JP3915137B2 - Voltage controlled oscillator - Google Patents

Voltage controlled oscillator Download PDF

Info

Publication number
JP3915137B2
JP3915137B2 JP15153596A JP15153596A JP3915137B2 JP 3915137 B2 JP3915137 B2 JP 3915137B2 JP 15153596 A JP15153596 A JP 15153596A JP 15153596 A JP15153596 A JP 15153596A JP 3915137 B2 JP3915137 B2 JP 3915137B2
Authority
JP
Japan
Prior art keywords
voltage
control
circuit
current
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15153596A
Other languages
Japanese (ja)
Other versions
JPH09312521A (en
Inventor
好明 松本
重久 黒後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP15153596A priority Critical patent/JP3915137B2/en
Publication of JPH09312521A publication Critical patent/JPH09312521A/en
Application granted granted Critical
Publication of JP3915137B2 publication Critical patent/JP3915137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、FM変調回路、位相変調回路、シンセサイザ装置の周波数切替回路などで使用される電圧制御型発振回路に関し、特に制御電圧と発振周波数との関係におけるリニア特性を向上した電圧制御型発振回路に関する。
【0002】
【従来の技術】
FM変調回路、位相変調回路、シンセサイザ装置の周波数切替回路などで使用される電圧制御型発振回路の1つとして従来から図8に示す回路が知られている。
この図に示す電圧制御型発振回路101は、発振周波数の制御を行なう水晶振動子102と、一端が水晶振動子102の一端に接続され他端子が接地点に接続される抵抗103と、アノードが水晶振動子102の一端に接続されるバイアブルキャパシター(バラクタ・ダイオード)104と、一端が前記バイアブルキャパシター104のカソードに接続され他端が制御電圧入力端子105に接続される抵抗106と、カソードが抵抗106とバイアブルキャパシター104との接続点に接続され、アノードが共通入力端子107に接続されるバイアブルキャパシター108と、入力端子が水晶振動子102の他端に接続され出力端子が信号出力端子109に接続される増幅器110と、一端が水晶振動子102の前記他端に接続されるコンデンサ111と、一端が前記コンデンサ111の他端に接続され他端がバイアブルキャパシター108のアノードに接続されるコンデンサ112と、一端が各コンデンサ111、112の接続点と増幅器110の一端に接続され他端がバイアブルキャパシター108のアノードに接続される抵抗113とを備えている。このように構成された電圧制御発振回路は制御電圧入力端子105と、共通入力端子107との間に印加される制御電圧の値に応じて各バイアブルキャパシター104、108の容量を変化させて発振周波数を制御し、これによって得られた発振信号を信号出力端子109から出力する。
可変容量素子としては、一般的に傾斜接合型バイアブルキャパシターや階段接合型バイアブルキャパシターが使用されるが、これらは両端の印加電圧に反比例して容量値が変化し、上記回路においては図9に示す如く制御電圧入力端子105と、共通入力端子107との間に印加される制御電圧が高くなるほど、信号出力端子109から出力される発振周波数が上昇し、逆に制御電圧が低くなるほど発振周波数が低下する。
【0003】
【発明が解決しようとする課題】
しかしながらこの時、特性曲線114の両端すなわち制御電圧の値が高い部分、制御電圧の値が低い部分では、変化が飽和し非直線となり、制御電圧を変化しても発振周波数がほとんど変化しない。従って電圧制御型発振回路101を例えばAFC回路(Automatic Frequency Control Circuit )として機能させた場合や、制御電圧が低い部分や高い部分で発振周波数の制御が不能となる。また前記電圧制御型発振回路101をFM変調回路として機能させた場合は変調信号振幅が小さい部分と大きい部分の被変調出力波形が歪むという問題があった。
このようなところから、このような電圧制御型発振回路101をAFC回路やFM変調回路などに組み込んで使用する場合、従来、図9に示す特性曲線114の直線と見なせる部分のみを利用するようにしてこのような不都合が発生しないようにしている。
しかしながら、このような方法では図9に示す如く特性曲線114の直線と見なせる部分が僅かしかないことから、発振周波数の可変範囲が狭くなるという問題があった。
そこで、このような問題を解決する方法として、従来図10に示す如く低感度のバイアブルキャパシターの特性曲線116に比べて、傾きの大きな高感度特性曲線115をもつバイアブルキャパシターを使用して制御感度を高くし、これによって印加電圧の変化に対する発振周波数の変化量を大きくすることも考えられているが、このようにすると、雑音を拾い易くなってS/Nが劣化し、外乱に対して弱くなるという問題がある。また更には、直線部分であっても詳細に見れば、非直線性を含んでおり、同様に歪みを発生していた。
本発明は上記の事情に鑑みてなされたものであり、耐雑音性を保ちつつ、しかも広い範囲にわたって、制御電圧−発振周波数特性をリニアにすることができる電圧制御型発振回路を提供することを目的としている。
【0004】
【課題を解決するための手段】
上記の目的を達成するために本発明の電圧制御型発振回路は、入力された制御電圧に応じて電圧制御可変リアクタンス素子のリアクタンスを可変して、発振回路の発振周波数を制御する電圧制御型発振回路部と、該電圧制御型発振回路の制御電圧−発振周波数特性に於ける非直線特性と逆の非直線特性を有する電圧−周波数変換特性線形補償回路と、を備え、前記電圧−周波数変換特性線形補償回路は、制御電圧を第1制御電流に変換する第1電圧制御電流源回路と、該第1電圧制御電流源回路から出力される第1制御電流を対数関数的に第1制御電圧に変換する第1電流制御非線形素子と、前記制御電圧を入力電圧とし、該入力電圧の傾きの極性を逆にした係数を有する電圧を出力する電圧反転回路と、該電圧反転回路から出力される反転制御電圧を第2制御電流に変換する第2電圧制御電流源回路と、該第2電圧制御電流源回路から出力される第2制御電流を対数関数的に第2制御電圧に変換する第2電流制御非線形素子と、該第2電流制御非線形素子から出力される第2制御電圧と前記第1電流制御非線形素子から出力される第1制御電圧との差の電圧を生成する引き算回路と、を備えていることを特徴とする。
また本発明の電圧制御型発振回路は、前記電圧制御型発振回路部を構成する発振素子として、水晶振動子、圧電振動子、LC発振回路のいずれかを使用することを特徴とする。
【0005】
【発明の実施の形態】
以下、本発明を図面に示した形態例に基づいて詳細に説明する。
図1は本発明による電圧制御型発振回路の一形態例を示すブロック図である。この図に示す電圧制御型発振回路1は、従来から用いられている電圧制御型発振回路部3とこれに供給する周波数制御電圧信号値に所要の修正を施すための線型補償回路2から成り、前記電圧制御型発振回路部3は上述したように制御電圧−発振周波数特性が例えば図2(b)の特性曲線5で示す如く制御電圧が低い領域および高い領域で入力電圧(制御電圧V C)の変化率に対する周波数の変化率が小さくなる。また、前記線型補償回路2は前記電圧制御型発振回路本体3の制御電圧−発振周波数特性の被線型部分を補償する電圧変換特性、例えば図2(a)の特性曲線4に示す如く入力電圧が低い領域および高い領域において入力電圧の変化率に対する出力電圧の変化率が高くなる電圧変換特性を持っている。入力される制御電圧VC は図2(a)の破線にて示すもので、これを電圧変換して同図(a)実線の特性とし前記電圧制御型発振回路部3に供給する。
【0006】
このように、この形態例では、線形補償回路2によって、図2(a)実線に示す電圧変換特性の制御電圧V′C を生成し、これを図2(b)に示す制御電圧−発振周波数特性を持つ電圧制御型発振回路部3に入力すれば、夫々の非直線性回路全体の制御電圧−発振周波数特性を、図2(C)の特性曲線6に示す如く制御電圧の小さい値から大きな値の広範囲にわたってリニアな制御電圧−発振周波数特性を実現することができる。この結果、制御電圧V Cが低領域及び高領域を含み、制御電圧V Cの変化に対する発振周波数の変化率を一定にして、リニアリティに優れたダイナミックレンジを拡大することができる。
【0007】
図3は上述した電圧制御型発振回路1で使用される線形補償回路2の詳細な構成例を示すブロック図である。
この図に示す線形補償回路2は、入力された制御電圧VCに比例した第1制御電流I1を生成する第1電圧制御電流源回路7と、前記第1電圧制御電流源回路7の出力電流I1に基づいて非線形電圧を発生する第1電流制御非線形素子9と、前記制御電圧VCを入力電圧とし、該入力電圧の傾きの極性を逆にした係数を有する電圧を出力する電圧反転回路10と、この電圧反転回路10の出力電圧(VK−VC)に比例した第2の制御電流I2を生成する第2電圧制御電流源回路11と、該回路の出力電流I2に基づいて非線形電圧を発生する第2電流制御非線形素子12と、前記第1及び第2電流制御非線形素子9、12の出力電圧の差を出力する引き算回路13とを含んで構成したものである。
上記構成において最も特徴的な部分は、第1及び第2電流制御非直線素子9及び12に直線性を有する電流値を供給すると、その入力端子電圧が所望の非直線特性を有するように機能することである。この非直線特性は後述するが、後段の電圧制御型発振部3の非直線特性と対応するもので、結果的に該電圧制御型発振部の非直線歪を補償し、総合的に直線特性を改善するように機能するものである。
前記第1及び第2電流制御非線形素子9と12は、例えば夫々図4に示すように第1及び第2制御電流I、I2の値が小さい領域においては出力電圧VCの変化が急峻であるが、電流値が大きくなるにつれて出力電圧VCの変化が小さくなるような対数関数的電流/電圧特性を有している。このような関係を得る一つの手段としては、例えばダイオ−ドやトランジスタのべ−ス・エミッタ特性等が利用可能である。
【0008】
上記のように構成された線形補償回路2では、第1電圧制御電流源回路7において入力された制御電圧V Cに比例した電流値の第1制御電流I1 を生成し、第1電流制御非線形素子9に供給する。この非線形素子9は図4に示す如く第1制御電流I1 を対数関数特性で第1制御電圧VC1に変換する。一方、電圧反転回路10に供給された前記制御電圧V Cは、その大小関係を反転され、(VK −V C)なる電圧値となり、第2電圧制御電流源回路11によって比例した第2制御電流I2 を生成する。この電流I2 は第2電流制御非線形素子12によって図4に示すように対数関数特性的に第2制御電圧VC2に変換される。前記2つの非線形素子9、12の出力、即ち第1制御電圧VC1と第2制御電圧VC2は引き算回路13によって減算され、この差電圧を制御電圧V’C として出力する。
【0009】
これにより、入力制御電圧V Cの電圧値が小さい領域では、第1電圧制御電流源回路7、第1電流制御非線形素子9によって作出される制御電圧VC1を非線形とし、また前記制御電圧V Cの電圧値が高い領域では、電圧反転回路10、第2電圧制御電流源回路11、第2電流制御非線形素子12によって作出される制御電圧VC2を非線形とする。故にこれらを合成したV’C は図2(a)に示すような電圧変換特性を持ったものとなり、この制御電圧V’C が前記電圧制御型発振回路本体3に入力される。その結果、図2(b)の特性をもつ電圧制御型発振回路の非直線歪が、それを互いに逆の非直線性となる図2(a)の特性に相殺されて同図(c)の如く非直線性が補償されて上記線形補償回路2を構成する第1電圧制御電流源回路7、第1電流制御非線形素子9、第2電圧制御電流源回路11、第2電流制御非線形素子12、引き算回路13としては、例えば図5に示す回路などが使用される。
【0010】
この図に示す第1電圧制御電流源回路7は、増幅動作を行ない、電流発生素子として機能する第1演算増幅器15と、一端が第1演算増幅器15の反転入力端子に接続され他端が接地点に接続され増幅率決定用素子として機能する抵抗16と、一端が第1演算増幅器15の反転入力端子に接続され他端が第1演算増幅器15の出力端子に接続され増幅率決定素子として機能する抵抗17と、一端が制御電圧決定用の可変抵抗18に接続され他端が第1演算増幅器15の非反転入力端子に接続され接地電圧入力用素子として機能する抵抗19と、一端が第1演算増幅器15の出力端子に接続され電流値検出素子として機能する抵抗20と、反転入力端子と出力端子とが接続され非反転入力端子が抵抗20の他端に接続され電圧バッファとして機能する第2演算増幅器21と、一端が第2演算増幅器21の出力端子に接続され他端が第1演算増幅器15の非反転入力端子に接続され検出電圧入力用素子として機能する抵抗22とを備えている。
【0011】
この第1電圧制御電流原回路7は抵抗19を介して供給される制御電圧VC に基づき、制御電圧決定用の可変抵抗18の抵抗値に応じて電流値の第1制御電流I1 を生成し、これを第1電流制御非線形素子9に供給する。
第1電流制御非線形素子9は、コレクタが抵抗23を介して電源24の正電極に接続されエミッタが接地点に接続されベースが抵抗20の他端に接続されるトランジスタ25によって構成されており、第1電圧制御電流源回路7から出力される第1制御電流I1 に応じてベース・エミッタ間電圧(VBE)が変化し、このベース・エミッタ間電圧を第1制御電圧VC1として引き算回路13に供給する。この場合、トランジスタ25のベースに入力されるベース電流の値を横軸にとり、トランジスタ25のベース・エミッタ間電圧を縦軸にとって両者の関係を図示すると、ベース電流に対して図6の特性曲線26に示す如くなる。即ち、ベース・エミッタ間電圧が対数関数(Log関数)特性となることから、第1制御電流I1 の電流値が“X”であるとき、ベ−ス電圧はLog(X)の値の第1制御電圧VC1となり、これが引き算回路13に供給される。
【0012】
また、第2電圧制御電流源回路11は増幅動作を行ない電流発生素子として機能する第1演算増幅器28と、一端が第1演算増幅器28の反転入力端子に接続され他端が接地点に接続され増幅率決定素子として機能する抵抗29と、一端が第1演算増幅器28の反転入力端子に接続され他端が第1演算増幅器28の出力端子に接続され増幅率決定素子として機能する抵抗30と、一端が制御電圧決定用の可変抵抗18と連動して可変される反転制御電圧決定用の可変抵抗31に接続され他端が第1演算増幅器28の非反転入力端子に接続され接地電圧入力用素子として機能する抵抗32と、一端が第1演算増幅器28の出力端子に接続され電流値検出素子として機能する抵抗33と、反転入力端子と出力端子とが接続され非反転入力端子が抵抗33の他端に接続され電圧バッファとして機能する第2演算増幅器34と、一端が第2演算増幅器34の出力端子に接続され他端が第1演算増幅器28の非反転入力端子に接続され検出電圧入力用素子として機能する抵抗35とを備えている。この第2電圧制御電流源回路11は抵抗32を介して供給される反転された制御電圧に基づいて制御電圧決定用の前記可変抵抗18と連動して調整される可変抵抗31の抵抗値に応じて電流値の第2制御電流I2 を生成し、これを第2電流制御非線形素子12に供給する。
【0013】
第2電流制御非線形素子12は、コレクタが抵抗23を介して前記電源24の正電極に接続されエミッタが接地点に接続されベースが抵抗33の他端に接続されるトランジスタ36によって構成されており、第2電圧制御電流源回路11から出力される第2制御電流I2 に応じてベース・エミッタ間電圧(V BE )が変化し、このベース・エミッタ間電圧を第2制御電圧VC2として、引き算回路13に供給する。
【0014】
この場合、第1電流制御非線形素子9と同様に、トランジスタ36のベースに入力されるベース電流の値を横軸にとり、トランジスタ36のベース・エミッタ間電圧を縦軸にとって図示すると、図6の特性曲線26に示す如く、ベース電流に対して、ベース・エミッタ間電圧が対数関数(Log関数)特性になる。そして、第1制御電流I1 に対して、第2制御電流I2 の電流値が“K−X”となっていることから、定数Kが“1”であると仮定すると、第2制御電流I2 が特性曲線27に示す如く第2制御電流I2 がLog(1−X)の値を持つ第2制御電圧VC2に変換されて、引き算回路13に供給される。なお、定数Kの値を“1”以外の値にしても、特性曲線27の傾向が同じになることは云うまでもない。
【0015】
引き算回路13は、電圧バッファ回路39と、反転増幅回路43と、加算回路49とから構成される。更に、電圧バッファ回路39は反転入力端子と出力端子とが接続された2つの演算増幅器37、38によって構成され、第1、第2電流制御非線形素子9、12から出力される第1、第2制御電圧VC1、VC2を各々、バッファリングする。反転増幅回路43は、非反転入力端子が接地点に接続される1つの演算増幅器40と、一端が前記演算増幅器40の反転入力端子に接続され他端が演算増幅器40の出力端子に接続される帰還用の抵抗41と、一端が演算増幅器40の反転入力端子に接続され他端が前記電圧バッファ回路39を構成する演算増幅器38の出力端子に接続される入力用の抵抗42とによって構成され、電圧バッファ回路39から出力される第2制御電圧VC2を反転させる。又、加算回路49は、増幅動作を行なう演算増幅器44と、一端が演算増幅器44の反転入力端子に接続され他端が接地点に接続される増幅率決定用の抵抗45と、一端が演算増幅器44の出力端子に接続され他端が演算増幅器44の反転入力端子に接続される増幅率決定用の抵抗46と、一端が演算増幅器37の出力端子に接続され他端が演算増幅器44の非反転入力端子に接続される入力用の抵抗47と、一端が演算増幅器40の出力端子に接続され他端が演算増幅器44の非反転入力端子に接続される入力用の抵抗48によって構成され、電圧バッファ回路39から出力される第1制御電圧VC1と前記反転増幅回路43から出力される反転された第2制御電圧VC2とを加算して制御電圧V’C を生成する。
【0016】
この図5に示す回路は電圧バッファ回路39によって第1、第2電流制御非線形素子9、12から出力される第1、第2制御電圧VC1、VC2を電圧バッファリングするとともに、反転増幅回路43によって第2制御電圧VC2を反転した後、加算回路49によって第1制御電圧VC1と、反転済みの第2制御電圧VC2とを加算して制御電圧V’C を生成し、これを電圧制御型発振回路部3に供給する。
この場合、反転増幅回路43によって第2制御電圧VC2が反転されて図7の特性曲線50で示す特性にされ、加算回路49によって図7の特性曲線51で示される第1制御電圧VC1と、前記特性曲線50で示される第2制御電圧VC2とが加算されて図7の特性曲線52で示される特性、すなわち電圧制御型発振回路部3が有する制御電圧−発振周波数特性の非線形特性を補償して、これをリニアにする特性の制御電圧V’C にされ、これが電圧制御型発振回路部3に供給される。
【0017】
このように、この形態例では、電圧制御型発振回路本体3の制御電圧−発振周波数特性と逆特性となる電圧変換特性を持つ線形補償回路2によって、入力制御電圧V Cを電圧変換し、補償した制御電圧V’C で電圧制御型発振回路部3の発振周波数を制御するようにしたので、従来非直線のために利用不可能であった制御電圧が小さい領域と大きい領域を含む広い範囲にわたって、制御電圧−発振周波数特性をリニアにすることができる。従って従来の如く制御感度を大きくすることによって生ずる雑音の増加がない。
この際、電圧制御型発振回路部3の各バイアブルキャパシター(バラクタ・ダイオード)の印加電圧−容量特性の非直線を補償するためにトランジスタ25、36のベース電流−ベース・エミッタ間電圧の非直線性を利用したが、トランジスタ25、36以外の電流制御素子、例えば電流と電圧との関係が対数特性となるダイオードなどを使用して、第1、第2電流制御非線形素子9、12を構成するようにしても良い。
【0018】
また、上述した形態例においては、水晶振動子を用いた電圧制御型発振回路部3を例にして本発明による電圧制御型発振回路1を説明したが、水晶振動子以外の周波数制御素子(発振素子)、例えば他の圧電振動子やLC発振回路などを用いた電圧制御型発振回路においても本発明を適用可能である。
また、上述した形態例においては、トランジスタ25、36などの電流制御素子が持つ対数特性を利用して、電圧制御型発振回路本体3の制御電圧−発振周波数特性曲線と、逆特性となる電圧変換特性曲線を近似するようにしているが、他の近似方法、例えば理想ダイオード回路を使用した折れ線近似で理想的な電圧変換特性曲線を近似する方法、理想的な電圧変換特性曲線のデータをROM回路に記憶させ、制御電圧入力端子に入力された制御電圧V CをA/D変換して得られたデータをアドレスデータとして、前記ROM回路に記憶させているデータを読み出し、これをD/A変換して、制御電圧V’C を得る方法などを使用するようにしても良い。
このようにしても、上述した形態例と同様に、広い範囲にわたって、制御電圧−発振周波数特性をリニアにすることができる。
【0019】
【発明の効果】
以上説明したように本発明によれば、耐雑音を保ちつつ、広い範囲にわたって、制御電圧−発振周波数特性をリニアにすることができる。
【図面の簡単な説明】
【図1】本発明による電圧制御型発振回路の一形態例を示すブロック図である。
【図2】(a)(b)及び(c)は図1に示す線形補償回路の電圧変換特性、電圧制御型発振回路本体の制御電圧−発振周波数特性、電圧制御型発振回路の制御電圧−発振周波数特性の一例を示すグラフである。
【図3】図1に示す線形補償回路の詳細な回路構成例を示すブロック図である。
【図4】図3に示す第1、第2電流制御非線形素子の電流−電圧特性例を示すグラフである。
【図5】図3に示す第1電圧制御電流源回路、第1電流制御非線形素子、第2電圧制御電流源回路、第2電流制御非線形素子、引き算回路の詳細な構成例を示す回路図である。
【図6】図5に示す各トランジスタのベース電流と、ベース・エミッタ間電圧との関係例を示すグラフである。
【図7】図5に示す各トランジスタのベース電流と、制御電圧V’C との関係例を示すグラフである。
【図8】従来から知られている電圧制御型発振回路の一例を示す回路図である。
【図9】図8に示す電圧制御型発振回路の制御電圧−発振周波数特性例を示すグラフである。
【図10】図8に示す電圧制御型発振回路の問題点を解決する際に使用される制御電圧−発振周波数特性例を示すグラフである。
【符号の説明】
1…電圧制御型発振回路、3…電圧制御型発振回路本体、4…特性曲線、5…特性曲線、7…第1電圧制御電流源回路、8…電源ライン、9…第1電流制御非線形素子(電流制御素子)、10…電圧反転回路、11…第2電圧制御電流源回路、12…第2電流制御非線形素子(電流制御素子)、13…引き算回路、14…特性曲線、15…第1演算増幅器、16…抵抗、17…抵抗、18…可変抵抗、19…抵抗、20…抵抗、21…第2演算増幅器、22…抵抗、23…抵抗、24…電源、25…トランジスタ、26…特性曲線、27…特性曲線、28…第1演算増幅器、29…抵抗、30…抵抗、31…可変抵抗、32…抵抗、33…抵抗、34…第2演算増幅器、35…抵抗、36…トランジスタ、37、38…演算増幅器、39…電圧バッファ回路、40…演算増幅器、41…抵抗、42…抵抗、43…反転増幅回路、44…演算増幅器、45…抵抗、46…抵抗、47…抵抗、48…抵抗、49…加算回路、50…特性曲線、51…特性曲線、52…特性曲線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a voltage control type oscillation circuit used in an FM modulation circuit, a phase modulation circuit, a frequency switching circuit of a synthesizer device, and the like, and more particularly, a voltage control type oscillation circuit with improved linear characteristics in the relationship between a control voltage and an oscillation frequency. About.
[0002]
[Prior art]
Conventionally, a circuit shown in FIG. 8 is known as one of voltage controlled oscillation circuits used in an FM modulation circuit, a phase modulation circuit, a frequency switching circuit of a synthesizer device, and the like.
The voltage controlled oscillation circuit 101 shown in this figure includes a crystal resonator 102 for controlling the oscillation frequency, a resistor 103 having one end connected to one end of the crystal resonator 102 and the other terminal connected to a ground point, and an anode A viable capacitor (varactor diode) 104 connected to one end of the crystal unit 102, a resistor 106 having one end connected to the cathode of the viable capacitor 104 and the other end connected to the control voltage input terminal 105, a cathode Is connected to the connection point of the resistor 106 and the viable capacitor 104, the anode is connected to the common input terminal 107, the input terminal is connected to the other end of the crystal unit 102, and the output terminal is a signal output. An amplifier 110 connected to the terminal 109 and a capacitor having one end connected to the other end of the crystal unit 102. The capacitor 111 has one end connected to the other end of the capacitor 111 and the other end connected to the anode of the bipolar capacitor 108, and one end connected to a connection point between the capacitors 111 and 112 and one end of the amplifier 110. The other end is provided with a resistor 113 connected to the anode of the viable capacitor 108. The voltage controlled oscillation circuit configured as described above oscillates by changing the capacitance of each of the bi-directional capacitors 104 and 108 according to the value of the control voltage applied between the control voltage input terminal 105 and the common input terminal 107. The frequency is controlled, and the oscillation signal obtained thereby is output from the signal output terminal 109.
As the variable capacitance element, an inclined junction type bi-directional capacitor or a step junction type bi-directional capacitor is generally used, and the capacitance value thereof changes in inverse proportion to the applied voltage at both ends. As shown, the higher the control voltage applied between the control voltage input terminal 105 and the common input terminal 107, the higher the oscillation frequency output from the signal output terminal 109. Conversely, the lower the control voltage, the higher the oscillation frequency. Decreases.
[0003]
[Problems to be solved by the invention]
However, at this time, the change is saturated and non-linear at both ends of the characteristic curve 114, that is, the portion where the control voltage value is high and the control voltage value is low, and the oscillation frequency hardly changes even if the control voltage is changed. Therefore, when the voltage-controlled oscillation circuit 101 functions as, for example, an AFC circuit (Automatic Frequency Control Circuit), the oscillation frequency cannot be controlled at a portion where the control voltage is low or high. Further, when the voltage controlled oscillation circuit 101 is made to function as an FM modulation circuit, there is a problem that the modulated output waveform of the portion where the modulation signal amplitude is small and the portion where the modulation signal amplitude is large is distorted.
For this reason, when such a voltage-controlled oscillation circuit 101 is incorporated in an AFC circuit or FM modulation circuit, only the portion that can be regarded as a straight line of the characteristic curve 114 shown in FIG. 9 is conventionally used. Such inconvenience does not occur.
However, such a method has a problem that the variable range of the oscillation frequency becomes narrow because there are only a few portions that can be regarded as straight lines of the characteristic curve 114 as shown in FIG.
Therefore, as a method for solving such a problem, control is performed using a bi-directional capacitor having a high-sensitivity characteristic curve 115 having a larger slope than the characteristic curve 116 of the low-sensitivity bi-capacitor as shown in FIG. Although it is also considered to increase the sensitivity and thereby increase the amount of change in the oscillation frequency with respect to the change in the applied voltage, this makes it easier to pick up noise and degrades the S / N, thereby preventing disturbance. There is a problem of weakening. Furthermore, even if it is a straight line part, if it sees in detail, nonlinearity will be included and distortion will be generated similarly.
The present invention has been made in view of the above circumstances, and provides a voltage-controlled oscillation circuit capable of making the control voltage-oscillation frequency characteristics linear over a wide range while maintaining noise resistance. It is aimed.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the voltage controlled oscillation circuit of the present invention is a voltage controlled oscillation circuit that controls the oscillation frequency of the oscillation circuit by varying the reactance of the voltage controlled variable reactance element according to the input control voltage. A voltage-frequency conversion characteristic linear compensation circuit having a non-linear characteristic opposite to the non-linear characteristic in the control voltage-oscillation frequency characteristic of the voltage-controlled oscillation circuit, and the voltage-frequency conversion characteristic The linear compensation circuit includes a first voltage control current source circuit that converts a control voltage into a first control current, and a first control current output from the first voltage control current source circuit in a logarithmic function to the first control voltage. A first current control nonlinear element for conversion; a voltage inverting circuit that outputs a voltage having a coefficient obtained by reversing the polarity of the slope of the input voltage with the control voltage as an input voltage; and an inversion output from the voltage inverting circuit A second voltage controlled current source circuit for converting the control voltage into a second control current, and a second current for logarithmically converting the second control current output from the second voltage controlled current source circuit into a second control voltage A control nonlinear element, and a subtracting circuit that generates a difference voltage between the second control voltage output from the second current control nonlinear element and the first control voltage output from the first current control nonlinear element. It is characterized by.
The voltage controlled oscillation circuit according to the present invention is characterized in that any of a crystal resonator, a piezoelectric resonator, and an LC oscillation circuit is used as an oscillation element constituting the voltage controlled oscillation circuit unit.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings.
FIG. 1 is a block diagram showing an example of a voltage-controlled oscillation circuit according to the present invention. The voltage control type oscillation circuit 1 shown in this figure is composed of a voltage control type oscillation circuit unit 3 used conventionally and a linear compensation circuit 2 for making a necessary correction to the frequency control voltage signal value supplied to the circuit. As described above, the voltage-controlled oscillation circuit unit 3 has an input voltage (control voltage V C ) in a region where the control voltage is low and high as shown by the characteristic curve 5 in FIG. 2B, for example. The rate of change of frequency with respect to the rate of change of becomes smaller. Further, the linear compensation circuit 2 has a voltage conversion characteristic that compensates for the linear part of the control voltage-oscillation frequency characteristic of the voltage controlled oscillator circuit body 3, for example, an input voltage as shown by a characteristic curve 4 in FIG. It has a voltage conversion characteristic in which the change rate of the output voltage is high with respect to the change rate of the input voltage in the low region and the high region. The input control voltage V C is indicated by a broken line in FIG. 2A. This voltage is converted to a solid line characteristic in FIG. 2A and supplied to the voltage controlled oscillation circuit unit 3.
[0006]
As described above, in this embodiment, the linear compensation circuit 2 generates the control voltage V ′ C having the voltage conversion characteristic shown by the solid line in FIG. 2A, which is shown in FIG. 2B as the control voltage-oscillation frequency. If the voltage-controlled oscillation circuit section 3 having the characteristics is input, the control voltage-oscillation frequency characteristics of each nonlinear circuit as a whole are increased from a small value of the control voltage as shown by the characteristic curve 6 in FIG. A linear control voltage-oscillation frequency characteristic can be realized over a wide range of values. As a result, the control voltage V C includes a low region and a high region, and the change rate of the oscillation frequency with respect to the change of the control voltage V C can be made constant, so that the dynamic range with excellent linearity can be expanded.
[0007]
FIG. 3 is a block diagram showing a detailed configuration example of the linear compensation circuit 2 used in the voltage-controlled oscillation circuit 1 described above.
The linear compensation circuit 2 shown in this figure includes a first voltage control current source circuit 7 that generates a first control current I 1 that is proportional to an input control voltage V C , and an output of the first voltage control current source circuit 7. A first current control nonlinear element 9 that generates a nonlinear voltage based on the current I 1 , and a voltage inversion that outputs a voltage having a coefficient in which the polarity of the slope of the input voltage is reversed with the control voltage V C as an input voltage a circuit 10, and the second control current I 2 second voltage control current source circuit 11 for generating proportional to the output voltage (V K -V C) of the voltage inverter circuit 10, the output current I 2 of the circuit This includes a second current control nonlinear element 12 that generates a nonlinear voltage based on it, and a subtraction circuit 13 that outputs the difference between the output voltages of the first and second current control nonlinear elements 9 and 12.
The most characteristic part in the above configuration is that when a linear current value is supplied to the first and second current control nonlinear elements 9 and 12, the input terminal voltage functions so as to have a desired nonlinear characteristic. That is. Although this non-linear characteristic will be described later, it corresponds to the non-linear characteristic of the voltage controlled oscillator 3 in the subsequent stage. As a result, the non-linear distortion of the voltage controlled oscillator 3 is compensated, and the linear characteristic is comprehensively obtained. It works to improve.
In the first and second current control nonlinear elements 9 and 12, for example, as shown in FIG. 4, the change of the output voltage V C is steep in the region where the values of the first and second control currents I and I 2 are small. However, it has a logarithmic current / voltage characteristic in which the change in the output voltage V C decreases as the current value increases. As one means for obtaining such a relationship, for example, a diode or a base / emitter characteristic of a transistor can be used.
[0008]
In the linear compensation circuit 2 configured as described above, a first control current I 1 having a current value proportional to the control voltage V C input in the first voltage control current source circuit 7 is generated, and the first current control nonlinearity is generated. Supply to the element 9. As shown in FIG. 4, the non-linear element 9 converts the first control current I 1 into a first control voltage V C1 with logarithmic function characteristics. On the other hand, the control voltage V C supplied to the voltage inverting circuit 10 is inverted in its magnitude relationship, becomes a voltage value of (V K −V C ), and is proportional to the second control by the second voltage control current source circuit 11. A current I 2 is generated. This current I 2 is converted by the second current control nonlinear element 12 into the second control voltage V C2 in a logarithmic function characteristic as shown in FIG. The outputs of the two non-linear elements 9 and 12, that is, the first control voltage V C1 and the second control voltage V C2 are subtracted by the subtraction circuit 13, and the difference voltage is output as the control voltage V ′ C.
[0009]
As a result, in the region where the voltage value of the input control voltage V C is small, the control voltage V C1 generated by the first voltage control current source circuit 7 and the first current control nonlinear element 9 is made nonlinear, and the control voltage V C In the region where the voltage value is high, the control voltage V C2 generated by the voltage inverting circuit 10, the second voltage control current source circuit 11, and the second current control nonlinear element 12 is nonlinear. Therefore, V ′ C obtained by synthesizing these has voltage conversion characteristics as shown in FIG. 2A, and this control voltage V ′ C is input to the voltage-controlled oscillation circuit body 3. As a result, the non-linear distortion of the voltage controlled oscillation circuit having the characteristics shown in FIG. 2B is offset by the characteristics shown in FIG. The first voltage control current source circuit 7, the first current control nonlinear element 9, the second voltage control current source circuit 11, the second current control nonlinear element 12, and the like, which constitute the linear compensation circuit 2 with the nonlinearity compensated as described above. As the subtraction circuit 13, for example, a circuit shown in FIG.
[0010]
The first voltage controlled current source circuit 7 shown in this figure performs an amplification operation, and has a first operational amplifier 15 that functions as a current generating element, one end connected to the inverting input terminal of the first operational amplifier 15 and the other end connected. A resistor 16 connected to the point and functioning as an amplification factor determining element, and one end connected to the inverting input terminal of the first operational amplifier 15 and the other end connected to the output terminal of the first operational amplifier 15 to function as an amplification factor determining element And a resistor 19 having one end connected to the variable resistor 18 for determining the control voltage and the other end connected to the non-inverting input terminal of the first operational amplifier 15 and functioning as a ground voltage input element. A resistor 20 connected to the output terminal of the operational amplifier 15 and functioning as a current value detecting element, an inverting input terminal and an output terminal are connected, and a non-inverting input terminal is connected to the other end of the resistor 20 to function as a voltage buffer. And a resistor 22 having one end connected to the output terminal of the second operational amplifier 21 and the other end connected to the non-inverting input terminal of the first operational amplifier 15 and functioning as a detection voltage input element. ing.
[0011]
The first voltage control current source circuit 7 generates a first control current I 1 having a current value according to the resistance value of the variable resistor 18 for determining the control voltage based on the control voltage V C supplied through the resistor 19. This is supplied to the first current control nonlinear element 9.
The first current control nonlinear element 9 includes a transistor 25 having a collector connected to the positive electrode of the power supply 24 via a resistor 23, an emitter connected to a ground point, and a base connected to the other end of the resistor 20. The base-emitter voltage (V BE ) changes according to the first control current I 1 output from the first voltage-controlled current source circuit 7, and this base-emitter voltage is used as the first control voltage V C1 as a subtraction circuit. 13 is supplied. In this case, when the value of the base current input to the base of the transistor 25 is taken on the horizontal axis and the base-emitter voltage of the transistor 25 is taken on the vertical axis, the relationship between the two is illustrated. The characteristic curve 26 of FIG. As shown in That is, since the base-emitter voltage has a logarithmic function (Log function) characteristic, when the current value of the first control current I 1 is “X”, the base voltage is the Log (X) value. 1 control voltage V C1 , which is supplied to the subtraction circuit 13.
[0012]
The second voltage controlled current source circuit 11 performs an amplifying operation and functions as a current generating element, and one end is connected to the inverting input terminal of the first operational amplifier 28 and the other end is connected to the grounding point. A resistor 29 functioning as an amplification factor determining element; a resistor 30 having one end connected to the inverting input terminal of the first operational amplifier 28 and the other end connected to the output terminal of the first operational amplifier 28; One end is connected to an inversion control voltage determining variable resistor 31 that is variable in conjunction with the control voltage determining variable resistor 18, and the other end is connected to a non-inverting input terminal of the first operational amplifier 28 to be connected to a ground voltage input element. A resistor 32 that functions as a current value detecting element with one end connected to the output terminal of the first operational amplifier 28, an inverting input terminal and an output terminal, and a non-inverting input terminal serving as a resistor. A second operational amplifier 34 connected to the other end of 33 and functioning as a voltage buffer; one end connected to the output terminal of the second operational amplifier 34; the other end connected to the non-inverting input terminal of the first operational amplifier 28; And a resistor 35 functioning as an input element. This second voltage controlled current source circuit 11 is responsive to the resistance value of the variable resistor 31 adjusted in conjunction with the variable resistor 18 for determining the control voltage based on the inverted control voltage supplied through the resistor 32. The second control current I 2 having a current value is generated and supplied to the second current control nonlinear element 12.
[0013]
The second current control nonlinear element 12 includes a transistor 36 having a collector connected to the positive electrode of the power supply 24 via a resistor 23, an emitter connected to a ground point, and a base connected to the other end of the resistor 33. The base-emitter voltage (V BE ) changes according to the second control current I 2 output from the second voltage control current source circuit 11, and this base-emitter voltage is set as the second control voltage V C2 . This is supplied to the subtraction circuit 13.
[0014]
In this case, similarly to the first current control nonlinear element 9, the value of the base current input to the base of the transistor 36 is plotted on the horizontal axis, and the base-emitter voltage of the transistor 36 is plotted on the vertical axis. As shown by the curve 26, the base-emitter voltage has a logarithmic function (Log function) characteristic with respect to the base current. Since the current value of the second control current I 2 is “K−X” with respect to the first control current I 1 , assuming that the constant K is “1”, the second control current I 2 second control current I 2 is converted to the second control voltage V C2 having a value of Log (1-X) as I 2 is shown by the characteristic curve 27, it is supplied to the subtraction circuit 13. It goes without saying that even if the value of the constant K is a value other than “1”, the tendency of the characteristic curve 27 is the same.
[0015]
The subtraction circuit 13 includes a voltage buffer circuit 39, an inverting amplification circuit 43, and an addition circuit 49. Further, the voltage buffer circuit 39 is constituted by two operational amplifiers 37 and 38 having an inverting input terminal and an output terminal connected, and the first and second current control nonlinear elements 9 and 12 output from the first and second current control nonlinear elements 9 and 12. The control voltages V C1 and V C2 are respectively buffered. The inverting amplifier circuit 43 has one operational amplifier 40 whose non-inverting input terminal is connected to the ground point, one end connected to the inverting input terminal of the operational amplifier 40, and the other end connected to the output terminal of the operational amplifier 40. A feedback resistor 41, and an input resistor 42 having one end connected to the inverting input terminal of the operational amplifier 40 and the other end connected to the output terminal of the operational amplifier 38 constituting the voltage buffer circuit 39; The second control voltage V C2 output from the voltage buffer circuit 39 is inverted. The adder circuit 49 includes an operational amplifier 44 for performing an amplification operation, an amplification factor determining resistor 45 having one end connected to the inverting input terminal of the operational amplifier 44 and the other end connected to a ground point, and one end an operational amplifier. A gain determining resistor 46 connected to the output terminal 44 and the other end connected to the inverting input terminal of the operational amplifier 44, and one end connected to the output terminal of the operational amplifier 37 and the other end non-inverted of the operational amplifier 44. An input resistor 47 connected to the input terminal, an input resistor 48 having one end connected to the output terminal of the operational amplifier 40 and the other end connected to the non-inverting input terminal of the operational amplifier 44, and a voltage buffer The control voltage V ′ C is generated by adding the first control voltage V C1 output from the circuit 39 and the inverted second control voltage V C2 output from the inverting amplifier circuit 43.
[0016]
The circuit shown in FIG. 5 voltage-buffers the first and second control voltages V C1 and V C2 output from the first and second current control nonlinear elements 9 and 12 by the voltage buffer circuit 39 and also uses an inverting amplifier circuit. 43, after the second control voltage V C2 is inverted, the addition circuit 49 adds the first control voltage V C1 and the inverted second control voltage V C2 to generate the control voltage V ′ C , The voltage control type oscillation circuit unit 3 is supplied.
In this case, the second control voltage V C2 is inverted by the inverting amplifier circuit 43 to have the characteristic indicated by the characteristic curve 50 in FIG. 7, and the first control voltage V C1 indicated by the characteristic curve 51 in FIG. The second control voltage V C2 indicated by the characteristic curve 50 is added to obtain the characteristic indicated by the characteristic curve 52 in FIG. 7, that is, the nonlinear characteristic of the control voltage-oscillation frequency characteristic possessed by the voltage controlled oscillation circuit unit 3. The control voltage V ′ C is compensated to make it linear, and is supplied to the voltage controlled oscillation circuit unit 3.
[0017]
As described above, in this embodiment, the input compensation voltage V C is converted into a voltage by the linear compensation circuit 2 having a voltage conversion characteristic that is opposite to the control voltage-oscillation frequency characteristic of the voltage controlled oscillator circuit body 3 to compensate the voltage. Since the oscillation frequency of the voltage-controlled oscillation circuit unit 3 is controlled by the control voltage V ′ C , the control voltage V ′ C can be controlled over a wide range including a region where the control voltage is low and a region that is conventionally unusable due to nonlinearity. The control voltage-oscillation frequency characteristic can be made linear. Therefore, there is no increase in noise caused by increasing the control sensitivity as in the prior art.
At this time, in order to compensate for the non-linearity of the applied voltage-capacitance characteristics of each of the variable capacitors (varactor diodes) of the voltage controlled oscillation circuit unit 3, the non-linearity of the base current-base-emitter voltage of the transistors 25, 36 The first and second current control nonlinear elements 9 and 12 are configured using current control elements other than the transistors 25 and 36, such as a diode having a logarithmic relationship between the current and the voltage. You may do it.
[0018]
Further, in the above-described embodiment, the voltage control type oscillation circuit 1 according to the present invention has been described by taking the voltage control type oscillation circuit unit 3 using a crystal unit as an example. The present invention can also be applied to a voltage-controlled oscillation circuit using an element), for example, another piezoelectric vibrator or an LC oscillation circuit.
Further, in the above-described embodiment, the voltage conversion having the inverse characteristic with the control voltage-oscillation frequency characteristic curve of the voltage-controlled oscillation circuit body 3 using the logarithmic characteristic of the current control elements such as the transistors 25 and 36 is used. Although the characteristic curve is approximated, other approximation methods, for example, a method of approximating an ideal voltage conversion characteristic curve by a polygonal line approximation using an ideal diode circuit, and data of an ideal voltage conversion characteristic curve are stored in a ROM circuit The data obtained by A / D conversion of the control voltage V C input to the control voltage input terminal is read as address data, and the data stored in the ROM circuit is read and converted to D / A conversion. Then, a method of obtaining the control voltage V ′ C may be used.
Even in this case, the control voltage-oscillation frequency characteristic can be made linear over a wide range as in the above-described embodiment.
[0019]
【The invention's effect】
As described above, according to the present invention, the control voltage-oscillation frequency characteristic can be made linear over a wide range while maintaining noise resistance.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an example of a voltage-controlled oscillation circuit according to the present invention.
2 (a), (b) and (c) are voltage conversion characteristics of the linear compensation circuit shown in FIG. 1, control voltage-oscillation frequency characteristics of the voltage-controlled oscillation circuit body, and control voltage of the voltage-controlled oscillation circuit; It is a graph which shows an example of an oscillation frequency characteristic.
FIG. 3 is a block diagram showing a detailed circuit configuration example of the linear compensation circuit shown in FIG. 1;
4 is a graph showing an example of current-voltage characteristics of the first and second current control nonlinear elements shown in FIG. 3;
5 is a circuit diagram showing a detailed configuration example of a first voltage controlled current source circuit, a first current controlled nonlinear element, a second voltage controlled current source circuit, a second current controlled nonlinear element, and a subtracting circuit shown in FIG. 3; is there.
6 is a graph showing an example of the relationship between the base current of each transistor shown in FIG. 5 and the base-emitter voltage.
7 is a graph showing an example of the relationship between the base current of each transistor shown in FIG. 5 and the control voltage V ′ C.
FIG. 8 is a circuit diagram showing an example of a conventionally known voltage-controlled oscillation circuit.
9 is a graph showing an example of control voltage-oscillation frequency characteristics of the voltage controlled oscillation circuit shown in FIG. 8;
10 is a graph showing an example of control voltage-oscillation frequency characteristics used when solving the problem of the voltage controlled oscillation circuit shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Voltage controlled oscillation circuit, 3 ... Voltage controlled oscillation circuit main body, 4 ... Characteristic curve, 5 ... Characteristic curve, 7 ... 1st voltage controlled current source circuit, 8 ... Power supply line, 9 ... 1st current controlled nonlinear element (Current control element) 10 ... Voltage inverting circuit, 11 ... Second voltage control current source circuit, 12 ... Second current control nonlinear element (current control element), 13 ... Subtraction circuit, 14 ... Characteristic curve, 15 ... First Operational amplifier 16 ... resistor 17 ... resistor 18 ... variable resistor 19 ... resistor 20 ... resistor 21 ... second operational amplifier 22 ... resistor 23 ... resistor 24 ... power source 25 ... transistor 26 ... characteristic Curve, 27 ... characteristic curve, 28 ... first operational amplifier, 29 ... resistor, 30 ... resistor, 31 ... variable resistor, 32 ... resistor, 33 ... resistor, 34 ... second operational amplifier, 35 ... resistor, 36 ... transistor, 37, 38 ... operational amplifiers, 39 ... electric Buffer circuit 40 ... Operational amplifier 41 ... Resistor 42 ... Resistor 43 ... Inverting amplifier circuit 44 ... Operational amplifier 45 ... Resistor 46 ... Resistor 47 ... Resistor 48 ... Resistor 49 ... Adder circuit 50 ... Characteristic curve 51 ... Characteristic curve 52 ... Characteristic curve

Claims (2)

入力された制御電圧に応じて電圧制御可変リアクタンス素子のリアクタンスを可変して、発振回路の発振周波数を制御する電圧制御型発振回路部と、該電圧制御型発振回路の制御電圧−発振周波数特性に於ける非直線特性と逆の非直線特性を有する電圧−周波数変換特性線形補償回路と、を備え、
前記電圧−周波数変換特性線形補償回路は、制御電圧を第1制御電流に変換する第1電圧制御電流源回路と、該第1電圧制御電流源回路から出力される第1制御電流を対数関数的に第1制御電圧に変換する第1電流制御非線形素子と、前記制御電圧を入力電圧とし、該入力電圧の傾きの極性を逆にした係数を有する電圧を出力する電圧反転回路と、該電圧反転回路から出力される反転制御電圧を第2制御電流に変換する第2電圧制御電流源回路と、該第2電圧制御電流源回路から出力される第2制御電流を対数関数的に第2制御電圧に変換する第2電流制御非線形素子と、該第2電流制御非線形素子から出力される第2制御電圧と前記第1電流制御非線形素子から出力される第1制御電圧との差の電圧を生成する引き算回路と、を備えていることを特徴とする電圧制御型発振回路。
A voltage-controlled oscillation circuit unit that controls the oscillation frequency of the oscillation circuit by varying the reactance of the voltage-controlled variable reactance element according to the input control voltage, and the control voltage-oscillation frequency characteristic of the voltage-controlled oscillation circuit A voltage-frequency conversion characteristic linear compensation circuit having a non-linear characteristic opposite to the non-linear characteristic in
The voltage-frequency conversion characteristic linear compensation circuit includes a first voltage control current source circuit that converts a control voltage into a first control current, and a first control current output from the first voltage control current source circuit in a logarithmic manner. A first current control nonlinear element that converts the first control voltage into a first control voltage, a voltage inverting circuit that uses the control voltage as an input voltage, and outputs a voltage having a coefficient that reverses the polarity of the slope of the input voltage, and the voltage inversion A second voltage control current source circuit that converts the inverted control voltage output from the circuit into a second control current, and a second control voltage that is logarithmically converted to the second control current output from the second voltage control current source circuit. A second current control nonlinear element to be converted into a voltage, and a difference voltage between the second control voltage output from the second current control nonlinear element and the first control voltage output from the first current control nonlinear element A subtraction circuit, Voltage-controlled oscillator according to claim and.
請求項1に記載の電圧制御型発振回路において、前記電圧制御型発振回路部を構成する発振素子として、水晶振動子、圧電振動子、LC発振回路のいずれかを使用することを特徴とする電圧制御型発振回路。  2. The voltage controlled oscillation circuit according to claim 1, wherein any one of a crystal resonator, a piezoelectric resonator, and an LC oscillation circuit is used as an oscillation element constituting the voltage controlled oscillation circuit unit. Control type oscillation circuit.
JP15153596A 1996-05-23 1996-05-23 Voltage controlled oscillator Expired - Lifetime JP3915137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15153596A JP3915137B2 (en) 1996-05-23 1996-05-23 Voltage controlled oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15153596A JP3915137B2 (en) 1996-05-23 1996-05-23 Voltage controlled oscillator

Publications (2)

Publication Number Publication Date
JPH09312521A JPH09312521A (en) 1997-12-02
JP3915137B2 true JP3915137B2 (en) 2007-05-16

Family

ID=15520645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15153596A Expired - Lifetime JP3915137B2 (en) 1996-05-23 1996-05-23 Voltage controlled oscillator

Country Status (1)

Country Link
JP (1) JP3915137B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3789258B2 (en) 1999-09-08 2006-06-21 日本電気株式会社 Voltage controlled oscillator
KR100416606B1 (en) * 2001-10-08 2004-02-05 삼성전자주식회사 Voltage controlled oscillator having wide linear transfer characteristics
JP4755193B2 (en) * 2005-10-21 2011-08-24 パナソニック株式会社 FM modulator
JP4978134B2 (en) * 2006-09-28 2012-07-18 ミツミ電機株式会社 Voltage controlled oscillator
JP4689754B2 (en) * 2007-08-28 2011-05-25 富士通株式会社 Phase-locked oscillator and radar apparatus including the same
JP6445918B2 (en) * 2015-04-13 2018-12-26 新日本無線株式会社 Integral A / D Converter and Integral A / D Conversion Method

Also Published As

Publication number Publication date
JPH09312521A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
US7057456B2 (en) Class D amplifier
EP0524008B1 (en) Transmitter with nonlinearity correction circuits
US5907261A (en) Method and apparatus for controlling signal amplitude level
JPH0993059A (en) Agc equipment
JP3915137B2 (en) Voltage controlled oscillator
JPH09261102A (en) Amplitude correction circuit
US3641463A (en) Linearity compensation for a voltage-controlled oscillator
JPS584482B2 (en) battlera oscillator
AU597201B2 (en) Frequency modulator
JP3714481B2 (en) Equilibrium companding delta transform of homodyne receiver
JPH08316759A (en) Broad band amplifier
US5146224A (en) Ac signal generating apparatus for voltage and current standard
JP2009075060A6 (en) Physical quantity sensor
US6545557B2 (en) FM signal oscillator circuit and modulation level control method
JP2981953B2 (en) Linear transmission circuit
JPS58103207A (en) Power supply circuit of amplifier
JP2610269B2 (en) Variable phase compensator
JP2993218B2 (en) Temperature compensated oscillator
US3339156A (en) Amplitude stabilized alternating current generator
JPH0218602Y2 (en)
JP3571920B2 (en) FM modulation circuit
JP3992512B2 (en) Electronic circuit equipment
RU2115225C1 (en) Push-pull current amplifier
JP2536412B2 (en) Optical AGC circuit
SU1478291A1 (en) Wide bandwidth amplifier

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

EXPY Cancellation because of completion of term