JP3915582B2 - Material constant measuring device for piezoelectric substrate - Google Patents

Material constant measuring device for piezoelectric substrate Download PDF

Info

Publication number
JP3915582B2
JP3915582B2 JP2002116556A JP2002116556A JP3915582B2 JP 3915582 B2 JP3915582 B2 JP 3915582B2 JP 2002116556 A JP2002116556 A JP 2002116556A JP 2002116556 A JP2002116556 A JP 2002116556A JP 3915582 B2 JP3915582 B2 JP 3915582B2
Authority
JP
Japan
Prior art keywords
piezoelectric substrate
probe
measurement
thickness
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002116556A
Other languages
Japanese (ja)
Other versions
JP2003315294A (en
Inventor
守▲奇▼ 王
聡 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002116556A priority Critical patent/JP3915582B2/en
Publication of JP2003315294A publication Critical patent/JP2003315294A/en
Application granted granted Critical
Publication of JP3915582B2 publication Critical patent/JP3915582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧電単結晶体から切り出した圧電基板の材料定数を測定するための材料定数測定装置に関する。
【0002】
【従来の技術】
圧電単結晶体の材料定数、例えば密度や音速等が結晶の組成と育成条件とに依存することは周知である。そこで、圧電単結晶体の各所位から切り出した基板(以下、圧電基板という)について材料定数を測定し、結晶の均一性を評価する作業を行う必要がある。
【0003】
均一性評価の手法として、圧電単結晶体がLi Ta O3等の強誘電体の場合は、当該結晶のキュリー温度(強誘電相から常誘電相まで転換する際の温度)が組成に強く依存する性質を利用して結晶の均一性を評価している。
【0004】
これに対し圧電単結晶体がLa3 Ga5 SiO14(ランガサイト)等の常誘電体の場合はキュリー温度をもたない。そこで、圧電基板にSAWデバイスを設け、その中心周波数を測定することで結晶の均一性評価を行っている。
【0005】
【発明が解決しようとする課題】
上記のようにして常誘電体の圧電単結晶体の評価を行う場合には、中心周波数の測定が圧電基板の表面状態、SAWデバイスの設計および評価プロセスの再現性等に影響され易いため、測定結果の信頼性が低い。また、評価プロセスの作業時問が長く、作業効率が低いという問題がある。
【0006】
さらに、この評価プロセスはSAWデバイスを設置することで圧電基板に製品としての価値を失わせてしまうため、圧電基板の出荷検査には適用できないことも問題である。
【0007】
本発明は上記の事情に鑑みてなされたものであり、圧電単結晶体の均一性評価を短時間のうちに正確に実施すべく、圧電基板の材料定数を測定するための装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記の課題を解決するための手段として、次ような構成の圧電基板の材料定数測定装置を採用する。
すなわち、本発明に係る圧電基板の材料定数測定装置は、圧電単結晶体から切り出した圧電基板の両側方に個々に配設された2つの周波数測定プローブを、前記圧電基板を挟んで互いに接近離間可能に支持し、これら2つの周波数測定プローブを前記圧電基板に当接させて両プローブ間に挟まれた任意箇所の厚み滑り振動の共振周波数を測定する周波数測定部と、
前記圧電基板の両側方に個々に配設された2つの厚さ測定子を前記圧電基板に当接させて両測定子間に挟まれた任意箇所の基板厚さを測定する厚さ測定部とを備える圧電基板の材料定数測定装置であって、
前記圧電基板の同じ側に配設された前記周波数測定プローブおよび前記厚さ測定子は、前記周波数測定プローブの中央に、前記圧電基板の厚さ方向に貫通する貫通孔が設けられ、該貫通孔に前記厚さ測定子が挿通されていることを特徴とする。
【0009】
圧電基板についての厚み滑り振動の共振振動数と材料定数との関係を次式に示す。
f=(E/ρ)1/2/(2t)…(1)
f:共振周波数、t:基板厚さ、ρ:結晶密度、E:結晶方向により決まる弾性定数である。
ここで、式(1)を整理すると、
f・t=(E/ρ)1/2/2…(2)
となり、fとtの値を求め、さらにその積を求めることで式(2)の右辺に相当する材料定数が得られる。なお、f・tは圧電基板におけるバルク波音速とみなせる。
【0010】
この圧電基板の材料定数測定装置においては、圧電単結晶体から切り出した圧電基板の任意の各所について、周波数測定部によって厚み滑り振動の共振周波数を測定するとともに、厚さ測定部によって基板厚さを測定し、測定結果を上記の式(2)に代入して各所の材料定数(バルク波音速)を算出するのであるが、従来のようなSAWデバイスを設置する必要がないこと、周波数測定プローブおよび厚さ測定子を一体として周波数測定と厚さ測定とを同時に行うことにより、測定に要する時間が大幅に短縮される。また、SAWデバイスの設置によって圧電基板を破壊することがないので、製品として出荷する圧電基板についても測定を実施することが可能である。
【0012】
本発明に係る圧電基板の材料定数測定装置においては、前記周波数測定プローブが、前記圧電基板の側面に接近離間可能に支持された基部と、該基部に対し揺動自在に取り付けられたプローブ本体と、該プローブ本体を前記基部の所定位置に回帰させる付勢部材とを備える構成とすることが望ましい。
【0013】
本発明に係る圧電基板の材料定数測定装置においては、前記プローブ本体の先端に設けられる測定電極の周囲に、前記圧電基板に当接される環状の弾性体を設けた構成とすることが望ましい。
【0014】
【発明の実施の形態】
本発明に係る実施形態を図1ないし図3に示して説明する。
図1は圧電基板の材料定数測定装置の概賂構成を示す図である。図に示すように、圧電基板Pの厚み滑り振動の共振周波数を測定する周波数測定部1と、圧電基板Pの基板厚さを測定する厚さ測定部2と、周波数測定部1および厚さ測定部2の各部の駆動を制御する制御装置3とを備えている。
周波数測定部1は、圧電基板Pを支持する基板支持機構11と、圧電基板Pの上下両側方に個々に配設された2つの周波数測定プローブ12,13と、これら対向配置された周波数測定プローブ12,13を支持するプローブ支持機構14と、周波数測定プローブ12,13を駆動して圧電基板Pのインピーダンス、および位相の周波数依存性を測定するインピーダンス・アナライザ15とを傭えている。
【0015】
基板支持機構11は、支持した圧電基板Pをその面方向に平行または直交する2方向(これらをX方向、Y方向とする)に移動可能に支持しており、本実施形態においてはX−Yステージが用いられている。基板支持機構11は、圧電基板Pの任意の各箇所において周波数測定プローブ12,13を対向配置させることが可能である。
【0016】
プローブ支持機構14は、基板支持機構11に支持された圧電基板Pの上面側に支柱16から張り出す上部ブーム17と、同圧電基板Pの下面側に支柱16から張り出す下部ブーム18と、上部ブーム17の先端に設けられて一方の周波数測定プローブ12を圧電基板Pの厚さ方向に移動させる昇降部19と、下部ブーム18の先端に設けられて他方の周波数測定プローブ13を圧電基板Pの厚さ方向に移動させる昇降部20とを備えている。周波数測定プローブ12,13は、昇降部19,20を相反する方向に同期して作動させることで、圧電基板Pを挟んで基板面に垂直な方向(これをZ方向とする)に接近、離間可能に支持されている。
【0017】
厚さ測定部2は、上部ブーム17の先端に設けられた上部変位計21と、下部ブーム18の先端に設けられた下部変位計22とを備えている。上部変位計21には、下方に支持された圧電基板Pに向けてZ方向に出没するスピンドル(厚さ測定子)21aが設けられ、下部変位計22には、上方に支持された圧電基板Pに向けてZ方向に出没するスピンドル(厚さ測定子)22aが設けられている。上部変位計21は、スピンドル21aの突出長の差分によって距離を測定する構造を有している。下部変位計22も同様の構造である。
【0018】
図2は周波数測定プローブ12,13、および上下の変位計21,22とその周辺の構造を示す図である。
周波数測定プローブ12は、昇降部19によって昇降する基部23aと、基部23aに対し揺動自在に取り付けられたプローブ本体24aと、プローブ本体24aの先端(下端)に取り付けられた測定電極12aと、プローブ本体24aに測定電極12aを取り囲むように配設された吸収リング25aとを備えている。
【0019】
基部23aにはZ方向に円孔26aが貫通形成され、円孔26aの上部開口には、円孔26aと中心の軸線を一致させてすり鉢状の拡径部(被係合部)27aが形成されている。プローブ本体24aの中央には、測定電極12aの反対側に突き出すように、円孔26aよりも小径の円筒状部28aが設けられている。円筒状部28aの先端(すなわちプローブ本体24aの上端)には、円筒状部28aと中心の軸線を一致させて逆円錐状の鍔部(係合部)29aが形成されている。
【0020】
プローブ本体24aは、円筒状部28aを円孔26aに通し、拡径部27aに鍔部29aがはめ合わされるようにして基部23aに係わっている。拡径部27aと鍔部29aとは最大径が等しくかつ斜面の傾斜角が等しくされており、両者が正しく係合すると円孔26aと円筒状部28aとが中心の軸線を一致させるようになっている。また、基部23aとプローブ本体24aとの間には、プローブ本体24aを基部23aから下方に離間させる方向に付勢するバネ体30aが介装されている。
【0021】
吸収リング25aはゴム等の弾性材料からなり、プローブ本体24aに形成された円板状のフランジ31aの下面に、測定電極12aを中心にして接着されている。吸収リング25aは測定電極12aとともに圧電基板Pの上面に接し、測定箇所を取り囲むように配置される。
【0022】
円筒状部28a内側の孔32aは、プローブ本体24a、さらには測定電極12aをも貫通して形成されており、この孔31aには、上部変位計21のスピンドル21aが挿通されている。スピンドル21aは孔32aと比較して細く、プローブ本体24aが揺動してもスピンドル22aには接しないようになっている。
【0023】
周波数測定プローブ13は、昇降部20によって昇降する基部23bと、基部23bに対し揺動自在に取り付けられたプローブ本体24bと、プローブ本体24bの先端(上端)に取り付けられた測定電極12bと、プローブ本体24bに測定電極13aを取り囲むように配設されたゴム製の吸収リング25bとを備えている。
【0024】
基部23bにはZ方向に円孔26bが貫通形成され、円孔26bの下部開口には、円孔26bと中心の軸線を一致させてすり鉢状の拡径部(被係合部)27bが形成されている。プローブ本体24bの中央には、測定電極12bの反対側に突き出すように、円孔26bよりも小径の円筒状部28bが設けられている。円筒状部28bの先端(すなわちプローブ本体24aの下端)には、円筒状部28bと中心の軸線を一致させて逆円錐状の鍔部(係合部)29bが形成されている。
【0025】
プローブ本体24bは、円筒状部28bを円孔26bに通し、拡径部27bに鍔部29bがはめ合わされるようにして基部23bに係わっている。拡径部27bと鍔部29bとは最大径が等しくかつ斜面の傾斜角が等しくされており、両者が正しく係合すると円孔26bと円筒状部28bとが中心の軸線を一致させるようになっている。また、基部23bとプローブ本体24bとの間には、プローブ本体24bを基部23bから上方に離間させる方向に付勢するバネ体30bが介装されている。
【0026】
吸収リング25bはゴム等の弾性材料からなり、プローブ本体24bに形成された円板状のフランジ31bの下面に、測定電極12aを中心にして接着されている。吸収リング25bは測定電極13aとともに圧電基板Pの下面に接し、測定箇所を取り囲むように配置される。
【0027】
円筒状部28b内側の孔32bは、プローブ本体24b、さらには測定電極12bをも貫通して形成されており、この孔31bには、下部変位計22のスピンドル22aが挿通されている。スピンドル22aは孔32bと比較して細く、プローブ本体23bが揺動してもスピンドル22aには接しないようになっている。
【0028】
制御装置3、インピーダンス・アナライザ15は、これらすべてを統括、制御し、インピーダンス・アナライザ15からの情報をもとに材料定数を算出するコンピュータ33に接続されている。
【0029】
上記のように構成された材料定数測定装置を使用して、圧電基板Pの材料定数を測定する手順について説明する。
まず、圧電単結晶体から切り出した圧電基板Pを基板支持機構11にセットしてずれないように固定する。この状態から基板支持機構11を駆動すると、圧電基板PがX/Y方向に段階的に移動し、圧電基板P上に設定された複数の測定箇所のひとつひとつに対して周波数測定プローブ12,13が順を追って配置され、1箇所ごとにプロービングが行われる。
【0030】
ある測定箇所を挟んで圧電基板Pの両側方に周波数測定プローブ12,13が配置されると、まず、上部変位計21がスピンドル21aを圧電基板Pに当接させ、上部変位計21から圧電基板Pの上面までの距離を測定する。同時に、下部変位計22がスピンドル22aを圧電基板Pに当接させ、上部変位計22から圧電基板Pまでの距離を測定する。これらの測定データはコンピュータ33に入力され、事前に測定しておいた圧電基板Pのない状態での上下の変位計21,22間の距離から、上部変位計21から圧電基板Pの上面までの距離と下部変位計22から圧電基板Pの下面までの距離との和を減算することで圧電基板Pの基板厚さが求められる。
【0031】
上下の変位計21,22がそれぞれのスピンドル21a,22aを圧電基板Pに当接させるのに僅かに後れてプローブ支持機構14が作動し、周波数測定プローブ12,13がZ方向(または−Z方向)に移動して圧電基板Pの上下両側面に同期して接近する。
【0032】
周波数測定プローブ12,13の測定電極12a,13aがともに圧電基板Pに接し、バネ体30a,30bがともに付勢力を発揮して測定電極12a,13aを圧電基板Pに押し付けるようになったら周波数測定プローブ12,13が停止する(図3参照)。このとき、プローブ本体24a,24bの鍔部29a,29bは、基部23a,23b側の拡径部27a,27bから離間する。
【0033】
続いて、インピーダンス・アナライザ15から交流信号が発せられ、測定電極12a,13aを介して圧電基板Pが励振されるので、交流信号の周波数走査を行って当該測定箇所におけるインピーダンスと位相との周波数依存性を検出する。この測定データはコンピュータ33に入力され、周波数依存性を示す波形の解析を行うことで共振周波数が求められる。
【0034】
上記のようにして基板厚さおよび共振周波数が求められたら、コンピュータ33においてこれらの情報を加工して圧電基板P上のある測定箇所の材料定数が算出される。
【0035】
当該測定箇所での測定を終えたら、スピンドル21a,22aが後退するとともに周波数測定プローブ12,13が後退してもとの位置に回帰する。測定電極12a,13aが圧電基板Pから離れると、バネ体30a,30bの付勢力により鍔部29a,29bが拡径部27a,27bに係合し、円孔26bと円筒状部28bとが中心の軸線を一致させることでプローブ本体24a,24bおよび測定電極12a,13aが定位置に回帰する。
以降は上記の手順が繰り返され、圧電基板P上に設定されたすべての測定箇所について材料定数が算出されるので、これをもとに材料定数の評価を行う。
【0036】
上記のようにすれば、SAWデバイスを設置する必要がないこと、周波数測定プローブ12,13および厚さ測定子を一体として周波数測定と厚さ測定とを同時に行うことにより、測定に要する時間が大幅に短縮される。また、SAWデバイスの設置によって圧電基板を破壊することがないので、製品として出荷する圧電基板についても測定を実施することが可能である。
【0037】
周波数測定プローブ12,13の中央に厚さ測定子としてのスピンドル21a,22aを配設したことで、周波数の測定箇所と基板厚さの測定箇所とが正に一致するので、誤差のない高精度の測定が可能になる。
【0038】
周波数測定に際しては、測定電極12a,13aとともに吸収リング25a,25bが圧電基板Pに接して測定箇所を上下から取り囲み、測定箇所に発生する余計な振動を吸収するので、より高精度に共振周波数を特定することができる。圧電基板Pに交流信号を流すと、基本および高次の厚み振動によって構成される主振動とともに、主振動に近接した多数の副振動が励振される。副振動とは、弾性波が圧電基板P内の上下の境界面で反射しながら横方向に伝播し、圧電基板Pの端面で反射して定常波となったときに発生する振動である。このような副振動本来必要な主振動の測定にとって好ましくないノイズであるが、圧電基板Pに設定される測定箇所によっては主振動よりも強い場合があり、主振動の測定を阻害する大きな要因となっている。吸収リング25a,25bは弾性波を吸収して主振動だけを残すので、ノイズの少ない波形が得られて高精度な測定が可能となるのである。
【0039】
バネ体30a,30bが付勢力を発揮して測定電極12a,13aを圧電基板Pに押し付けることにより、測定電極12a,13aが圧電基板Pに接触する際の圧力が2つの周波数測定プローブ12,13間で均一化されるので、測定条件が等しくなって高精度な測定が可能になる。
【0040】
プローブ本体24a,24bを基部23a,23bに対して揺動可能とし、測定電極12a,13aの測定面が少量傾く自由度が与えられることにより、圧電基板Pの表面形状のバラツキが吸収されて上記と同じく2つの周波数測定プローブ12,13間で均一化されるので、さらに高精度な測定が可能になる。
【0041】
【発明の効果】
以上説明したように、本発明によれば、従来のようなSAWデバイスを設置する必要がないこと、周波数測定プローブおよび厚さ測定子を一体として周波数測定と厚さ測定とを同時に行うことにより、測定に要する時間が大幅に短縮される。また、SAWデバイスの設置によって圧電基板を破壊することがないので、製品として出荷する圧電基板についても測定を実施することが可能である。
【図面の簡単な説明】
【図1】本発明に係る実施形態を示す図であって、材料定数測定装置の全体図である。
【図2】図1の材料定数測定装置の要部を示す図であって、周波数測定プローブおよびスピンドルが圧電基板から離間した状態を示す状態説明図である。
【図3】同じく図1の材料定数測定装置の要部を示す図であって、周波数測定プローブおよびスピンドルが圧電基板に接した状態を示す状態説明図である。
【符号の説明】
1 周波数測定部
2 厚さ測定部
12,13 周波数測定プローブ
21 上部変位計
22 下部変位計
21a,22a スピンドル(厚さ測定子)
27a,27b 拡径部(被係合部)
29a,29b 鍔部(係合部)
30a,30b バネ体
12a,13a 測定電極
25a,25b 吸収リング
P 圧電基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a material constant measuring apparatus for measuring a material constant of a piezoelectric substrate cut out from a piezoelectric single crystal.
[0002]
[Prior art]
It is well known that the material constants of a piezoelectric single crystal, such as density and sound velocity, depend on the crystal composition and growth conditions. Therefore, it is necessary to measure the material constant of a substrate cut out from each position of the piezoelectric single crystal (hereinafter referred to as a piezoelectric substrate) and evaluate the crystal uniformity.
[0003]
As a method for evaluating uniformity, when the piezoelectric single crystal is a ferroelectric such as Li Ta O 3 , the Curie temperature of the crystal (the temperature at which the phase changes from the ferroelectric phase to the paraelectric phase) strongly depends on the composition. The uniformity of the crystal is evaluated by utilizing the properties of
[0004]
On the other hand, when the piezoelectric single crystal is a paraelectric material such as La 3 Ga 5 SiO 14 (Langasite), it does not have a Curie temperature. Therefore, a SAW device is provided on the piezoelectric substrate, and the uniformity of the crystal is evaluated by measuring the center frequency.
[0005]
[Problems to be solved by the invention]
When the paraelectric piezoelectric single crystal is evaluated as described above, the measurement of the center frequency is easily influenced by the surface condition of the piezoelectric substrate, the design of the SAW device, the reproducibility of the evaluation process, etc. The reliability of the results is low. In addition, there is a problem that work time of the evaluation process is long and work efficiency is low.
[0006]
Furthermore, since this evaluation process causes the piezoelectric substrate to lose its value as a product by installing the SAW device, it is also problematic that it cannot be applied to the shipment inspection of the piezoelectric substrate.
[0007]
The present invention has been made in view of the above circumstances, and provides an apparatus for measuring the material constant of a piezoelectric substrate in order to accurately evaluate the uniformity of a piezoelectric single crystal in a short time. It is an object.
[0008]
[Means for Solving the Problems]
As a means for solving the above problems, adopting a material measuring apparatus of the piezoelectric substrate of the following configuration.
In other words, the material constant measuring apparatus for a piezoelectric substrate according to the present invention includes two frequency measurement probes individually disposed on both sides of a piezoelectric substrate cut out from a piezoelectric single crystal, and approaching and separating from each other with the piezoelectric substrate interposed therebetween. A frequency measuring unit that supports the two frequency measuring probes in contact with the piezoelectric substrate and measures a resonance frequency of thickness-shear vibration at an arbitrary position sandwiched between the two probes;
A thickness measuring unit for measuring the thickness of a substrate at an arbitrary position sandwiched between the two measuring elements by bringing two thickness measuring elements individually disposed on both sides of the piezoelectric substrate into contact with the piezoelectric substrate; A material constant measuring device for a piezoelectric substrate comprising:
The frequency measuring probe and the thickness measuring element disposed on the same side of the piezoelectric substrate are provided with a through-hole penetrating in the thickness direction of the piezoelectric substrate at the center of the frequency measuring probe. The thickness gauge is inserted in the cable .
[0009]
The relationship between the resonance frequency of the thickness shear vibration and the material constant for the piezoelectric substrate is shown in the following equation.
f = (E / ρ) 1/2 / (2t) (1)
f: resonance frequency, t: substrate thickness, ρ: crystal density, E: elastic constant determined by crystal direction.
Here, when formula (1) is arranged,
f · t = (E / ρ) 1/2 / 2 (2)
Thus, by obtaining the values of f and t and further obtaining the product, a material constant corresponding to the right side of the equation (2) can be obtained. Note that f · t can be regarded as the bulk wave velocity in the piezoelectric substrate.
[0010]
In this material constant measuring apparatus for a piezoelectric substrate, the resonance frequency of the thickness shear vibration is measured by a frequency measuring unit at any part of the piezoelectric substrate cut out from the piezoelectric single crystal, and the thickness of the substrate is measured by the thickness measuring unit. Measure and substitute the measurement results into the above equation (2) to calculate the material constants (bulk wave sound velocity) at each location, but it is not necessary to install a conventional SAW device, a frequency measurement probe and By performing the frequency measurement and the thickness measurement at the same time by integrating the thickness gauge, the time required for the measurement is greatly shortened. In addition, since the piezoelectric substrate is not destroyed by the installation of the SAW device, it is possible to perform measurement on the piezoelectric substrate shipped as a product.
[0012]
In the material constant measuring apparatus for a piezoelectric substrate according to the present invention, the frequency measurement probe includes a base portion that is supported so as to be able to approach and separate from a side surface of the piezoelectric substrate, and a probe body that is swingably attached to the base portion. Preferably, the probe main body is configured to include a biasing member that returns the probe main body to a predetermined position of the base.
[0013]
In the material constant measuring apparatus for a piezoelectric substrate according to the present invention, it is desirable that an annular elastic body that is in contact with the piezoelectric substrate is provided around the measurement electrode provided at the tip of the probe body.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment according to the present invention will be described with reference to FIGS.
FIG. 1 is a diagram showing a schematic configuration of a material constant measuring apparatus for a piezoelectric substrate. As shown in the figure, a frequency measuring unit 1 that measures the resonance frequency of thickness-shear vibration of the piezoelectric substrate P, a thickness measuring unit 2 that measures the substrate thickness of the piezoelectric substrate P, the frequency measuring unit 1 and the thickness measurement. And a control device 3 that controls driving of each unit of the unit 2.
The frequency measurement unit 1 includes a substrate support mechanism 11 that supports the piezoelectric substrate P, two frequency measurement probes 12 and 13 that are individually disposed on both upper and lower sides of the piezoelectric substrate P, and frequency measurement probes that are disposed to face each other. And a probe support mechanism 14 for supporting 12 and 13 and an impedance analyzer 15 for driving the frequency measurement probes 12 and 13 to measure the impedance of the piezoelectric substrate P and the frequency dependence of the phase.
[0015]
The substrate support mechanism 11 supports the supported piezoelectric substrate P so as to be movable in two directions parallel to or orthogonal to the surface direction (they are referred to as the X direction and the Y direction). A stage is used. The substrate support mechanism 11 can arrange the frequency measurement probes 12 and 13 so as to face each other at any location on the piezoelectric substrate P.
[0016]
The probe support mechanism 14 includes an upper boom 17 projecting from the support column 16 on the upper surface side of the piezoelectric substrate P supported by the substrate support mechanism 11, a lower boom 18 projecting from the support column 16 on the lower surface side of the piezoelectric substrate P, and an upper portion. An elevating unit 19 provided at the tip of the boom 17 moves one frequency measuring probe 12 in the thickness direction of the piezoelectric substrate P, and the other frequency measuring probe 13 provided at the tip of the lower boom 18 is attached to the piezoelectric substrate P. And an elevating unit 20 that moves in the thickness direction. The frequency measuring probes 12 and 13 are operated in synchronization with opposite directions of the elevating units 19 and 20 to approach and separate in a direction perpendicular to the substrate surface (this is referred to as Z direction) with the piezoelectric substrate P interposed therebetween. Supported as possible.
[0017]
The thickness measuring unit 2 includes an upper displacement meter 21 provided at the tip of the upper boom 17 and a lower displacement meter 22 provided at the tip of the lower boom 18. The upper displacement meter 21 is provided with a spindle (thickness measuring element) 21a that protrudes and protrudes in the Z direction toward the piezoelectric substrate P supported below, and the lower displacement meter 22 includes the piezoelectric substrate P supported upward. A spindle (thickness measuring element) 22a protruding and protruding in the Z direction is provided. The upper displacement meter 21 has a structure for measuring the distance by the difference in the protruding length of the spindle 21a. The lower displacement meter 22 has a similar structure.
[0018]
FIG. 2 is a diagram showing the structure of the frequency measuring probes 12 and 13 and the upper and lower displacement meters 21 and 22 and their surroundings.
The frequency measurement probe 12 includes a base portion 23a that is lifted and lowered by a lift portion 19, a probe main body 24a that is swingably attached to the base portion 23a, a measurement electrode 12a that is attached to the tip (lower end) of the probe main body 24a, a probe The main body 24a includes an absorption ring 25a disposed so as to surround the measurement electrode 12a.
[0019]
A circular hole 26a is formed through the base portion 23a in the Z direction, and a mortar-shaped enlarged diameter portion (engaged portion) 27a is formed in the upper opening of the circular hole 26a by aligning the central axis of the circular hole 26a. Has been. A cylindrical portion 28a having a smaller diameter than the circular hole 26a is provided at the center of the probe main body 24a so as to protrude to the opposite side of the measurement electrode 12a. At the tip of the cylindrical portion 28a (that is, the upper end of the probe main body 24a), an inverted conical flange portion (engagement portion) 29a is formed by aligning the central axis line with the cylindrical portion 28a.
[0020]
The probe main body 24a is engaged with the base portion 23a so that the cylindrical portion 28a passes through the circular hole 26a and the flange portion 29a is fitted to the enlarged diameter portion 27a. The enlarged diameter portion 27a and the flange portion 29a have the same maximum diameter and the same inclination angle of the inclined surface, and when they are properly engaged, the circular hole 26a and the cylindrical portion 28a come to coincide with the central axis. ing. A spring body 30a is interposed between the base 23a and the probe main body 24a to urge the probe main body 24a in the direction of moving downward from the base 23a.
[0021]
The absorption ring 25a is made of an elastic material such as rubber, and is bonded to the lower surface of a disk-shaped flange 31a formed on the probe body 24a with the measurement electrode 12a as the center. The absorption ring 25a is disposed so as to contact the upper surface of the piezoelectric substrate P together with the measurement electrode 12a and surround the measurement location.
[0022]
The hole 32a inside the cylindrical portion 28a is formed so as to penetrate the probe main body 24a and the measurement electrode 12a, and the spindle 21a of the upper displacement meter 21 is inserted into the hole 31a. The spindle 21a is thinner than the hole 32a, and does not come into contact with the spindle 22a even if the probe body 24a swings.
[0023]
The frequency measurement probe 13 includes a base portion 23b that is lifted and lowered by the lift portion 20, a probe body 24b that is swingably attached to the base portion 23b, a measurement electrode 12b that is attached to the tip (upper end) of the probe body 24b, and a probe. The main body 24b includes a rubber absorption ring 25b disposed so as to surround the measurement electrode 13a.
[0024]
A circular hole 26b is formed through the base portion 23b in the Z direction, and a mortar-shaped diameter-enlarged portion (engaged portion) 27b is formed in the lower opening of the circular hole 26b by aligning the central axis of the circular hole 26b. Has been. A cylindrical portion 28b having a smaller diameter than the circular hole 26b is provided at the center of the probe main body 24b so as to protrude to the opposite side of the measurement electrode 12b. At the tip of the cylindrical portion 28b (that is, the lower end of the probe main body 24a), an inverted conical flange portion (engagement portion) 29b is formed by aligning the central axis line with the cylindrical portion 28b.
[0025]
The probe body 24b is engaged with the base portion 23b so that the cylindrical portion 28b passes through the circular hole 26b and the flange portion 29b is fitted to the enlarged diameter portion 27b. The enlarged diameter portion 27b and the flange portion 29b have the same maximum diameter and the same inclined angle of the inclined surface, and when they are properly engaged, the circular hole 26b and the cylindrical portion 28b come to coincide with the central axis. ing. In addition, a spring body 30b that biases the probe body 24b in the direction of separating upward from the base portion 23b is interposed between the base portion 23b and the probe body 24b.
[0026]
The absorption ring 25b is made of an elastic material such as rubber, and is bonded to the lower surface of a disk-shaped flange 31b formed on the probe body 24b with the measurement electrode 12a as the center. The absorption ring 25b is in contact with the lower surface of the piezoelectric substrate P together with the measurement electrode 13a and is disposed so as to surround the measurement location.
[0027]
The hole 32b inside the cylindrical portion 28b is formed so as to penetrate the probe body 24b and the measurement electrode 12b, and the spindle 22a of the lower displacement meter 22 is inserted into the hole 31b. The spindle 22a is thinner than the hole 32b, and does not come into contact with the spindle 22a even if the probe main body 23b swings.
[0028]
The control device 3 and the impedance analyzer 15 are connected to a computer 33 that controls and controls them all and calculates material constants based on information from the impedance analyzer 15.
[0029]
A procedure for measuring the material constant of the piezoelectric substrate P using the material constant measuring apparatus configured as described above will be described.
First, the piezoelectric substrate P cut out from the piezoelectric single crystal is set on the substrate support mechanism 11 and fixed so as not to be displaced. When the substrate support mechanism 11 is driven from this state, the piezoelectric substrate P is moved stepwise in the X / Y direction, and the frequency measurement probes 12 and 13 are applied to each of a plurality of measurement points set on the piezoelectric substrate P. They are arranged in order and probing is performed at each location.
[0030]
When the frequency measurement probes 12 and 13 are arranged on both sides of the piezoelectric substrate P across a certain measurement location, the upper displacement meter 21 first contacts the spindle 21a with the piezoelectric substrate P, and the upper displacement meter 21 starts the piezoelectric substrate. Measure the distance to the top surface of P. At the same time, the lower displacement meter 22 brings the spindle 22a into contact with the piezoelectric substrate P and measures the distance from the upper displacement meter 22 to the piezoelectric substrate P. These measurement data are input to the computer 33, and the distance between the upper and lower displacement gauges 21 and 22 without the piezoelectric substrate P measured in advance is measured from the upper displacement meter 21 to the upper surface of the piezoelectric substrate P. The substrate thickness of the piezoelectric substrate P is obtained by subtracting the sum of the distance and the distance from the lower displacement gauge 22 to the lower surface of the piezoelectric substrate P.
[0031]
The probe support mechanism 14 is operated slightly after the upper and lower displacement gauges 21 and 22 bring the respective spindles 21a and 22a into contact with the piezoelectric substrate P, and the frequency measurement probes 12 and 13 are moved in the Z direction (or -Z). Direction) and approaches the upper and lower side surfaces of the piezoelectric substrate P in synchronization.
[0032]
When the measurement electrodes 12a and 13a of the frequency measurement probes 12 and 13 are both in contact with the piezoelectric substrate P and the spring bodies 30a and 30b both exert an urging force to press the measurement electrodes 12a and 13a against the piezoelectric substrate P, the frequency measurement is performed. The probes 12 and 13 are stopped (see FIG. 3). At this time, the flange portions 29a and 29b of the probe main bodies 24a and 24b are separated from the enlarged diameter portions 27a and 27b on the base portions 23a and 23b side.
[0033]
Subsequently, an AC signal is emitted from the impedance analyzer 15 and the piezoelectric substrate P is excited via the measurement electrodes 12a and 13a. Therefore, the frequency scan of the AC signal is performed, and the frequency dependence of the impedance and phase at the measurement location is measured. Detect sex. This measurement data is input to the computer 33, and the resonance frequency is obtained by analyzing the waveform showing the frequency dependence.
[0034]
When the substrate thickness and the resonance frequency are obtained as described above, the computer 33 processes these pieces of information to calculate the material constant of a certain measurement location on the piezoelectric substrate P.
[0035]
When the measurement at the measurement location is completed, the spindles 21a and 22a are retracted and the frequency measurement probes 12 and 13 are retracted to return to their original positions. When the measurement electrodes 12a and 13a are separated from the piezoelectric substrate P, the flange portions 29a and 29b are engaged with the enlarged diameter portions 27a and 27b by the urging force of the spring bodies 30a and 30b, and the circular hole 26b and the cylindrical portion 28b are centered. The probe bodies 24a and 24b and the measurement electrodes 12a and 13a are returned to the fixed positions by matching the axes of the two.
Thereafter, the above procedure is repeated, and the material constants are calculated for all the measurement points set on the piezoelectric substrate P. Based on this, the material constants are evaluated.
[0036]
If it carries out as mentioned above, it will be unnecessary to install a SAW device, and frequency measurement and thickness measurement will be carried out at the same time by integrating frequency measurement probes 12 and 13 and a thickness gauge, thereby greatly increasing the time required for measurement. Shortened to In addition, since the piezoelectric substrate is not destroyed by the installation of the SAW device, it is possible to perform measurement on the piezoelectric substrate shipped as a product.
[0037]
Since the spindles 21a and 22a as thickness gauges are arranged in the center of the frequency measurement probes 12 and 13, the frequency measurement location and the substrate thickness measurement location are exactly the same, so there is no error. Can be measured.
[0038]
In the frequency measurement, the absorption rings 25a and 25b together with the measurement electrodes 12a and 13a contact the piezoelectric substrate P to surround the measurement part from above and below, and absorb unnecessary vibration generated at the measurement part, so that the resonance frequency can be set with higher accuracy. Can be identified. When an AC signal is passed through the piezoelectric substrate P, a number of sub-vibrations close to the main vibration are excited along with the main vibration constituted by the basic and higher-order thickness vibrations. The sub-vibration is vibration generated when an elastic wave propagates in the lateral direction while being reflected by the upper and lower boundary surfaces in the piezoelectric substrate P and is reflected by the end surface of the piezoelectric substrate P to become a stationary wave. Although this noise is undesirable for the measurement of the main vibration that is essentially necessary for the secondary vibration, it may be stronger than the main vibration depending on the measurement location set on the piezoelectric substrate P, and is a major factor that hinders the measurement of the main vibration. It has become. Since the absorption rings 25a and 25b absorb the elastic wave and leave only the main vibration, a waveform with less noise can be obtained and high-precision measurement can be performed.
[0039]
The spring bodies 30a and 30b exert an urging force to press the measurement electrodes 12a and 13a against the piezoelectric substrate P, so that the pressure when the measurement electrodes 12a and 13a contact the piezoelectric substrate P causes the two frequency measurement probes 12 and 13 to be in contact with each other. Since the measurement conditions are equalized, the measurement conditions are equal and high-precision measurement is possible.
[0040]
The probe main bodies 24a and 24b can be swung with respect to the base portions 23a and 23b, and the measurement surfaces of the measurement electrodes 12a and 13a are given a degree of freedom to be tilted by a small amount. Since it is made uniform between the two frequency measurement probes 12 and 13, the measurement can be performed with higher accuracy.
[0041]
【The invention's effect】
As described above, according to the present invention, it is not necessary to install a conventional SAW device, and by performing frequency measurement and thickness measurement simultaneously with a frequency measurement probe and a thickness gauge as one body, Time required for measurement is greatly reduced. In addition, since the piezoelectric substrate is not destroyed by the installation of the SAW device, it is possible to perform measurement on the piezoelectric substrate shipped as a product.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment according to the present invention, and is an overall view of a material constant measuring apparatus.
FIG. 2 is a diagram illustrating a main part of the material constant measuring apparatus in FIG. 1, and is a state explanatory diagram illustrating a state in which a frequency measurement probe and a spindle are separated from a piezoelectric substrate.
3 is a view showing the main part of the material constant measuring apparatus of FIG. 1 and is a state explanatory view showing a state in which the frequency measuring probe and the spindle are in contact with the piezoelectric substrate. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Frequency measurement part 2 Thickness measurement part 12, 13 Frequency measurement probe 21 Upper displacement meter 22 Lower displacement meter 21a, 22a Spindle (thickness measuring element)
27a, 27b Expanded portion (engaged portion)
29a, 29b collar part (engagement part)
30a, 30b Spring bodies 12a, 13a Measuring electrodes 25a, 25b Absorption ring P Piezoelectric substrate

Claims (3)

圧電単結晶体から切り出した圧電基板の両側方に個々に配設された2つの周波数測定プローブを、前記圧電基板を挟んで互いに接近離間可能に支持し、これら2つの周波数測定プローブを前記圧電基板に当接させて両プローブ間に挟まれた任意箇所の厚み滑り振動の共振周波数を測定する周波数測定部と、
前記圧電基板の両側方に個々に配設された2つの厚さ測定子を前記圧電基板に当接させて両測定子間に挟まれた任意箇所の基板厚さを測定する厚さ測定部とを備える圧電基板の材料定数測定装置であって、
前記圧電基板の同じ側に配設された前記周波数測定プローブおよび前記厚さ測定子は、前記周波数測定プローブの中央に、前記圧電基板の厚さ方向に貫通する貫通孔が設けられ、該貫通孔に前記厚さ測定子が挿通されていることを特徴とする圧電基板の材料定数測定装置。
Two frequency measurement probes individually arranged on both sides of the piezoelectric substrate cut out from the piezoelectric single crystal body are supported so as to be close to and away from each other with the piezoelectric substrate interposed therebetween, and these two frequency measurement probes are supported by the piezoelectric substrate. A frequency measurement unit that measures the resonance frequency of thickness-shear vibration at an arbitrary location sandwiched between both probes in contact with
A thickness measuring unit for measuring the thickness of a substrate at an arbitrary position sandwiched between the two measuring elements by bringing two thickness measuring elements individually disposed on both sides of the piezoelectric substrate into contact with the piezoelectric substrate; A material constant measuring device for a piezoelectric substrate comprising:
The frequency measuring probe and the thickness measuring element disposed on the same side of the piezoelectric substrate are provided with a through-hole penetrating in the thickness direction of the piezoelectric substrate at the center of the frequency measuring probe. A material constant measuring apparatus for a piezoelectric substrate , wherein the thickness gauge is inserted in the piezoelectric substrate.
前記周波数測定プローブが、前記圧電基板の側面に接近離間可能に支持された基部と、該基部に対し揺動自在に取り付けられたプローブ本体と、該プローブ本体を前記基部の所定位置に回帰させる付勢部材とを備えることを特徴とする請求項1記載の圧電基板の材料定数測定装置。The frequency measurement probe includes a base portion that is supported on the side surface of the piezoelectric substrate so as to be able to approach and separate, a probe body that is swingably attached to the base portion, and a probe body that returns the probe body to a predetermined position of the base portion. material constant measuring apparatus for a piezoelectric substrate according to claim 1 Symbol mounting, characterized in that it comprises a-energizing member. 前記プローブ本体の先端に設けられた測定電極の周囲に、前記圧電基板に当接される環状の弾性体が設けられていることを特徴とする請求項記載の圧電基板の材料定数測定装置。 3. The material constant measuring apparatus for a piezoelectric substrate according to claim 2 , wherein an annular elastic body that is in contact with the piezoelectric substrate is provided around a measurement electrode provided at a tip of the probe main body.
JP2002116556A 2002-04-18 2002-04-18 Material constant measuring device for piezoelectric substrate Expired - Fee Related JP3915582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002116556A JP3915582B2 (en) 2002-04-18 2002-04-18 Material constant measuring device for piezoelectric substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002116556A JP3915582B2 (en) 2002-04-18 2002-04-18 Material constant measuring device for piezoelectric substrate

Publications (2)

Publication Number Publication Date
JP2003315294A JP2003315294A (en) 2003-11-06
JP3915582B2 true JP3915582B2 (en) 2007-05-16

Family

ID=29534082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002116556A Expired - Fee Related JP3915582B2 (en) 2002-04-18 2002-04-18 Material constant measuring device for piezoelectric substrate

Country Status (1)

Country Link
JP (1) JP3915582B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4820931B2 (en) * 2004-01-16 2011-11-24 雅彦 平尾 Elastic constant measuring apparatus and measuring method for measuring elastic constant of sample
CN110261480B (en) * 2019-07-16 2024-03-12 中国工程物理研究院化工材料研究所 System and method for rapidly testing acoustic emission response performance of piezoelectric material

Also Published As

Publication number Publication date
JP2003315294A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
KR100657105B1 (en) Probing method and probing apparatus
KR101011491B1 (en) Microstructure inspecting apparatus, microstructure inspecting method and substrate holding apparatus
JP4684805B2 (en) Probe device and method for adjusting contact pressure between object to be inspected and probe
JP4573794B2 (en) Probe card and microstructure inspection device
JPH04100251A (en) Probing device
KR20100095560A (en) Microstructure inspecting device, and microstructure inspecting method
US7958788B2 (en) Piezoelectric vibrating beam force sensor
US11346818B2 (en) Method, device and system for non-destructive detection of defects in a semiconductor die
JP3915582B2 (en) Material constant measuring device for piezoelectric substrate
US6413789B2 (en) Method of detecting and monitoring stresses in a semiconductor wafer
JP2008233053A (en) Method of measuring frequency characteristic of piezo-electric vibrating element
WO2005090909A1 (en) Film thickness measuring equipment and film thickness measuring method
JP2001281121A (en) Fretting fatigue test device and fretting fatigue estimation method
CN113514352A (en) Micro-nano material and structural force thermal coupling high cycle fatigue test method and test device
JPH06140479A (en) Device for testing semiconductor integrated circuit
JP2007071553A (en) Measuring method of thin film, measuring instrument of thin film and contact sensor used therein
CN117434163B (en) Calibration device and method for acoustic emission sensor
JP3608499B2 (en) Material constant measuring device for piezoelectric substrate
Borinski et al. Fiber optic acoustic emission sensors for harsh environment health monitoring
JP2002122471A (en) Method and device for measuring material constant of piezoelectric substrate
SU1262365A1 (en) Method for vibroacoustical check of articles
Kobayashi et al. Contactless measurement of Young's modulus using laser beam excitation and detection of vibration of thin-film microresonators
Ogi et al. Quantitative Evaluation of Local Young’s Modulus of Small‐Scale Solids by Isolated Langasite Oscillator: Resonant‐Ultrasound Microscopy
CN115355969A (en) Novel micro cantilever beam device for detecting micro mass
JPH01110255A (en) Method and apparatus for measuring degree of rubber vulcanization by ultrasonic wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees