JP3915219B2 - Electric vehicle charger - Google Patents

Electric vehicle charger Download PDF

Info

Publication number
JP3915219B2
JP3915219B2 JP00698198A JP698198A JP3915219B2 JP 3915219 B2 JP3915219 B2 JP 3915219B2 JP 00698198 A JP00698198 A JP 00698198A JP 698198 A JP698198 A JP 698198A JP 3915219 B2 JP3915219 B2 JP 3915219B2
Authority
JP
Japan
Prior art keywords
charging
relay
circuit
leakage
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00698198A
Other languages
Japanese (ja)
Other versions
JPH11205909A (en
Inventor
哲浩 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP00698198A priority Critical patent/JP3915219B2/en
Publication of JPH11205909A publication Critical patent/JPH11205909A/en
Application granted granted Critical
Publication of JP3915219B2 publication Critical patent/JP3915219B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Breakers (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電気自動車用充電装置、特に外部電源を用いて電気自動車のバッテリを充電する際の漏電防止機構に関する。
【0002】
【従来の技術】
従来より、バッテリとインバータと交流モータを備える電気自動車が知られており、例えば特開平4−275002号公報等にはバッテリの端子間電圧が低下した場合に外部交流電源を用いてバッテリを充電する技術が提案されている。充電の基本的な動作は、外部交流電源を電気自動車側のコネクタを介してインバータに接続し、インバータ内のスイッチングトランジスタを開閉制御して外部交流出力を直流に整流し、バッテリに直流出力を供給することで充電するものである。
【0003】
ここで、バッテリを充電する際には、充電装置の高圧系がボデーにリークした場合等を想定し、外部交流電源と電気自動車側コネクタ間に漏電遮断器等を設けてリーク時には充電回路を遮断することが望ましい。
【0004】
【発明が解決しようとする課題】
しかしながら、単に漏電遮断器を設けても、漏電遮断器自体に不具合が生じている場合には漏電が生じているにもかかわらず外部交流電源と電気自動車間の回路が遮断されないことになり、円滑にバッテリの充電を行うことができない問題が生ずる。
【0005】
本発明は、上記従来技術の有する課題に鑑みなされたものであり、その目的は、充電に先立って外部交流電源と電気自動車間に設けられた充電遮断器の動作を確認し、漏電遮断器が正常に動作する場合にのみ外部交流電源と電気自動車との接続を行って円滑にバッテリの充電を行うことができる電気自動車用充電装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、バッテリと、該バッテリに接続されたインバータと、該インバータに接続された交流モータとを備える電気自動車の該バッテリを外部電源を用いて充電するための充電装置であって、前記電気自動車と前記外部電源とを接続する充電リレーと、前記充電リレーと前記外部電源間に設けられる漏電遮断器と、前記充電リレーの開閉を制御する制御手段とを有し、前記漏電遮断器は、充電回路の短絡を検出する検出器と、前記検出器で短絡が検出された場合に充電回路を遮断する漏電リレーと、前記充電回路を強制的に短絡させる短絡手段とを有し、前記短絡手段は、前記漏電リレーとは別個に設けられ前記制御手段からの指令により前記充電回路を強制的に短絡させる漏電テストリレーを含み、前記制御手段は、前記バッテリを充電する際に、前記充電リレーの閉動作に先だって前記短絡手段の前記漏電テストリレーを閉動作させて前記充電回路を強制短絡させた場合の前記充電回路の電圧を検出し、前記充電回路の電圧がゼロでなく前記漏電リレーが動作していないと判定した場合に、前記漏電リレーが異常であるとして前記充電リレーの閉動作を禁止することを特徴とする。また、前記制御手段は、前記電気自動車に搭載されている電子制御装置によって構成されることが好適である。
【0007】
充電動作に先だって充電回路を強制的に短絡させても漏電リレーが遮断せず、充電回路を遮断できない場合には、漏電遮断器が正常に機能していないので、充電を禁止することで円滑な充電が可能となる。
【0008】
【発明の実施の形態】
以下、図面に基づき本発明の実施形態について説明する。
【0009】
図1には、本実施形態の回路構成図が示されている。電気自動車(車両)100は、主バッテリ2、インバータ3、誘導モータ4、充電リレー6、電子制御装置ECU1及び充電用コネクタ12を有している。
【0010】
主バッテリ3は、電気自動車100に電気エネルギーを供給するもので、主バッテリ2にはインバータ3が接続され、直流出力をインバータ3に供給する。
【0011】
インバータ3は、複数のスイッチングトランジスタ及びコンデンサを含んで構成され、各スイッチングトランジスタの開閉により直流出力を三相の交流出力に変換して出力する。インバータ3には誘導モータ4が接続されており、三相交流を誘導モータ4に供給する。なお、インバータ3内のスイッチングトランジスタの開閉タイミングはECU1が制御する。
【0012】
誘導モータ4は、駆動輪に接続され、供給された三相交流により回転駆動される。なお、制動時には誘導モータ4は発電機としても機能し、機械エネルギを電気エネルギに変換して回生電力を主バッテリに戻す。
【0013】
充電リレー6は、充電時に閉状態となって外部電源とインバータ3とを接続するリレーであり、その開閉はECU1で制御される。
【0014】
一方、充電回路系は、外部電源に接続されるコンセント14と、漏電遮断器11を含んで構成されており、外部電源はコネクタ12を介して電気自動車100の充電リレー6に接続(より詳細には、三相外部交流電源のu線及びv線が充電リレー6に接続され、w線が接地される)。
【0015】
漏電遮断器11は、外部電源と電気自動車100の充電リレー6間に設けられており、ホール素子9(ホールセンサ)、漏電リレー10及び検出回路13を含んでいる。ホール素子9は、充電回路の短絡時に電圧信号を出力し、検出回路13はホール素子9からの電圧信号に基づいて漏電リレー10を閉状態から開状態として充電回路を遮断する。
【0016】
また、漏電遮断器11は充電リレー6の閉動作に先立って充電回路を強制的に短絡させる漏電テストリレー7及び漏電抵抗8からなる短絡回路を含んでいる。具体的には、漏電テストリレー7の一端が三相交流電源のu線、v線、w線のうちのv線に接続され、漏電テストリレー7の他端が漏電抵抗8に接続され、漏電抵抗8の他端が三相交流電源のu線に接続されており、漏電抵抗8がホール素子9をまたぐように接続されている。
【0017】
なお、電気自動車(車両)100内には、三相交流電源のu線とv線間の電圧を検出する電圧センサ5が設けられており、検出された電圧VacはECU1に供給される。ECU1は、このVacを監視し、漏電遮断器11が正常に動作するか否かを判定する。
【0018】
本実施形態の回路構成は以上のようであり、以下フローチャートを用いてその動作、特にECU1と短絡回路の動作を詳細に説明する。
【0019】
図2には、本実施形態の動作フローチャートが示されている。電気自動車100が充電モードに移行(例えば、ユーザが充電スイッチをON)した場合、まず漏電リレー10を閉制御し(S101)、コンセント14と車両100側のコネクタ12を接続する。次に、電圧センサ5でu線とv線間の電圧Vacを検出し(S102)、ECU1に供給する。ECU1は、所定のVac値を確認した後、制御信号RAを漏電遮断器11内の漏電テストリレー7に供給する(S103)。
【0020】
漏電テストリレー7に制御信号RAが供給されると、漏電テストリレー7は開状態から閉状態に移行し、三相交流電源のu線とv線を強制的に短絡する。すると、ホール素子9、遮断リレー10及び検出回路13からなる漏電遮断回路が正常に機能する場合には、この短絡を検出して漏電リレー10を閉状態から開状態に移行させ、充電回路を遮断する。この結果、u線とv線間の電圧Vacは0となる。一方、漏電遮断回路が正常に機能しない場合、例えばホール素子9の不具合や検出回路13の故障等により、u線とv線が短絡状態にあるにもかかわらず漏電リレー10が閉状態のまま維持された場合には、u線とv線間の電圧Vacは所定電圧のまま維持される。すなわち、漏電遮断器11が正常に機能する場合にはVacは所定電圧から0Vとなり、正常に機能しない場合にはVacは所定電圧のままとなる。
【0021】
そこで、ECU1は制御信号RAを漏電テストリレー7に出力した後、Vacが0Vとなるか否かを判定する(S104)。そして、Vacが0Vとなった場合には、漏電遮断器11が正常に動作していると判定し、ECU1は制御信号RAをONからOFFとし(S105)、漏電テストリレー7を閉状態から開状態に移行させてu線とv線の短絡状態を解除する。その後、漏電リレー10を開状態から閉状態に移行させて(漏電遮断器11が正常に動作していれば漏電リレー10は開状態となっているため)(S106)、充電リレー6を開状態から閉状態とし(S107)、外部交流電源を用いて主バッテリ2の充電制御を行う(S108)。なお、この充電制御は、具体的にはu線からの交流出力を誘導モータ4を介してインバータ3に供給すると共に、v線からの交流出力をインバータ3に供給し、インバータ3内のスイッチングトランジスタを開閉制御することで交流出力を直流出力に整流し、主バッテリ2を充電する。主バッテリ2の電圧は常にECU1が監視し、所定電圧に達した場合には充電が完了したと判定してインバータ3の駆動を停止する(S109)。
【0022】
図3には、漏電遮断器11が正常に動作する場合のVac信号とRA信号のタイミングチャートが示されている。漏電リレー10を閉制御すると、u線とv線から交流出力が供給されるため、Vacは所定の電圧波形となる。その後、時刻t1においてECU1からRA信号を出力(RA信号をOFFからONとする)すると、漏電遮断器11が正常に機能すれば短絡状態を検出して漏電リレー10が閉状態から開状態となり、Vacは所定電圧から0に移行する。
【0023】
一方、S104にてVacが0Vでない場合、すなわち所定電圧のまま維持されている場合には、漏電遮断器11が正常に機能していないことを意味するから、ECU1は制御信号RAをOFFとし(S110)、充電リレー6を閉制御することなく充電を禁止する。この際、ユーザに漏電遮断器11の異常を報知すべく、運転席等に設けられた異常ランプを点灯させて漏電遮断器11の故障を知らせる(S111)のが好適である。
【0024】
このように、本実施形態においては充電に先立って漏電遮断器が正常に作動するか否かを確認し、正常に作動しない、すなわち充電回路が短絡しても充電回路を遮断しない場合には充電リレー6を閉状態にせず充電を禁止することで、充電動作を円滑に行うことができる。
【0025】
なお、本実施形態においては主バッテリ2と外部電源がトランスを介して分離されていない、いわゆる非アイソレート型回路構成について説明したが、トランスを介して接続されるいわゆるアイソレート型回路にも同様に適用することができる。
【0026】
【発明の効果】
以上説明したように、本発明によれば外部電源と電気自動車間に設けられる漏電遮断器の機能を自動判定し、漏電遮断器が正常に動作しない場合には一律に充電を禁止することで、充電動作を円滑に行うことができる。
【図面の簡単な説明】
【図1】 本発明の実施形態の回路構成図である。
【図2】 本実施形態の動作フローチャートである。
【図3】 本実施形態の制御信号RAと充電電圧Vacのタイミングチャートである。
【符号の説明】
1 電子制御装置(ECU)、2 主バッテリ、3 インバータ、4 誘導モータ、5 電圧センサ、6 充電リレー、7 漏電テストリレー、8 漏電抵抗、9 ホールセンサ、10 漏電リレー、11 漏電遮断器、12 充電コネクタ、13 検出回路、14 コンセント。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a charging device for an electric vehicle, and more particularly to a leakage prevention mechanism for charging a battery of an electric vehicle using an external power source.
[0002]
[Prior art]
Conventionally, an electric vehicle including a battery, an inverter, and an AC motor is known. For example, Japanese Patent Application Laid-Open No. 4-275002, etc., charges a battery using an external AC power source when the voltage between the terminals of the battery decreases. Technology has been proposed. The basic operation of charging is to connect an external AC power supply to the inverter via the connector on the electric vehicle side, open and close the switching transistor in the inverter to rectify the external AC output to DC, and supply the DC output to the battery To charge.
[0003]
Here, when charging the battery, it is assumed that the high voltage system of the charging device has leaked to the body, etc. It is desirable to do.
[0004]
[Problems to be solved by the invention]
However, even if an earth leakage breaker is simply provided, if there is a malfunction in the earth leakage breaker itself, the circuit between the external AC power supply and the electric vehicle will not be interrupted despite the occurrence of earth leakage. This causes a problem that the battery cannot be charged.
[0005]
The present invention has been made in view of the above-described problems of the prior art. The purpose of the present invention is to confirm the operation of a charge breaker provided between an external AC power source and an electric vehicle prior to charging. An object of the present invention is to provide a charging device for an electric vehicle capable of smoothly charging a battery by connecting an external AC power source and the electric vehicle only when operating normally.
[0006]
[Means for Solving the Problems]
The present invention is a charging device for charging the battery of an electric vehicle comprising an battery, an inverter connected to the battery, and an AC motor connected to the inverter using an external power source, A charge relay for connecting an automobile and the external power supply, a leakage breaker provided between the charge relay and the external power supply, and a control means for controlling opening and closing of the charge relay, the leakage breaker, a detector for detecting a short circuit of the charging circuit, and a leakage relay to cut off the charging circuit when a short circuit is detected by the detector, and a short-circuit means for forcibly short-circuiting the front KiTakashi electric circuit, wherein The short-circuit means includes a leakage test relay that is provided separately from the leakage relay and forcibly short-circuits the charging circuit according to a command from the control means, and the control means charges the battery. When the charging relay is closed, the leakage test relay of the short-circuit means is closed to detect the voltage of the charging circuit when the charging circuit is forcibly short-circuited. When it is determined that the leakage relay is not zero and the leakage relay is not operating, it is determined that the leakage relay is abnormal, and the closing operation of the charging relay is prohibited. Further, it is preferable that the control means is constituted by an electronic control device mounted on the electric vehicle.
[0007]
Even if the charging circuit is forcibly shorted prior to the charging operation, the earth leakage relay will not be interrupted, and if the charging circuit cannot be interrupted, the earth leakage breaker is not functioning properly. Charging becomes possible.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0009]
FIG. 1 shows a circuit configuration diagram of the present embodiment. The electric vehicle (vehicle) 100 includes a main battery 2, an inverter 3, an induction motor 4, a charging relay 6, an electronic control unit ECU 1, and a charging connector 12.
[0010]
The main battery 3 supplies electric energy to the electric vehicle 100, and an inverter 3 is connected to the main battery 2 to supply a direct current output to the inverter 3.
[0011]
The inverter 3 includes a plurality of switching transistors and capacitors. The inverter 3 converts the DC output into a three-phase AC output by opening and closing each switching transistor, and outputs the three-phase AC output. An induction motor 4 is connected to the inverter 3 and supplies three-phase alternating current to the induction motor 4. Note that the ECU 1 controls the opening and closing timing of the switching transistor in the inverter 3.
[0012]
The induction motor 4 is connected to drive wheels and is rotationally driven by the supplied three-phase alternating current. In addition, at the time of braking, the induction motor 4 also functions as a generator, converts mechanical energy into electrical energy, and returns regenerative power to the main battery.
[0013]
The charging relay 6 is a relay that is in a closed state during charging and connects the external power source and the inverter 3, and its opening and closing is controlled by the ECU 1.
[0014]
On the other hand, the charging circuit system includes an outlet 14 connected to an external power source and a leakage breaker 11, and the external power source is connected to the charging relay 6 of the electric vehicle 100 via the connector 12 (more in detail). Is connected to the charging relay 6 and the w line of the three-phase external AC power source is grounded).
[0015]
The earth leakage breaker 11 is provided between the external power supply and the charging relay 6 of the electric vehicle 100, and includes a hall element 9 (hall sensor), an earth leakage relay 10, and a detection circuit 13. The Hall element 9 outputs a voltage signal when the charging circuit is short-circuited, and the detection circuit 13 turns off the leakage relay 10 from the closed state to the open state based on the voltage signal from the Hall element 9 to cut off the charging circuit.
[0016]
The earth leakage breaker 11 includes a short circuit comprising an earth leakage test relay 7 and an earth leakage resistance 8 for forcibly shorting the charging circuit prior to the closing operation of the charging relay 6. Specifically, one end of the leakage test relay 7 is connected to the v line of the three-phase AC power supply u line, v line, and w line, and the other end of the leakage test relay 7 is connected to the leakage resistance 8. The other end of the resistor 8 is connected to the u-line of the three-phase AC power supply, and the earth leakage resistor 8 is connected so as to straddle the Hall element 9.
[0017]
In the electric vehicle (vehicle) 100, a voltage sensor 5 for detecting a voltage between the u-line and the v-line of the three-phase AC power supply is provided, and the detected voltage Vac is supplied to the ECU 1. The ECU 1 monitors this Vac and determines whether or not the leakage breaker 11 operates normally.
[0018]
The circuit configuration of the present embodiment is as described above, and the operation thereof, in particular, the operation of the ECU 1 and the short circuit will be described in detail below using a flowchart.
[0019]
FIG. 2 shows an operation flowchart of the present embodiment. When the electric vehicle 100 shifts to the charging mode (for example, the user turns on the charging switch), the leakage relay 10 is first controlled to be closed (S101), and the outlet 14 and the connector 12 on the vehicle 100 side are connected. Next, the voltage sensor 5 detects the voltage Vac between the u line and the v line (S102) and supplies it to the ECU 1. After confirming the predetermined Vac value, the ECU 1 supplies the control signal RA to the leakage test relay 7 in the leakage breaker 11 (S103).
[0020]
When the control signal RA is supplied to the leakage test relay 7, the leakage test relay 7 shifts from the open state to the closed state, and forcibly shorts the u line and the v line of the three-phase AC power supply. Then, when the leakage breaker circuit composed of the Hall element 9, the breaker relay 10 and the detection circuit 13 functions normally, this short circuit is detected and the leakage relay 10 is shifted from the closed state to the open state, thereby interrupting the charging circuit. To do. As a result, the voltage Vac between the u line and the v line becomes zero. On the other hand, if the earth leakage breaker circuit does not function normally, the earth leakage relay 10 is kept closed even though the u line and the v line are short-circuited due to, for example, a malfunction of the Hall element 9 or a failure of the detection circuit 13. In this case, the voltage Vac between the u line and the v line is maintained at a predetermined voltage. That is, when the earth leakage breaker 11 functions normally, Vac changes from a predetermined voltage to 0 V, and when it does not function normally, Vac remains at the predetermined voltage.
[0021]
Therefore, the ECU 1 determines whether or not Vac becomes 0 V after outputting the control signal RA to the leakage test relay 7 (S104). When Vac becomes 0 V, it is determined that the earth leakage breaker 11 is operating normally, the ECU 1 turns the control signal RA from ON to OFF (S105), and the earth leakage test relay 7 is opened from the closed state. The state is shifted to cancel the short-circuit state between the u line and the v line. Thereafter, the leakage relay 10 is shifted from the open state to the closed state (because the leakage relay 10 is open if the leakage breaker 11 is operating normally) (S106), the charging relay 6 is opened. (S107), and charging control of the main battery 2 is performed using an external AC power supply (S108). Specifically, this charging control supplies the AC output from the u line to the inverter 3 via the induction motor 4, and also supplies the AC output from the v line to the inverter 3, and the switching transistor in the inverter 3. The AC output is rectified into a DC output by opening and closing the battery, and the main battery 2 is charged. The voltage of the main battery 2 is always monitored by the ECU 1, and when the voltage reaches a predetermined voltage, it is determined that charging is completed and the drive of the inverter 3 is stopped (S109).
[0022]
FIG. 3 shows a timing chart of the Vac signal and the RA signal when the leakage breaker 11 operates normally. When the leakage relay 10 is controlled to be closed, AC output is supplied from the u line and the v line, so that Vac has a predetermined voltage waveform. Thereafter, when the RA signal is output from the ECU 1 at time t1 (the RA signal is switched from OFF to ON), if the leakage breaker 11 functions normally, the short circuit state is detected and the leakage relay 10 is changed from the closed state to the open state. Vac shifts from a predetermined voltage to zero.
[0023]
On the other hand, if Vac is not 0 V in S104, that is, if the voltage is maintained at a predetermined voltage, it means that the earth leakage breaker 11 is not functioning normally, and thus the ECU 1 turns off the control signal RA ( S110), charging is prohibited without controlling the charging relay 6 to be closed. At this time, in order to notify the user of the abnormality of the earth leakage breaker 11, it is preferable to turn on an abnormality lamp provided in the driver's seat or the like to inform the user of the failure of the earth leakage breaker 11 (S111).
[0024]
Thus, in the present embodiment, prior to charging, it is confirmed whether or not the earth leakage circuit breaker operates normally. If the leakage circuit does not operate normally, that is, the charging circuit is not interrupted even if the charging circuit is short-circuited, charging is performed. By prohibiting charging without closing the relay 6, the charging operation can be performed smoothly.
[0025]
In the present embodiment, a so-called non-isolated circuit configuration in which the main battery 2 and the external power source are not separated via a transformer has been described, but the same applies to a so-called isolated circuit that is connected via a transformer. Can be applied to.
[0026]
【The invention's effect】
As described above, according to the present invention, the function of the earth leakage breaker provided between the external power source and the electric vehicle is automatically determined, and when the earth leakage breaker does not operate normally, charging is uniformly prohibited, The charging operation can be performed smoothly.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram of an embodiment of the present invention.
FIG. 2 is an operation flowchart of the embodiment.
FIG. 3 is a timing chart of a control signal RA and a charging voltage Vac according to the present embodiment.
[Explanation of symbols]
1 Electronic control unit (ECU), 2 main battery, 3 inverter, 4 induction motor, 5 voltage sensor, 6 charging relay, 7 earth leakage test relay, 8 earth leakage resistance, 9 hall sensor, 10 earth leakage relay, 11 earth leakage breaker, 12 Charging connector, 13 detection circuit, 14 outlet.

Claims (2)

バッテリと、該バッテリに接続されたインバータと、該インバータに接続された交流モータとを備える電気自動車の該バッテリを外部電源を用いて充電するための充電装置であって、
前記電気自動車と前記外部電源とを接続する充電リレーと、
前記充電リレーと前記外部電源間に設けられる漏電遮断器と、
前記充電リレーの開閉を制御する制御手段と、
を有し、前記漏電遮断器は、
充電回路の短絡を検出する検出器と、
前記検出器で短絡が検出された場合に充電回路を遮断する漏電リレーと、
記充電回路を強制的に短絡させる短絡手段と、
を有し、
前記短絡手段は、前記漏電リレーとは別個に設けられ前記制御手段からの指令により前記充電回路を強制的に短絡させる漏電テストリレーを含み、
前記制御手段は、前記バッテリを充電する際に、前記充電リレーの閉動作に先だって前記短絡手段の前記漏電テストリレーを閉動作させて前記充電回路を強制短絡させた場合の前記充電回路の電圧を検出し、前記充電回路の電圧がゼロでなく前記漏電リレーが動作していないと判定した場合に、前記漏電リレーが異常であるとして前記充電リレーの閉動作を禁止することを特徴とする電気自動車用充電装置。
A charging device for charging the battery of an electric vehicle using an external power source comprising a battery, an inverter connected to the battery, and an AC motor connected to the inverter,
A charging relay connecting the electric vehicle and the external power source;
An earth leakage circuit breaker provided between the charging relay and the external power source;
Control means for controlling opening and closing of the charging relay;
The earth leakage breaker has
A detector for detecting a short circuit in the charging circuit;
An earth leakage relay that interrupts the charging circuit when a short circuit is detected by the detector;
And shorting means for forcibly short-circuiting the front KiTakashi conductive circuit,
Have
The short-circuit means includes a leakage test relay that is provided separately from the leakage relay and forcibly short-circuits the charging circuit according to a command from the control means,
When charging the battery, the control means closes the leakage test relay of the short-circuit means before closing the charge relay, and forcibly short-circuits the charging circuit. An electric vehicle characterized in that, when the voltage of the charging circuit is detected and it is determined that the leakage relay is not operating, the charging relay is prohibited from closing because the leakage relay is abnormal. Charging device.
請求項1に記載の充電装置であって、The charging device according to claim 1,
前記制御手段は、前記電気自動車に搭載されている電子制御装置によって構成されることを特徴とする電気自動車用充電装置。  The charging device for an electric vehicle, wherein the control means is constituted by an electronic control device mounted on the electric vehicle.
JP00698198A 1998-01-16 1998-01-16 Electric vehicle charger Expired - Fee Related JP3915219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00698198A JP3915219B2 (en) 1998-01-16 1998-01-16 Electric vehicle charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00698198A JP3915219B2 (en) 1998-01-16 1998-01-16 Electric vehicle charger

Publications (2)

Publication Number Publication Date
JPH11205909A JPH11205909A (en) 1999-07-30
JP3915219B2 true JP3915219B2 (en) 2007-05-16

Family

ID=11653370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00698198A Expired - Fee Related JP3915219B2 (en) 1998-01-16 1998-01-16 Electric vehicle charger

Country Status (1)

Country Link
JP (1) JP3915219B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102159421A (en) * 2008-09-22 2011-08-17 丰田自动车株式会社 Abnormality detector of vehicle and vehicle

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4430501B2 (en) * 2004-09-29 2010-03-10 トヨタ自動車株式会社 Power output apparatus and vehicle equipped with the same
JP4679891B2 (en) * 2004-11-30 2011-05-11 トヨタ自動車株式会社 AC voltage generator and power output device
JP2008306817A (en) * 2007-06-06 2008-12-18 Komatsu Utility Co Ltd Working vehicle
JP4894646B2 (en) * 2007-06-15 2012-03-14 トヨタ自動車株式会社 Charging device and charging system
JP5104077B2 (en) 2007-07-04 2012-12-19 トヨタ自動車株式会社 Electric vehicle
EP2184827B1 (en) 2007-07-24 2015-12-09 Panasonic Intellectual Property Management Co., Ltd. Charge monitoring device
JP2009033789A (en) * 2007-07-24 2009-02-12 Panasonic Electric Works Co Ltd Charging monitor
JP4867869B2 (en) * 2007-09-10 2012-02-01 トヨタ自動車株式会社 Charging device and charging method for power storage mechanism
CN101801710B (en) 2007-09-10 2012-07-18 丰田自动车株式会社 Vehicle system start device and vehicle system start method
US8487636B2 (en) 2007-09-10 2013-07-16 Toyota Jidosha Kabushiki Kaisha Malfunction determining apparatus and malfunction determining method for charging system
EP2204894B1 (en) 2007-09-10 2016-03-23 Toyota Jidosha Kabushiki Kaisha Vehicle charger and method for charging vehicle
JP4254894B1 (en) 2007-11-29 2009-04-15 トヨタ自動車株式会社 Charging system and operating method thereof
JP5104520B2 (en) * 2008-04-23 2012-12-19 トヨタ自動車株式会社 Electric vehicle charging device
FR2934217B1 (en) * 2008-07-28 2010-08-13 Renault Sas ELECTRICAL DRIVE CHAIN FOR MOTOR VEHICLE.
CN102177045B (en) 2008-10-09 2013-08-14 丰田自动车株式会社 Connection device
JP4969547B2 (en) 2008-10-14 2012-07-04 トヨタ自動車株式会社 Control device and charge control method
JP5658440B2 (en) * 2009-05-21 2015-01-28 株式会社東芝 Electric vehicle control device
JP5257318B2 (en) * 2009-10-07 2013-08-07 トヨタ自動車株式会社 Electric car
DE102009045756A1 (en) 2009-10-16 2011-04-21 Robert Bosch Gmbh Method and device for controlling the authorization of charging processes of electrically operated vehicles
JP5853165B2 (en) * 2010-07-30 2016-02-09 パナソニックIpマネジメント株式会社 Electric propulsion vehicle charger and leakage check method applied thereto
FR2966652B1 (en) * 2010-10-21 2012-11-02 Renault Sa DEVICE AND METHOD FOR ESTIMATING A TOUCH CURRENT AND PROTECTING AN ELECTRICAL DEVICE AGAINST SUCH CURRENT FEATURES
JP5934905B2 (en) * 2011-03-03 2016-06-15 パナソニックIpマネジメント株式会社 Charging cable for electric propulsion vehicles
JP5796387B2 (en) * 2011-07-21 2015-10-21 日立金属株式会社 Vehicle charging device and vehicle charging system
JP5894427B2 (en) * 2011-12-16 2016-03-30 パナソニック株式会社 Power supply control device
JP5856645B2 (en) * 2014-04-28 2016-02-10 株式会社東芝 Electric vehicle control device
JP5785316B2 (en) * 2014-10-31 2015-09-30 三菱電機株式会社 Power converter
DE102017219438B3 (en) * 2017-10-30 2019-03-28 Te Connectivity Germany Gmbh Current sensor and method for detecting an electric current flow, and charging control unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102159421A (en) * 2008-09-22 2011-08-17 丰田自动车株式会社 Abnormality detector of vehicle and vehicle
CN102159421B (en) * 2008-09-22 2013-02-06 丰田自动车株式会社 Abnormality detector of vehicle and vehicle

Also Published As

Publication number Publication date
JPH11205909A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
JP3915219B2 (en) Electric vehicle charger
CN103097165B (en) Utilize the vehicle of external charging
RU2438887C1 (en) Charging system and method of control thereof
US8513953B2 (en) Power supply device and method for making decision as to contactor weld of power supply device
WO2009004920A1 (en) Electric vehicle
JP3729228B2 (en) Electric leakage prevention control device for air conditioner for electric vehicle
CN105811561A (en) Electric power storage system
EP2189733B1 (en) Heater Controller and method for operating a heater controller
WO2007122671A1 (en) Electric car control apparatus
JP2002044802A (en) Ground-fault interrupter and its control method for hybrid electric vehicle
JP2002191102A (en) Power supply device for vehicle and controlling device thereof
JP3168191B2 (en) Charging device
JP4332172B2 (en) Control device for vehicle alternator
JP3819557B2 (en) Electric power supply control device for electric auxiliary vehicle
JP5332629B2 (en) Electric vehicle charging system
JP2003503998A (en) Battery system
JPH09233836A (en) Inverter device
US20230396052A1 (en) Arc suppression pre-charge circuit
JP3394217B2 (en) Electric vehicle control device and contactor control method
JP3640682B2 (en) Battery connection control device for electric vehicle
JP3954265B2 (en) Power converter for vehicle
JP3705278B2 (en) Battery connection control device for electric vehicle
JPH09215340A (en) Circuit for inverter
JP3895699B2 (en) Discharge device for vehicle
JP7338549B2 (en) vehicle power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees