JP3913900B2 - Method and apparatus for inspecting external dimensions of electrolytic copper pile - Google Patents

Method and apparatus for inspecting external dimensions of electrolytic copper pile Download PDF

Info

Publication number
JP3913900B2
JP3913900B2 JP17092198A JP17092198A JP3913900B2 JP 3913900 B2 JP3913900 B2 JP 3913900B2 JP 17092198 A JP17092198 A JP 17092198A JP 17092198 A JP17092198 A JP 17092198A JP 3913900 B2 JP3913900 B2 JP 3913900B2
Authority
JP
Japan
Prior art keywords
pile
copper
electric copper
height
inspecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17092198A
Other languages
Japanese (ja)
Other versions
JP2000002513A (en
Inventor
晃次 乃田
隆治 鬼塚
克則 出家
伸一 濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP17092198A priority Critical patent/JP3913900B2/en
Publication of JP2000002513A publication Critical patent/JP2000002513A/en
Application granted granted Critical
Publication of JP3913900B2 publication Critical patent/JP3913900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気銅製造ラインの最終工程における製品検査に関し、詳しくは、電気銅を所定枚数パイリングした電気銅パイルの外形寸法検査方法および装置に関する。
【0002】
【従来の技術】
電気銅は、銅鉱石を溶解精製し、これを板状の鋳銅材(粗銅)として鋳造し、この粗銅をアノード(陽極)とし、別に用意したカソード(陰極)板と交互に電解槽に一定間隔で並べて装入し、カソード板に電気銅を析出堆積することで製造される。
【0003】
このようにして製造された電気銅の外観形状を図3に示す。電気銅1は、略1m四方、厚さ10〜20mmの板であり、前述の電解槽での処理のため、吊り手2が取り付けられている。
この電気銅を出荷するに際しては、20枚程度の所定枚数を客先の指定に応じてパイリングし、電気銅パイルとして出荷する。
【0004】
電気銅の外観検査は、通常の製造ラインの中で行われる為、前述のように電気銅パイルの状態にて検査が行われる。検査内容は、板間をのぞき込み板間に粒塊がないことを目視検査する。さらに、板の間隔あるいはその累積高さなどを目測して検査基準と比較して電気銅パイルの合否判定が行われる。
【0005】
【発明が解決しようとする課題】
従来、この電気銅パイルの外観検査は、もっぱら作業員の目視という官能検査に頼っており、そのため検査に時間を要していた。
特に、電気銅枚数が少ないパイルの生産が集中する場合は、操業時間が長引き、ひいては電槽の通電開始が遅れるなど、生産性の低下を招くこともあった。
【0006】
本発明は、外観検査を作業員による板間の目視検査あるいはパイル高さの目視検査ではなく、パイルの外形寸法で判定をするきわめて検出精度に優れ、また迅速な電気銅パイルの外形寸法検査方法および装置を提供することで以上の課題を解決するものである。
【0008】
【課題を解決するための手段】
本発明は、電気銅の銅板をパイリングした電気銅パイルのパイル形状を検査する電気銅パイルの外形寸法検査方法および装置であって、該電気銅パイルの各コーナー部の高さを測定し、測定した吊り手側2個所のコーナー部高さをa、b、測定した反対側2個所のコーナー部高さをc、dとし、測定した各コーナー部高さa、b、c、dが許容高さ未満であり、かつ、下記不等式を両方満たすとき、迅速に該電気銅パイルの品質を合格と判定するようにして上記課題を解決したのである。

|a−b|<吊り手側同士の許容差
min (a,b)− max (c,d)>吊り手側の低い方と反対側の高い方との許容差
【0009】
【発明の実施の形態】
電気銅が正常にパイリングされた良品パイルの側面図を図4(a)に示す。一方、図4(b)は、粒塊5がある場合の不良パイルの側面図である。
図4では、20mm厚の電気銅1が5枚パイリングされ、ベース3に載荷された状態が例示されている。電気銅1には、それぞれ吊り手2が取り付けられているため、図示のように1枚づつ傾きをもってパイリングされることになる。
【0010】
図4には、電気銅パイル上面の任意に設定した基準線4からの距離を例示している。良品パイルである(a)の場合は、吊り手2側の基準線4からの距離は、120mm であり、その反対側の距離は160mm となっている。しかし、パイルの間に粒塊5が挟み込まれた不良パイルでは、それぞれ110mm 、100mm となり、パイルの吊り手と反対側の高さも良品パイルの100mm に対して、160mm となっている。
【0011】
このようにして、挟み込まれた粒塊によって電気銅パイルの高さが変わってくることから、電気銅パイルの高さ管理をすることで挟み込まれた粒塊の有無を知ることができ、電気銅パイルの品質の良不良が判定できる。
ただし、すでに説明したように、電気銅パイルの吊り手側端部とその反対側端部とで幾分高さが異なることに注意が必要である。
【0012】
電気銅パイルの高さ管理は、この吊り手側端部とその反対側端部の2個所の高さを管理することで実現できる。つまり、図2の高さb(又はa)と高さc(又はd)を管理することで良不良の判定が行える。具体的には、高さb(又はa)の許容限界位置の直上と、高さc(又はd)の許容限界位置の直上にビームが通るようにそれぞれ在荷検出装置である光電センサを配置し、それらのセンサが遮光されるかどうかで良不良の判定を行うのである
【0013】
更に厳密に良不良の判定を行うためには、図2のA〜Dそれぞれのコーナー部高さを独立に測定するようにしても良い。具体的には、A〜Dそれぞれのコーナー部の直上にレーザ距離計を設け、それぞれのレーザ距離計で各コーナー部までの距離測定を行うのである。
この場合、得られた距離測定値a〜dがある設定された許容高さ以下、かつ、それぞれの差が設定された許容差以下であるときにパイル形状すなわちパイルされた電気銅の品質を良とする。
【0014】
この合格判定ロジックの一例を次に示す。
得られた距離測定値をa〜dとして、
(aororord)<620mm …(1)
|a−b|<20mm …(2)
min(a,b)−max (c,d)>10mm …(3)
の判定を行う。 ただし、上記(1)〜(3)式で示した寸法値は、ある一例を示す例示であり、電気銅パイルの仕様毎に異なる値とされる。また、高さについてはパイル高さを直接測定してもよいし、基準点からパイル上端の距離を測定して演算でパイル高さを間接的に測定してもよく、どちらでもよい。
【0015】
そして、(1)〜(3)式をいずれも満足する場合にそのパイルを良と判定する。また、このいずれかの条件式を外れる場合は、そのパイルは不良と判定される
【0016】
さらに詳細に電気銅パイルの形状判定を行うためには、一次元ラインセンサ、画像センサ等を適用して電気銅パイル側面の計測を行い、図2に示すb1、b2、b3とc1、c2、c3の端点をそれぞれ抽出して電気銅1枚毎の隙間測定を行うようにしても良い。このようにすることで、きわめて精密に電気銅パイルの良不良判定を行うことができるようになる。
【0017】
【実施例】
図1に、本発明の電気銅パイルの外形寸法検査装置を示す。(a)は平面図であり、(b)は正面図である。
電気銅パイル1aの高さ方向の許容高さ限界位置直上にビームが通るように光電センサ11a 、11b と11d 、11c が設置されている。図1(b)では、紙面の反対側に電気銅1の吊り手2があり、そのため、光電センサも11d 、11c の設置高さの方が11a 、11b の設置高さより幾分高くなっている。ここで、光電センサ11a 、11b 、11c 、11d はそれぞれ支柱14に固設されている。
【0018】
また、レーザ距離計12a 、12b 、12c 、12d が梁13に固設され、電気銅パイル上面の各コーナー部までの距離を測定するように配置されている。ここで、図1(a)においては、図を見やすくするため、梁13の記載を省略している。15は、外形寸法検査装置の判定処理等を行う制御盤である。
電気銅パイル1aは、搬送ラインを搬送されてきて、本発明の外形寸法検査装置に載荷される。そして、まず光電センサ11a 、11b と11d 、11c で測定が行われ、不良と判定されたときに、更に、各コーナー部のレーザ距離計12a 、12b 、12c 、12d で詳細な判定が行われ、最終的な合否判定がされる。
【0019】
ここで、光電センサによる判定と、レーザ距離計による判定は、いずれかのみを行うようにしても良く、簡便には、光電センサによる判定だけを行うようにしても良い。
【0020】
【発明の効果】
本発明によって、電気銅製造ラインの省力化および生産性向上を達成することができた。
【図面の簡単な説明】
【図1】本発明の電気銅パイルの外形寸法検査装置の構成を示す平面図(a)と、正面図(b)である。
【図2】電気銅パイルの測定個所を示す説明図である。
【図3】電気銅の外形寸法を示す平面図(a)と側面図(b)である。
【図4】電気銅パイルの側面図であり、(a)は正常のパイル形状を示し、(b)は粒により形状不良となったパイル形状を示す。
【符号の説明】
1 電気銅
1a 電気銅パイル
2 吊り手
3 ベース
4 基準線
5 粒塊
11a 、11d 在荷検出装置(光電センサ(投光器))
11b 、11c 在荷検出装置(光電センサ(受光器))
12a 、12b 、12c 、12d レーザ距離計
13 梁
14 支柱
15 制御盤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a product inspection in a final process of an electrolytic copper production line, and more particularly to an external dimension inspection method and apparatus for an electrolytic copper pile obtained by piling a predetermined number of electrolytic copper.
[0002]
[Prior art]
For electrolytic copper, copper ore is dissolved and refined, cast into a plate-shaped cast copper material (crude copper), and this crude copper is used as an anode (anode). It is manufactured by charging side by side and depositing electrolytic copper on the cathode plate.
[0003]
The external shape of the electrolytic copper manufactured in this way is shown in FIG. The electric copper 1 is a plate of approximately 1 m square and a thickness of 10 to 20 mm, and a hanger 2 is attached for processing in the above-described electrolytic cell.
When this electrolytic copper is shipped, a predetermined number of about 20 sheets are piled according to the customer's designation and shipped as an electrolytic copper pile.
[0004]
Since the appearance inspection of the electrolytic copper is performed in a normal production line, the inspection is performed in the state of the electrolytic copper pile as described above. The inspection content is a visual inspection of the absence of agglomerates between the plates by looking between the plates. Furthermore, pass / fail judgment of the electrolytic copper pile is performed by measuring the distance between the plates or the accumulated height thereof and comparing with the inspection standard.
[0005]
[Problems to be solved by the invention]
Conventionally, the appearance inspection of this electric copper pile has relied solely on the sensory inspection of the operator's visual inspection, and therefore it took time for the inspection.
In particular, when the production of piles with a small number of electrolytic coppers is concentrated, the operation time may be prolonged and the start of energization of the battery case may be delayed.
[0006]
The present invention is not a visual inspection between plates or a visual inspection of pile height by an operator, but a method of inspecting the external dimensions of an electric copper pile that is extremely excellent in detection accuracy and makes a determination based on the external dimensions of the pile. And the above-mentioned subject is solved by providing a device.
[0008]
[Means for Solving the Problems]
The present invention provides a Dimensions inspection method and apparatus for electrolytic copper pile for inspecting the pile shape of copper pile was piling the copper of the copper plate, to measure the height of each corner portion of the copper pile, measured The heights of the two corners of the suspended side are a and b, the heights of the corners of the two opposite sides are c and d, and the measured corner heights a, b, c and d are allowable heights. less than is, and when satisfying both of the following inequalities is had to solve the above problems and quickly to be judged to be acceptable the quality of the electrolytic copper pile.
Record
| A-b | <Tolerance on the suspension side
min (a, b) −max (c, d)> Tolerance between lower one on the suspension side and higher one on the opposite side
DETAILED DESCRIPTION OF THE INVENTION
FIG. 4A shows a side view of a good pile in which electrolytic copper is normally piled. On the other hand, FIG. 4B is a side view of a defective pile in the case where there are the agglomerates 5.
FIG. 4 illustrates a state in which five pieces of 20 mm-thick electrolytic copper 1 are piled and loaded on the base 3. Since the suspensions 2 are attached to the electric coppers 1 respectively, they are piled up one by one as shown in the drawing.
[0010]
FIG. 4 illustrates the distance from the arbitrarily set reference line 4 on the upper surface of the electric copper pile. In the case of (a), which is a good pile, the distance from the reference line 4 on the hand 2 side is 120 mm, and the distance on the opposite side is 160 mm. However, defective piles in which the agglomerates 5 are sandwiched between piles are 110 mm and 100 mm, respectively, and the height on the opposite side of the pile suspension is 160 mm compared to 100 mm for good piles.
[0011]
In this way, since the height of the electrolytic copper pile changes depending on the sandwiched agglomerates, it is possible to know the presence or absence of sandwiched agglomerates by controlling the height of the electrical copper pile. The quality of pile can be judged.
However, as already explained, it should be noted that the height of the end portion on the suspension side and the opposite end portion of the electric copper pile are somewhat different.
[0012]
The height management of the electric copper pile can be realized by managing the heights of the two ends of the end portion on the suspension side and the opposite end portion. That is, it is possible to determine good or bad by managing the height b (or a) and the height c (or d) in FIG. Specifically, a photoelectric sensor, which is a load detection device, is arranged so that the beam passes directly above the allowable limit position of height b (or a) and directly above the allowable limit position of height c (or d). Whether the sensors are shielded from light or not is determined as good or bad .
[0013]
Furthermore, in order to make a strict judgment of good or bad, the heights of the corner portions A to D in FIG. 2 may be measured independently. Specifically, a laser distance meter is provided immediately above each corner portion of A to D, and the distance to each corner portion is measured with each laser distance meter.
In this case, when the obtained distance measurement values a to d are not more than a set allowable height and each difference is not more than a set tolerance, the pile shape, that is, the quality of the piled electrolytic copper is good. And
[0014]
An example of this pass determination logic is shown below.
The obtained distance measurement values are a to d,
(A or b or c or d) <620mm (1)
| A−b | <20 mm (2)
min (a, b) -max (c, d)> 10 mm (3)
Judgment is made. However, the dimension value shown by said Formula (1)-(3) is an illustration which shows a certain example, and is taken as a different value for every specification of an electrical copper pile. As for the height, the pile height may be directly measured, or the distance from the reference point to the top edge of the pile may be measured, and the pile height may be indirectly measured by calculation.
[0015]
And when all (1)-(3) formulas are satisfied, the pile is determined to be good. If any of these conditional expressions is not satisfied, the pile is determined to be defective .
[0016]
In order to determine the shape of the electrical copper pile in more detail, the side surface of the electrical copper pile is measured by applying a one-dimensional line sensor, an image sensor, etc., and b 1 , b 2 , b 3 and c shown in FIG. The end points of 1 , c 2 , and c 3 may be extracted to measure the gap for each piece of electrolytic copper. By doing in this way, it becomes possible to determine the quality of the electric copper pile with high precision.
[0017]
【Example】
FIG. 1 shows an apparatus for inspecting the external dimensions of an electric copper pile according to the present invention. (A) is a top view, (b) is a front view.
Photoelectric sensors 11a, 11b and 11d, 11c are installed so that the beam passes immediately above the allowable height limit position in the height direction of the electric copper pile 1a. In FIG. 1 (b), there is a suspender 2 of copper 1 on the opposite side of the paper, so that the installed height of the photoelectric sensors 11d and 11c is somewhat higher than the installed height of 11a and 11b. . Here, the photoelectric sensors 11a, 11b, 11c, and 11d are fixed to the column 14, respectively.
[0018]
Laser distance meters 12a, 12b, 12c and 12d are fixed to the beam 13 and are arranged so as to measure the distances to the corners on the upper surface of the electric copper pile. Here, in FIG. 1A, the description of the beam 13 is omitted for easy understanding of the drawing. Reference numeral 15 denotes a control panel that performs determination processing and the like of the external dimension inspection apparatus.
The electric copper pile 1a has been transported along the transport line and is loaded on the external dimension inspection apparatus of the present invention. First, measurements are performed by the photoelectric sensors 11a, 11b and 11d, 11c, and when it is determined to be defective, further detailed determination is performed by the laser distance meters 12a, 12b, 12c, 12d at each corner, A final pass / fail decision is made.
[0019]
Here, the determination by the photoelectric sensor and the determination by the laser distance meter may be performed only, or simply the determination by the photoelectric sensor may be performed.
[0020]
【The invention's effect】
According to the present invention, labor saving and productivity improvement of an electrolytic copper production line can be achieved.
[Brief description of the drawings]
FIG. 1 is a plan view (a) and a front view (b) showing the configuration of an external dimension inspection apparatus for an electrolytic copper pile according to the present invention.
FIG. 2 is an explanatory view showing measurement points of an electric copper pile.
FIG. 3 is a plan view (a) and a side view (b) showing external dimensions of electrolytic copper.
4A and 4B are side views of an electric copper pile, in which FIG. 4A shows a normal pile shape, and FIG. 4B shows a pile shape that has become defective due to grains.
[Explanation of symbols]
1 Electrical copper
1a Electric copper pile 2 Hanging hand 3 Base 4 Reference line 5 Grain
11a, 11d Stock detection device (photoelectric sensor (sender))
11b, 11c Stock detection device (photoelectric sensor (receiver))
12a, 12b, 12c, 12d laser rangefinder
13 Beam
14 Prop
15 Control panel

Claims (2)

電気銅の銅板をパイリングした電気銅パイルのパイル形状を検査する電気銅パイルの外形寸法検査方法であって、該電気銅パイルの各コーナー部の高さを測定し、測定した吊り手側2個所のコーナー部高さをa、b、測定した反対側2個所のコーナー部高さをc、dとし、測定した各コーナー部高さa、b、c、dが許容高さ未満であり、かつ、下記不等式を両方満たすとき、該電気銅パイルのパイル形状を良とする電気銅パイルの外形寸法検査方法。

|a−b|<吊り手側同士の許容差
min (a,b)− max (c,d)>吊り手側の低い方と反対側の高い方との許容差
A method for inspecting the outer dimensions of an electric copper pile for inspecting the pile shape of an electric copper pile piled with an electric copper copper plate, measuring the height of each corner portion of the electric copper pile, and measuring two places on the side of the suspended hand The corner heights of the opposite corners are c and d, and the measured corner heights a, b, c and d are less than the allowable height, and A method for inspecting the outer dimensions of an electric copper pile, in which the pile shape of the electric copper pile is good when both of the following inequalities are satisfied .
Record
| A-b | <Tolerance between the suspension sides
min (a, b) -max (c, d)> tolerance between the lower side of the suspension side and the higher side on the opposite side
電気銅の銅板をパイリングした電気銅パイルのパイル形状を検査する電気銅パイルの外形寸法検査装置であって、該電気銅パイルの各コーナー部の高さを測定し、測定した吊り手側2個所のコーナー部高さをa、b、測定した反対側2個所のコーナー部高さをc、dとし、測定した各コーナー部高さa、b、c、dが許容高さ未満であり、かつ、下記不等式を両方満たすとき、該電気銅パイルのパイル形状を良とする電気銅パイルの外形寸法検査装置。

|a−b|<吊り手側同士の許容差
min (a,b)− max (c,d)>吊り手側の低い方と反対側の高い方との許容差
An apparatus for inspecting the outer dimensions of an electric copper pile for inspecting the pile shape of an electric copper pile piled up with an electric copper copper plate, measuring the height of each corner of the electric copper pile, and measuring two places on the side of the suspended hand The corner heights of the opposite corners are c and d, and the measured corner heights a, b, c and d are less than the allowable height, and An external dimension inspection apparatus for an electric copper pile that satisfies the following inequality and makes the pile shape of the electric copper pile good.
Record
| A-b | <Tolerance between the suspension sides
min (a, b) -max (c, d)> tolerance between the lower side of the suspension side and the higher side on the opposite side
JP17092198A 1998-06-18 1998-06-18 Method and apparatus for inspecting external dimensions of electrolytic copper pile Expired - Fee Related JP3913900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17092198A JP3913900B2 (en) 1998-06-18 1998-06-18 Method and apparatus for inspecting external dimensions of electrolytic copper pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17092198A JP3913900B2 (en) 1998-06-18 1998-06-18 Method and apparatus for inspecting external dimensions of electrolytic copper pile

Publications (2)

Publication Number Publication Date
JP2000002513A JP2000002513A (en) 2000-01-07
JP3913900B2 true JP3913900B2 (en) 2007-05-09

Family

ID=15913831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17092198A Expired - Fee Related JP3913900B2 (en) 1998-06-18 1998-06-18 Method and apparatus for inspecting external dimensions of electrolytic copper pile

Country Status (1)

Country Link
JP (1) JP3913900B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4990613B2 (en) * 2006-12-27 2012-08-01 大王製紙株式会社 Sheet roll shape defect discrimination device and discrimination method
JP4964180B2 (en) * 2008-03-31 2012-06-27 パンパシフィック・カッパー株式会社 Electrical copper sheet cutting system and method for cutting electrical copper sheet
CN105953734A (en) * 2016-05-27 2016-09-21 安徽鑫佳铜业有限公司 Infrared copper material quality detection device

Also Published As

Publication number Publication date
JP2000002513A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
US9562801B2 (en) Waste bin scale, load cell and method of measuring a waste bin load
JP3913900B2 (en) Method and apparatus for inspecting external dimensions of electrolytic copper pile
JPH08128820A (en) Method and instrument for measuring thickness of coating sheet
JP4768055B2 (en) Hot scarf cutting amount measuring method and measuring device
US20140372062A1 (en) Calibration method and calibration tool for in-mold molten metal level meter
JP4599728B2 (en) Non-contact film thickness measuring device
CN109000768A (en) A kind of method of the on-line automatic weighing thickness measuring of plate glass
JP2010151778A (en) Weighing conveyor
JP2001264025A (en) Method and instrument for measuring distance between rolls
CN104501716B (en) Method for detecting poor adhesion position of mobile phone screen copper plate
CN210268508U (en) Advanced generation TFT glass A type frame detection device
JPH05164535A (en) Plank flatness meter
JPH0634360A (en) Steel plate shape measuring method
JPH04155208A (en) Discrimination on acceptability of platelike work
CN211012798U (en) Floor right angle measuring instrument
CN214470667U (en) Auxiliary device for detecting squareness of small cigarette carton
JP2833480B2 (en) Steel strip tension measuring device
JP4211974B2 (en) Coin sensor
JPH06109453A (en) Measurement of bending of plate-shaped product
JP5576515B2 (en) Deposition method for fixed-size single plate group
CN112710214A (en) Floor right angle measuring instrument and measuring method thereof
JP6618423B2 (en) Conveyor scale
JP2841578B2 (en) Calibration method and calibration device for iron loss value measurement data
JP2000275038A (en) Method and apparatus for detecting shape fault of strip- like material and continuously treating line of the strip-like material
JP2508662Y2 (en) Flaw detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees