compressor or the cooling capacity decreases due to refrigerant leakage. Therefore, energization to the motor can be surely cut off.
[0023]
As described above, in the electric compressor of the present embodiment, after the protective device arranged in the pressure vessel is substantially connected to the end of the discharge pipe, the heat is discharged from the compressor and exchanged heat with the electric motor. This makes it possible to efficiently contact the protector and improve the heat exchange relationship. Therefore, during normal operation, the protection device is always cooled efficiently, and even when the same operating temperature is used, it can be used for an electric compressor having a higher operating current than the conventional one. Further, since the refrigerant reaches the protective device through the compressor and the electric motor, it is possible to detect an abnormality of these devices from the rise in the refrigerant temperature.
[0024]
Conventionally, even if a protective device is placed in the refrigerant flow, the refrigerant flow has not been controlled, so the amount of contact between the refrigerant and the protector body may not be sufficient, and efficient heat exchange may not be possible. However, according to the present invention, the holder of the protective device is used as a refrigerant passage, and the circulating refrigerant is collected and flowed in this holder, so that the refrigerant efficiently contacts the periphery of the protector body to exchange heat. The relationship becomes very good.
[0025]
Next, another embodiment of the electric compressor according to the present invention will be described with reference to FIGS. The same parts as those in the above-described embodiment are denoted by the same symbols, and detailed description thereof is omitted. The electric compressor 21 of the present embodiment also includes an electric motor 3 and a compressor 4 inside a metal pressure vessel 2 as in the above example, and the electric motor and the compressor are connected via a drive shaft 7. Yes. The end of the drive shaft 7 opposite to the compressor is supported by a bearing 8A provided at the center of the bearing plate 8. The bearing plate 8 is formed in a disc shape substantially along the inside of the vessel and forms a partition that divides the inside of the pressure vessel. As shown in FIG. 8, the disc portion has a hole 8B through which a refrigerant or a power supply lead wire passes. , 8C and 8D.
[0026]
In the present embodiment, the protection device 31 is disposed on the bearing plate 8. This protective device 31 has a protector body 32 having an opening / closing mechanism by a thermally responsive plate such as a bimetal in a metal hermetic container as in the above-described embodiment, and is made of a synthetic resin for holding the protector body 12. It consists of an electrically insulating holder. The holder further includes an external holder 33 and an internal holder 34, and the protector body 32 is combined with the cylindrical internal holder 34 before the external holder 33 is covered. Further, the holder 34A provided in the inner holder 34 is elastically fitted into the mounting hole 33A of the outer holder 33 so that the holder and the protector main body 32 are integrated to form the protection device 31. Further, the external holder 33 is provided with a through hole 33B for passing a terminal, and the terminals 32A, 32B, 32C of the protector body 32 are inserted therethrough.
[0027]
The external holder 33 includes a storage portion 33C for storing the protector body 32 and a passage portion 33D for guiding the refrigerant. The storage portion 33C and the passage portion 33D are connected to each other in the internal space. In this embodiment, flanges 33E and 33F having through holes for fixing are provided on the side surface of the storage portion 33C, and the protection device 31 is fixed on the bearing plate 8 by a method such as screwing.
[0028]
As described above, the bearing plate 8 has a plurality of through holes serving as refrigerant passages, and the protection device 31 is disposed so as to cover the through holes. In the embodiment, as shown in FIG. 9, the protective device 31 is attached so as to cover the two holes 8 </ b> B and 8 </ b> C serving as a refrigerant passage among the three through holes opened. Furthermore, lead wires 17 for connecting the electric motor 3 to an external power source via the sealed terminals 18 and connection wires 16 for connecting the protection device (not shown) are inserted into the remaining through holes 8D. The lead wire 17 is connected to the winding of the electric motor 3.
[0029]
When the refrigerant passes through the bearing plate 8, it passes through the gap with the inner surface of the pressure vessel and the through holes 8B, 8C, 8D. In the present invention, the protective device 31 covers the through holes 8B and 8C so that the external holder 33 of the protective device serves as a refrigerant passage, so that more refrigerant passes through the protective device. Furthermore, since the refrigerant introduced into the protection device passes while contacting the protector main body 32, the protector main body 32 can always be efficiently cooled during normal operation.
[0030]
Here, the refrigerant is introduced into the inner holder 34 from the through hole 8C of the bearing plate 8 as shown by a dotted line in FIG. 5 and hits the metal container of the protector main body 32. Further, the refrigerant passes through the gap between the inner surface of the external holder 34 and the protector main body 32 while coming into contact with the outer peripheral portion of the container, and is discharged into the storage portion 33C of the external holder 33, and is discharged into the pressure container through the through hole 33B. Head to. Further, the refrigerant introduced from the through hole 8B of the bearing plate 8 into the passage portion 33D of the external holder 33 flows into the storage portion 33C and comes out into the through hole 33B while being in contact with the terminal side surface of the protector body 32. To the discharge pipe 6.
[0031]
Here, in the present embodiment, a refrigerant passage that contacts the metal container of the protector 32 from the inner holder 34 in the outer holder and passes through the outer peripheral portion of the container, and a terminal side surface of the protector 32 from the passage portion 33D of the outer holder 33. And a refrigerant passage flowing therethrough is provided. In this way, by providing a plurality of refrigerant passages so that the refrigerant passing through each refrigerant passage hits a different surface of the protector body, the refrigerant stays around the protector so that the refrigerant contacts almost the entire surface of the protector. It becomes possible to exchange heat efficiently.
[0032]
In the above-described embodiments, the hermetic electric compressor has been described as an example. However, for example, a semi-hermetic electric compressor may be used as long as it has a high-pressure structure, and the refrigerant after heat exchange with the electric motor is possible. As long as it can be distributed, it is not limited to the embodiment.
[0033]
【The invention's effect】
As described above, according to the electric compressor of the present invention, the holder of the attached protection device is used as the refrigerant passage, so that the heat exchange relationship between the refrigerant and the protector body is improved. For this reason, the protector body is efficiently cooled by the refrigerant during normal operation, and the energizing current can be increased as compared with the conventional one. Therefore, a protective device that is slightly smaller than the conventional one can be used. The whole compressor can be reduced in size. Furthermore, by disposing the protective device in the opening of the discharge pipe or the partition wall that divides the inside of the container, it is possible to flow more refrigerant into the holder and to more efficiently exchange heat between the protector and the refrigerant.
[0034]
In addition, a plurality of refrigerant passages are provided in the holder so that the refrigerant passing through the respective passages hits different surfaces of the protector body from different directions, thereby generating a portion where the refrigerant stays on the downstream side of the protector body. Thus, the refrigerant and the protector can be efficiently contacted so that the refrigerant flows over the entire surface of the protector body. Therefore, not only when the amount of heat generated inside the protector increases due to overcurrent, but also when the heat of the protector is not removed due to overheating of the refrigerant or decrease in the amount of refrigerant, the temperature of the protector rises and the contact mechanism operates reliably. Can be made. Therefore, the operation of the protection device can be made more reliable.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of an electric compressor of the present invention. FIG. 2 is an enlarged cross-sectional view showing attachment of a protection device in the electric compressor of FIG. 1. FIG. FIG. 4 is a cross-sectional view showing another embodiment of the electric compressor of the present invention. FIG. 5 is an enlarged cross-sectional view showing attachment of a protection device in the electric compressor of FIG. FIG. 7 is an exploded perspective view for explaining the protective device of FIG. 6. FIG. 8 is a cross-sectional view for explaining the electric compressor of FIG. 4. FIG. Sectional view showing the state of attaching [Explanation of symbols]
1, 2: 1: Electric compressor 2: Pressure vessel 3: Electric motor 4: Compressor 5: Suction pipe 6: Discharge pipe 7: Drive shaft 8: Bearing plate (partition wall)
10: Lubricating oil 11, 31: Protection device 12, 32: Protector body 13, 33: External holder 14, 34: Internal holder

Claims (4)

金属製の圧力容器中に電動機とこの電動機によって駆動される圧縮機とを備え、
圧力容器外部から吸入された冷媒は直接圧縮機に導入され、
圧縮機から圧力容器内に吐出された冷媒は前記電動機の隙間を通って電動機と熱交換をしながら吐出管へ向かういわゆる高圧式の電動圧縮機において、
電動機と吐出管との間に保護装置を備え、
この保護装置は金属製の気密容器を持つプロテクタ本体とそれを収納するホルダからなり、
この保護装置のホルダが冷媒通路とされ、このホルダ内に冷媒を集めて流す構造としたことにより冷媒が効率的にプロテクタ本体に接触するようにされていることを特徴とする電動圧縮機。
In a metal pressure vessel, provided with an electric motor and a compressor driven by this electric motor,
The refrigerant sucked from the outside of the pressure vessel is directly introduced into the compressor,
In the so-called high-pressure electric compressor, the refrigerant discharged from the compressor into the pressure vessel goes to the discharge pipe while exchanging heat with the electric motor through the gap of the electric motor.
A protective device is provided between the electric motor and the discharge pipe,
This protective device consists of a protector body with a metal airtight container and a holder for storing it.
An electric compressor characterized in that the holder of the protective device is a refrigerant passage, and the refrigerant is efficiently brought into contact with the protector body by collecting and flowing the refrigerant in the holder .
保護装置のホルダは圧力容器の吐出管に接続され、
冷媒はこのホルダ内を通って吐出管へ流れて行くことを特徴とする請求項1に記載の電動圧縮機。
The holder of the protection device is connected to the discharge pipe of the pressure vessel,
The electric compressor according to claim 1, wherein the refrigerant flows into the discharge pipe through the holder.
圧力容器内には冷媒の流れを上流と下流に分ける隔壁が設けられ、
この隔壁は冷媒通路となる貫通孔を有し、
保護装置は圧力容器内の隔壁上に配置されるとともに、
保護装置のホルダが前記貫通孔に連通され、
冷媒が直接ホルダ内に流入することを特徴とする請求項1に記載の電動圧縮機。
A partition that divides the flow of refrigerant into upstream and downstream is provided in the pressure vessel,
This partition has a through-hole serving as a refrigerant passage,
The protective device is arranged on the partition in the pressure vessel,
A holder of the protective device is communicated with the through hole;
The electric compressor according to claim 1, wherein the refrigerant flows directly into the holder.
ホルダ内に複数の冷媒通路を設け、
各冷媒通路を通る冷媒がそれぞれプロテクタ本体の違う面に当るようにすることにより冷媒がプロテクタ本体に全面に亘って当るようにされたことを特徴とする請求項1乃至3のいずれか1項に記載の電動圧縮機。
Providing a plurality of refrigerant passages in the holder;
4. The refrigerant according to any one of claims 1 to 3, wherein the refrigerant passes through the entire surface of the protector main body by allowing the refrigerant passing through the refrigerant passages to contact different surfaces of the protector main body. The electric compressor as described.
JP2002199784A 2002-07-09 2002-07-09 Electric compressor Expired - Lifetime JP3916062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002199784A JP3916062B2 (en) 2002-07-09 2002-07-09 Electric compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002199784A JP3916062B2 (en) 2002-07-09 2002-07-09 Electric compressor

Publications (2)

Publication Number Publication Date
JP2004044408A JP2004044408A (en) 2004-02-12
JP3916062B2 true JP3916062B2 (en) 2007-05-16

Family

ID=31706832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199784A Expired - Lifetime JP3916062B2 (en) 2002-07-09 2002-07-09 Electric compressor

Country Status (1)

Country Link
JP (1) JP3916062B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519490B2 (en) * 2004-03-18 2010-08-04 日立アプライアンス株式会社 Scroll compressor

Also Published As

Publication number Publication date
JP2004044408A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
KR101128776B1 (en) Compressor assembly having electronics cooling system
US6524082B2 (en) Electric compressor
US4791329A (en) Motor protector mounting structure for enclosed electric compressors
KR20090039716A (en) Protection and diagnostic module for a refrigeration system
KR20020040619A (en) Compressors
US4236092A (en) Compressor motor protection
US8974198B2 (en) Compressor having counterweight cover
US2946203A (en) Refrigerant compressor having thermal overload protector
EP1657441B1 (en) Compressor control unit and compressor control method
JP2004293445A (en) Motor-driven compressor
JP6178564B2 (en) Electric compressor
JP2008057425A (en) Fluid machine and heat pump device
JP3916062B2 (en) Electric compressor
JP2001103704A (en) Rotating machine
JP2850084B2 (en) Hermetic electric compressor
JP3952432B2 (en) Thermally responsive switch
WO2024127644A1 (en) Motor protector, holder for motor protector, method for attaching motor protector, and electric compressor
JP2005307838A (en) Three-phase electric compressor
JP3121572B2 (en) Hermetic electric compressor
JP4830848B2 (en) Electric compressor
JPH08163830A (en) Protector for hermetic motor compressor
US6443703B1 (en) Scroll compressor with motor protector in suction flow path
JPH0730941Y2 (en) Protective device for hermetic electric compressor
JP3138140B2 (en) Semi-hermetic refrigerant compressor
JP3769712B2 (en) Protection device for hermetic electric compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070201

R150 Certificate of patent or registration of utility model

Ref document number: 3916062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term