JP3913393B2 - Semiconductor defect analysis system and method - Google Patents

Semiconductor defect analysis system and method Download PDF

Info

Publication number
JP3913393B2
JP3913393B2 JP05612899A JP5612899A JP3913393B2 JP 3913393 B2 JP3913393 B2 JP 3913393B2 JP 05612899 A JP05612899 A JP 05612899A JP 5612899 A JP5612899 A JP 5612899A JP 3913393 B2 JP3913393 B2 JP 3913393B2
Authority
JP
Japan
Prior art keywords
defect
defects
size distribution
estimated
probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05612899A
Other languages
Japanese (ja)
Other versions
JP2000252341A (en
Inventor
俊之 有竹
和弘 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP05612899A priority Critical patent/JP3913393B2/en
Publication of JP2000252341A publication Critical patent/JP2000252341A/en
Application granted granted Critical
Publication of JP3913393B2 publication Critical patent/JP3913393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウェーハ上の欠陥を解析する半導体欠陥解析システムおよび方法に関する。特に、本発明は、半導体ウェーハ上の欠陥に基づく不良発生要因の推定を容易化する半導体欠陥解析システムおよび方法に関する。
【0002】
【従来の技術】
半導体製造工程では、製品の歩留まり向上のため、工程途中で半導体ウェーハ表面の欠陥を検査し、半導体製造ラインの状況を解析することが行われている。ウェーハの欠陥解析方法として、工程途中でウェーハ表面の欠陥の位置、サイズ等の情報を収集し、それらの情報と設計データを比較することでその欠陥が製品の不良発生要因となり得るか否かを判定するものがある。ところが、半導体チップの設計データは膨大な量であり、工程途中にオンラインでそのデータを使用することはほとんど不可能である。
【0003】
近年、欠陥のサイズ分布と半導体チップの設計データを統計的確率処理して製品が電気不良となる確率を求める欠陥解析方法が提案されている。以下、この方法を欠陥起因歩留まり解析方法と呼ぶ。この欠陥起因歩留まり解析方法は、欠陥サイズおよび不良の原因をパラメータとして不良の発生する面積を示す関数を予め設計データから計算し、その関数を用いて実際の欠陥に対する不良発生確率を求めるものである。この方法では、保持するデータ量が非常に少なく、工程途中のオンラインでの使用も可能である。しかし、欠陥の情報には未知数の部分が多く、欠陥の検出感度も十分ではない。また、欠陥サイズ分布の定義が不確定の上、その計測精度にも問題がある。したがって、この方法を有効なものとするには、欠陥のサイズ分布の妥当性を評価する必要がある。
【0004】
【発明が解決しようとする課題】
本発明は、このような課題を解決し、欠陥起因歩留まり解析方法の有効性を保証し、ウェーハ上の欠陥に基づく不良発生要因推定を容易化する半導体欠陥解析システムおよび方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明は、半導体ウェーハ上の欠陥サイズ分布とその半導体ウェーハ上に形成される半導体素子の設計データから確率欠陥数を求める第1の手段と、半導体素子の電気不良パターンを分類することで推定欠陥数を求める第2の手段と、確率欠陥数と推定欠陥数を比較し、確率欠陥数が推定欠陥数に一致するように欠陥サイズ分布を補正する第3の手段とを少なくとも具備することを特徴とする半導体欠陥解析システムを提供する。
【0006】
本発明によれば、統計的確率処理により求められる確率欠陥数の信頼性を向上できる。したがって、工程途中で発生した欠陥に基づいて不良要因の特定を行なうことができる。その結果、工程途中の欠陥対策を効果的に支援し、早期に製品の歩留まり改善の対策を行うことが可能となる。
【0007】
【発明の実施の形態】
図1は、本発明の実施の形態に係る半導体欠陥解析システムの構成を示す図である。本発明の実施の形態に係る半導体欠陥解析システムは、光学的手段等を用いて半導体ウェーハ上に発生した欠陥の欠陥データ(たとえば、欠陥の座標、サイズ、形状や色等の外観的特徴など)を検出する欠陥検査部1と、欠陥検査部1が検出した欠陥データを格納する第1のデータベース2と、第1のデータベース2に格納された欠陥データに基づいて欠陥を分類し、その分類結果を第1のデータベースに格納する欠陥分類部3と、半導体ウェーハ上の半導体装置を電気測定し、不良ビットを検出するテスタ4と、テスタ4が検出した不良ビットデータを格納する第2のデータベース5と、第2のデータベース5に格納された不良ビットデータから不良パターン(フェイル・ビット・マップ)を分類することで推定欠陥を求め、第2のデータベース5に格納する推定欠陥算出部6と、確率欠陥数と推定欠陥数を突き合わせる突き合わせ部7と、確率欠陥数を算出する確率欠陥算出部8とを有している。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明は、半導体ウェーハ上の欠陥サイズ分布とその半導体ウェーハ上に形成される半導体素子の設計データから確率欠陥数を求める第1の手段と、半導体素子の電気不良パターンを分類することで推定欠陥数を求める第2の手段と、確率欠陥数と推定欠陥数を比較し、確率欠陥数が推定欠陥数に一致するように欠陥サイズ分布を補正する第3の手段と、欠陥サイズ分布の補正値をモニタリングする手段とを少なくとも具備することを特徴とする半導体欠陥解析システムを提供する。
【0009】
突き合わせ部7は二つの役割を担っている。(1)突き合わせ部7は欠陥データから欠陥の種類ごとの欠陥のサイズ分布を求め、その欠陥のサイズ分布を確率欠陥算出部8に渡す。(2)突き合わせ部7は確率欠陥数の集計結果と推定欠陥数の集計結果を比較し、集計結果に差がある場合には欠陥のサイズ分布を補正する。また、突き合わせ部7は確率欠陥数の集計結果と推定欠陥数の集計結果を同時に表示する表示手段と、外部から欠陥のサイズ分布の補正値を入力する入力手段を備えている。また、欠陥のサイズ分布の補正は突き合わせ部7が自動的に行ってもよい。
【0010】
確率欠陥算出部8は突き合わせ部7から与えられる欠陥のサイズ分布と予め用意された半導体チップの設計データを基に統計的確率手法を用いて電気不良となる確率欠陥数を求める。具体的には、半導体装置のチップ全体の設計データから短絡、開放、リークといった欠陥要因の不良が生じる面積がどの程度あるかを示す関数を作成し、その関数を用いて与えられた欠陥のサイズ分布に対する不良確率を算出する。そして、この不良確率から不良チップを判定することで確率欠陥数を求める。ここで、「確率欠陥数」とは一定の確率で電気不良となる欠陥の数をいう。
【0011】
次に、本発明の実施の形態の動作について図1を参照して説明する。まず、欠陥検査部1は光学顕微鏡等の光学的手段を用いて半導体ウェーハ上に発生した欠陥の欠陥データを検出する。そして、欠陥検査部1は検出した欠陥データを第1のデータベース2に格納する。欠陥データは欠陥分類部3に送られ、欠陥の分類が行われる。たとえば欠陥座標によって欠陥の位置が決められ、欠陥の円形度、色等の外観的特徴によって欠陥の種類が決定される。また欠陥のサイズも光学的検査により決定される。分類終了後、欠陥分類部3はその欠陥分類結果を第1のデータベース2に登録する。図2は、第1のデータベース2に登録された欠陥分類結果の例を示す図である。なお、欠陥検査部1が検出した欠陥データは光学的手段によるものなので、実存する欠陥すべてが検出されるわけではない。
【0012】
推定欠陥算出部6はテスタ4が検出した不良ビットデータから不良パターンを分類することで推定欠陥を求める。半導体製造工程途中のランダム欠陥は製品の電気不良を局部または全体に引き起こす。この電気不良は半導体装置の最終的な電気測定によって確認できる。特に、メモリ製品ではメモリセル単位で不良ビットを判定でき、その不良パターンはメモリの構造に起因する。したがって、不良パターンを分類すれば欠陥の発生工程および不良の原因を知ることができるのである。なお、推定欠陥算出部6が求めた欠陥のすべてが欠陥検査部1によって検出されているとは限らない。そのため、推定欠陥算出部6が求めた欠陥をここでは「推定欠陥」と呼ぶ。図3は、推定欠陥算出部6が求めた推定欠陥の例を示す図である。
【0013】
突き合わせ部7は図2に示した欠陥分類結果に基づいて欠陥のサイズ分布を求める。欠陥のサイズ分布は欠陥の種類ごとに求められ、欠陥サイズ分布ごとの欠陥数が表示される。図4は、欠陥のサイズ分布の例を示す図である。確率欠陥算出部8は図4に示した欠陥のサイズ分布とチップ全体の設計データを基に統計的確率手法を用いて電気不良の要因となる確率欠陥数を求める。また、突き合わせ部7は図3に示した推定欠陥を集計し、推定欠陥数を求める。そして、突き合わせ部7は確率欠陥数と推定欠陥数を突き合わせる。図5は、確率欠陥数と推定欠陥数を突き合わせた図である。突き合わせの結果、確率欠陥数と推定欠陥数が大きく異なる場合には確率欠陥数が推定欠陥数に一致するように確率欠陥数を補正する。確率欠陥数は欠陥のサイズ分布に基づいて算出されるので、欠陥のサイズ分布を補正し、確率欠陥数を再度計算することになる。その補正は外部から指定してもよいし、突き合わせ部7が自動で行ってもよい。
【0014】
また、補正係数rを
r=確率欠陥数/推定欠陥数
と定義し、その補正係数rを長期にわたりモニタリングすることで欠陥サイズ分布補正値の妥当性を評価できる。そして、信頼性のある補正値が得られれば、その値を用いて欠陥のサイズ分布を補正し、確率欠陥数を求めれば、高信頼性の不良要因推定を行なうことができる。図6は、補正係数rのトレンドグラフの例を示す図である。
【0015】
本発明の実施の形態によれば、欠陥起因歩留まり解析方法の有効性を保証することが可能となる。したがって、この方法を用いて工程途中で発生した欠陥に基づいて不良要因の特定を行なうことができる。
【0016】
【発明の効果】
本発明によれば、工程途中の欠陥対策を効果的に支援し、早期に製品の歩留まり改善の対策を行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る半導体欠陥解析システムの構成を示す図である。
【図2】欠陥分類結果の例を示す図である。
【図3】推定欠陥の例を示す図である。
【図4】欠陥のサイズ分布の例を示す図である。
【図5】確率欠陥数と推定欠陥数を突き合わせた図である。
【図6】補正係数rのトレンドグラフの例を示す図である。
【符号の説明】
1 欠陥検査部
2 第1のデータベース
3 欠陥分類部
4 テスタ
5 第2のデータベース
6 推定欠陥算出部
7 突き合わせ部
8 確率欠陥算出部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor defect analysis system and method for analyzing defects on a semiconductor wafer. In particular, the present invention relates to a semiconductor defect analysis system and method for facilitating estimation of a defect occurrence factor based on defects on a semiconductor wafer.
[0002]
[Prior art]
In the semiconductor manufacturing process, in order to improve the product yield, defects on the surface of the semiconductor wafer are inspected in the middle of the process to analyze the state of the semiconductor manufacturing line. As a wafer defect analysis method, information such as the position and size of defects on the wafer surface is collected during the process, and by comparing the information with the design data, it can be determined whether or not the defects can cause defects in the product. There is something to judge. However, the design data of the semiconductor chip is enormous, and it is almost impossible to use the data online during the process.
[0003]
In recent years, a defect analysis method has been proposed in which the probability distribution of a product is determined by statistical probability processing of defect size distribution and semiconductor chip design data. Hereinafter, this method is referred to as a defect-induced yield analysis method. In this defect cause yield analysis method, a function indicating an area where a defect occurs is calculated from design data in advance using the defect size and the cause of the defect as parameters, and the defect occurrence probability for an actual defect is obtained using the function. . In this method, the amount of data to be held is very small, and it can be used online during the process. However, there are many unknown parts in the defect information, and the defect detection sensitivity is not sufficient. In addition, the definition of the defect size distribution is uncertain, and there is a problem in its measurement accuracy. Therefore, in order to make this method effective, it is necessary to evaluate the validity of the defect size distribution.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a semiconductor defect analysis system and method for solving such problems, ensuring the effectiveness of a defect-caused yield analysis method, and facilitating estimation of cause of failure based on defects on a wafer. And
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a first means for obtaining the number of probable defects from a defect size distribution on a semiconductor wafer and design data of a semiconductor element formed on the semiconductor wafer, and an electrical failure of the semiconductor element. A second means for determining the estimated number of defects by classifying the patterns, and a third means for comparing the number of probable defects with the estimated number of defects and correcting the defect size distribution so that the number of probable defects matches the estimated number of defects. And a semiconductor defect analysis system characterized by comprising:
[0006]
According to the present invention, the reliability of the number of probability defects obtained by statistical probability processing can be improved. Therefore, it is possible to identify a failure factor based on a defect that occurs during the process. As a result, it is possible to effectively support countermeasures against defects during the process and to take measures to improve product yield at an early stage.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram showing a configuration of a semiconductor defect analysis system according to an embodiment of the present invention. The semiconductor defect analysis system according to the embodiment of the present invention provides defect data of defects generated on a semiconductor wafer using optical means or the like (for example, appearance features such as defect coordinates, size, shape, and color). The defect inspection unit 1 for detecting the defect, the first database 2 for storing the defect data detected by the defect inspection unit 1, the defect is classified based on the defect data stored in the first database 2, and the classification result Are classified into a first database, a tester 4 that electrically measures a semiconductor device on a semiconductor wafer and detects defective bits, and a second database 5 that stores defective bit data detected by the tester 4 Then, an estimated defect is obtained by classifying the defective pattern (fail bit map) from the defective bit data stored in the second database 5, and the second data An estimated defect calculating section 6 to be stored in the over scan 5, has a butt portion 7 match probability number of defects and the estimated number of defects, and a probability defect calculator 8 for calculating the number of probability defects.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a first means for obtaining the number of probable defects from a defect size distribution on a semiconductor wafer and design data of a semiconductor element formed on the semiconductor wafer, and an electrical failure of the semiconductor element. Second means for determining the estimated number of defects by classifying patterns, and third means for comparing the number of probable defects with the number of estimated defects and correcting the defect size distribution so that the number of probable defects matches the estimated number of defects. And a semiconductor defect analysis system comprising at least means for monitoring a correction value of the defect size distribution .
[0009]
The butting part 7 has two roles. (1) The matching unit 7 obtains a defect size distribution for each type of defect from the defect data, and passes the defect size distribution to the probability defect calculation unit 8. (2) The matching unit 7 compares the total number of probability defects and the total number of estimated defects, and corrects the defect size distribution if there is a difference between the total results. The matching unit 7 includes display means for simultaneously displaying the result of counting the number of probable defects and the result of counting the estimated number of defects, and input means for inputting a correction value for the defect size distribution from the outside. Further, the matching unit 7 may automatically correct the defect size distribution.
[0010]
The probability defect calculation unit 8 obtains the number of probable defects that cause an electrical failure using a statistical probability method based on the defect size distribution given from the matching unit 7 and the design data of the semiconductor chip prepared in advance. Specifically, a function indicating the extent to which a defect cause defect such as a short circuit, an open circuit, or a leak is generated from the design data of the entire chip of the semiconductor device, and the size of the given defect using the function is created. The defect probability for the distribution is calculated. Then, the number of probable defects is obtained by determining a defective chip from this defect probability. Here, “the number of probable defects” refers to the number of defects that cause electrical failure with a certain probability.
[0011]
Next, the operation of the embodiment of the present invention will be described with reference to FIG. First, the defect inspection unit 1 detects defect data of defects generated on a semiconductor wafer using an optical means such as an optical microscope. Then, the defect inspection unit 1 stores the detected defect data in the first database 2. The defect data is sent to the defect classification unit 3 to classify the defects. For example, the position of the defect is determined by the defect coordinates, and the type of defect is determined by the appearance characteristics such as the circularity and color of the defect. The defect size is also determined by optical inspection. After the classification is completed, the defect classification unit 3 registers the defect classification result in the first database 2. FIG. 2 is a diagram showing an example of the defect classification result registered in the first database 2. Since the defect data detected by the defect inspection unit 1 is based on optical means, not all existing defects are detected.
[0012]
The estimated defect calculation unit 6 obtains the estimated defect by classifying the defective pattern from the defective bit data detected by the tester 4. Random defects during the semiconductor manufacturing process cause electrical defects in the product locally or entirely. This electrical failure can be confirmed by the final electrical measurement of the semiconductor device. In particular, in a memory product, a defective bit can be determined for each memory cell, and the defective pattern is caused by the structure of the memory. Therefore, if the defect patterns are classified, the defect generation process and the cause of the defect can be known. Note that not all of the defects obtained by the estimated defect calculation unit 6 are detected by the defect inspection unit 1. Therefore, the defect obtained by the estimated defect calculation unit 6 is referred to as “estimated defect” here. FIG. 3 is a diagram illustrating an example of the estimated defect obtained by the estimated defect calculation unit 6.
[0013]
The matching unit 7 obtains the defect size distribution based on the defect classification result shown in FIG. The defect size distribution is obtained for each type of defect, and the number of defects for each defect size distribution is displayed. FIG. 4 is a diagram illustrating an example of a defect size distribution. The probability defect calculation unit 8 obtains the number of probability defects that cause electrical failure using a statistical probability method based on the defect size distribution shown in FIG. 4 and the design data of the entire chip. In addition, the matching unit 7 adds up the estimated defects shown in FIG. 3 and obtains the estimated number of defects. Then, the matching unit 7 matches the number of probability defects and the estimated number of defects. FIG. 5 is a diagram in which the number of probable defects and the estimated number of defects are matched. As a result of the matching, when the number of probable defects and the estimated number of defects are greatly different, the number of probable defects is corrected so that the number of probable defects matches the estimated number of defects. Since the probability defect number is calculated based on the defect size distribution, the defect size distribution is corrected and the probability defect number is calculated again. The correction may be designated from the outside, or the matching unit 7 may automatically perform the correction.
[0014]
Further, the validity of the defect size distribution correction value can be evaluated by defining the correction coefficient r as r = the number of probable defects / the estimated number of defects and monitoring the correction coefficient r over a long period of time. If a reliable correction value is obtained, the defect size distribution is corrected using that value, and if the number of probable defects is obtained, highly reliable defect factor estimation can be performed. FIG. 6 is a diagram illustrating an example of a trend graph of the correction coefficient r.
[0015]
According to the embodiment of the present invention, it is possible to guarantee the effectiveness of the defect-induced yield analysis method. Therefore, this method can be used to identify a failure factor based on a defect generated during the process.
[0016]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to support the defect countermeasure in the middle of a process effectively, and to take the countermeasure of the product yield improvement at an early stage.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a semiconductor defect analysis system according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating an example of a defect classification result.
FIG. 3 is a diagram illustrating an example of an estimated defect.
FIG. 4 is a diagram illustrating an example of a defect size distribution;
FIG. 5 is a diagram in which the number of probable defects and the estimated number of defects are matched.
FIG. 6 is a diagram illustrating an example of a trend graph of a correction coefficient r.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Defect inspection part 2 First database 3 Defect classification part 4 Tester 5 Second database 6 Estimated defect calculation part 7 Matching part 8 Probability defect calculation part

Claims (4)

半導体ウェーハ上の欠陥サイズ分布と前記半導体ウェーハ上に形成される半導体素子の設計データから確率欠陥数を求める第1の手段と、
前記半導体素子の電気不良パターンを分類することで推定欠陥数を求める第2の手段と、
前記確率欠陥数と前記推定欠陥数を比較し、前記確率欠陥数が前記推定欠陥数に一致するように前記欠陥サイズ分布を補正する第3の手段と
前記欠陥サイズ分布の補正値をモニタリングする手段と
を少なくとも具備することを特徴とする半導体欠陥解析システム。
A first means for obtaining a probability defect number from a defect size distribution on a semiconductor wafer and design data of a semiconductor element formed on the semiconductor wafer;
A second means for obtaining an estimated number of defects by classifying an electrical failure pattern of the semiconductor element;
A third means for comparing the number of probable defects with the estimated number of defects and correcting the defect size distribution so that the number of probable defects matches the estimated number of defects ;
A semiconductor defect analysis system comprising at least means for monitoring a correction value of the defect size distribution .
前記第1の手段は、前記欠陥サイズ分布と前記設計データを統計的確率処理して前記確率欠陥数を求めることを特徴とする請求項1に記載の半導体欠陥解析システム。  2. The semiconductor defect analysis system according to claim 1, wherein the first means obtains the number of the probability defects by performing a statistical probability process on the defect size distribution and the design data. 前記第3の手段は、前記欠陥サイズ分布の補正値を外部から入力する手段を具備することを特徴とする請求項1に記載の半導体欠陥解析システム。  2. The semiconductor defect analysis system according to claim 1, wherein the third means includes means for inputting a correction value of the defect size distribution from the outside. 半導体ウェーハ上の欠陥サイズ分布と前記半導体ウェーハ上に形成される半導体素子の設計データから確率欠陥数を求める第1の工程と、
前記半導体素子の電気不良パターンを分類することで推定欠陥数を求める第2の工程と、
前記確率欠陥数と前記推定欠陥数を比較し、前記確率欠陥数が前記推定欠陥数に一致するように前記欠陥サイズ分布を補正する第3の工程と
前記欠陥サイズ分布の補正値をモニタリングする工程と
を少なくとも具備することを特徴とする半導体欠陥解析方法。
A first step of obtaining a probability defect number from a defect size distribution on a semiconductor wafer and design data of a semiconductor element formed on the semiconductor wafer;
A second step of obtaining an estimated number of defects by classifying an electrical failure pattern of the semiconductor element;
Comparing the probability defect number with the estimated defect number, and correcting the defect size distribution so that the probability defect number matches the estimated defect number ;
And a step of monitoring a correction value of the defect size distribution .
JP05612899A 1999-03-03 1999-03-03 Semiconductor defect analysis system and method Expired - Fee Related JP3913393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05612899A JP3913393B2 (en) 1999-03-03 1999-03-03 Semiconductor defect analysis system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05612899A JP3913393B2 (en) 1999-03-03 1999-03-03 Semiconductor defect analysis system and method

Publications (2)

Publication Number Publication Date
JP2000252341A JP2000252341A (en) 2000-09-14
JP3913393B2 true JP3913393B2 (en) 2007-05-09

Family

ID=13018448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05612899A Expired - Fee Related JP3913393B2 (en) 1999-03-03 1999-03-03 Semiconductor defect analysis system and method

Country Status (1)

Country Link
JP (1) JP3913393B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709207A (en) * 2011-02-28 2012-10-03 株式会社东芝 Quality estimation apparatus, quality estimation method and non-transitory computer-readable medium storing program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100676611B1 (en) 2004-12-30 2007-01-30 동부일렉트로닉스 주식회사 Method and Device for Automatically Measuring Effectiveness of Semiconductor Equipment
JP5369981B2 (en) * 2009-08-06 2013-12-18 富士通セミコンダクター株式会社 Defect observation apparatus, defect observation method, and semiconductor device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709207A (en) * 2011-02-28 2012-10-03 株式会社东芝 Quality estimation apparatus, quality estimation method and non-transitory computer-readable medium storing program
CN102709207B (en) * 2011-02-28 2015-07-15 株式会社东芝 Quality estimation apparatus, quality estimation method and non-transitory computer-readable medium storing program

Also Published As

Publication number Publication date
JP2000252341A (en) 2000-09-14

Similar Documents

Publication Publication Date Title
JP4077951B2 (en) Defect analysis method, recording medium, and process management method
TWI618161B (en) Methods, systems and non-transitory computer-readable medium for detecting repeating defects on semiconductor wafers using design data
JP7402061B2 (en) Test piece investigation method and system
TWI588475B (en) Detecting defects on a wafer using template image matching
US7352890B2 (en) Method for analyzing circuit pattern defects and a system thereof
TWI684000B (en) Method of generating an examination recipe and system thereof
JP6922539B2 (en) Surface defect determination method and surface defect inspection device
KR100598381B1 (en) in-line typed apparatus for auto wafer-defect classification and control method thereof
CN109285791B (en) Design layout-based rapid online defect diagnosis, classification and sampling method and system
JP4611369B2 (en) Device manufacturing method
JPH10209230A (en) Method and device for fault analysis
US7557598B2 (en) Method of inspecting quiescent power supply current in semiconductor integrated circuit and device for executing the method
US6539272B1 (en) Electric device inspection method and electric device inspection system
JP3913393B2 (en) Semiconductor defect analysis system and method
KR100687870B1 (en) Method for testing defect on the wafer
US7855088B2 (en) Method for manufacturing integrated circuits by guardbanding die regions
JP2003100834A (en) Method for analyzing defect, method and program for verifying chip sorting data
JP2005236094A (en) Method for manufacturing semiconductor device, method and system for failure analysis
CN116646281A (en) Abnormal test structure acquisition method, abnormal test structure verification method and related devices
JP2003149160A (en) Appearance inspection method and appearance inspection system
JP2000243794A (en) Analysis of semiconductor wafer
CN109817538B (en) SRAM failure online test method
TWI262572B (en) Electrical address verification method and electrical testing method of failure analysis of semiconductor device structure
EP1048956A2 (en) Method and apparatus for analizing a semiconductor wafer manufacturing process
JP2010019561A (en) Flaw inspection device and flaw inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070131

LAPS Cancellation because of no payment of annual fees