JP3911370B2 - Gas separation module and liquid deaerator - Google Patents

Gas separation module and liquid deaerator Download PDF

Info

Publication number
JP3911370B2
JP3911370B2 JP20937599A JP20937599A JP3911370B2 JP 3911370 B2 JP3911370 B2 JP 3911370B2 JP 20937599 A JP20937599 A JP 20937599A JP 20937599 A JP20937599 A JP 20937599A JP 3911370 B2 JP3911370 B2 JP 3911370B2
Authority
JP
Japan
Prior art keywords
gas separation
gas
separation module
filter
generating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20937599A
Other languages
Japanese (ja)
Other versions
JP2000093729A (en
Inventor
喜裕 由宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP20937599A priority Critical patent/JP3911370B2/en
Publication of JP2000093729A publication Critical patent/JP2000093729A/en
Application granted granted Critical
Publication of JP3911370B2 publication Critical patent/JP3911370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、混合ガス中から特定ガスを分離、回収するための特定ガス分離フィルタや、気体が溶解した液体中から該気体を除去する脱気フィルタ等の被処理物から特定ガスを分離、回収するためのガス分離モジュールおよびそれを用いた液体脱気装置に関するものである。
【0002】
【従来技術】
従来より、混合ガス中から特定ガスを分離回収するための特定ガス分離フィルタや、気体が溶解した液体中から該気体を除去する脱気フィルタ等のガス分離フィルタを備えたガス分離モジュールが知られている。
【0003】
例えば、各種装置に用いられる冷却水は、装置の腐食防止ために脱酸素や脱炭酸ガスが求められており、また、半導体洗浄用に使用される超純水は、生菌の発生を抑え、かつシリコンウエハの酸化を防ぐため、溶存酸素濃度10ppb以下に超脱気することが必要とされている。
【0004】
このような液体の脱気には、例えば加熱沸騰法、減圧法、イオン交換樹脂法、不活性ガス置換法等が良く知られている。しかしながら、前記加熱沸騰法は高温操作のため危険性が高く、減圧法は脱気効率が悪く、またイオン交換樹脂法は樹脂の再生処理が必要であり、さらに不活性ガス置換法はランニングコストがかさむものであった。
【0005】
これに対して、装置が小型で処理工程が簡便であること等の利点から特定ガスのみを選択的に透過して分離可能なフィルタを備えたガス分離モジュールが多く採用されている。
【0006】
かかるガス分離フィルタ管を有するガス分離モジュールは、例えば、特定のガスをフィルタ内部に吸収し、拡散によりガスが膜内を透過する、いわゆる溶解拡散機構を用いた高分子膜からなるものや、多孔質の高分子膜からなるものがすでに実用化されており、また、最近では、多孔質セラミック支持管の表面にSiO等の無機分離膜を被着形成したフィルタを用いることが検討され、これにより、ガス分離性能が向上することが報告されている(特開平10−5557号公報等参照)。
【0007】
【発明が解決しようとする課題】
しかしながら、特開平10−5557号公報等に開示されているガス分離フィルタ管を備えたガス分離モジュールでは、被処理物を支持管内に供給し、フィルタ管内を通過すると被処理物の支持管内の流れは層流状態となり、被処理物中の特定ガスが支持管の壁面と接触する割合が減ずるため、ガス分離性能には限界があった。
【0008】
そこで、フィルタをらせん管状体とすることによって、被処理液体の乱流を促進し、脱気効率を高めることが特開平3−169304号公報に提案されている。
【0009】
しかしながら、上記らせん管状体では、らせん内部に無駄な容積が生じてしまいモジュールが大型化するとともに、長尺状の管状体のように複数本束ねて収束体を作製しガス分離フィルタ管の表面積を増して被処理物のガス分離効率を高めることができないという問題があった。
【0010】
本発明は前記課題を解決するためになされたもので、その目的は、被処理物の乱流を促進してガス分離性能を高めることができるガス分離モジュールを提供することにある。
【0011】
【課題を解決するための手段】
本発明者は、前記課題に対しガス分離モジュールの構造について研究を重ねた結果、モジュール内に存在する複数のガス分離フィルタ管を収束してなる収束体を2本同一のハウジング内に並列に配置して収納し、かつ該ハウジング内の端部に粒状体を充填してなる設けられた乱流発生部材を介して接続し、前記2本の収束体のうちの一方を往路部、他方を復路部としたことによって、ガス分離フィルタ管の分離性能が低下する部分、ガス分離フィルタ管の終端部でフィルタ内の被処理物の流れを乱流状態に促すことができる結果、前記モジュールのガス分離性能を高めることができることを知見した。
【0012】
すなわち、本発明のガス分離モジュールは、特定のガスのみが透過可能なガス分離機能を有するガス分離フィルタ管を複数本収束してなる収束体を2本具備するとともに、前記2本の収束体を同一のハウジング内に該2本の収束体を並列に配置して収納し、該ハウジング内の端部に粒状体を充填してなる乱流発生部材を設け、かつ前記2本の収束体同士を前記乱流発生部材を介して接続し、前記2本の収束体のうちの一方を往路部、他方を復路部としたことを特徴とするものである。
【0013】
ここで、前記ガス分離フィルタ管の内部に第2の乱流発生部材を設けることも可能である。
【0014】
また、前記乱流発生部材は、管状体の収束体からなり、該管状体の内径が前記ガス分離フィルタ管の内径より小さいこと、または、前記乱流発生部材が粒状体を充填してなること、あるいは、前記乱流発生部材が前記ガス分離フィルタ管の内径よりも小さい気孔を有する多孔質体からなることが望ましい。
また、本発明の液体脱気装置は、上記のガス分離モジュールと、該ガス分離モジュールにおいて前記特定のガスが回収される特定ガス回収口に接続された真空ポンプとを具備することを特徴とするものである。
【0015】
【発明の実施の形態】
本発明のガス分離モジュールの一例について、その概略断面図を図1に示す。図1のガス分離モジュール20は、多孔質セラミックスからなる長尺状支持管(以下、支持管と略す。)の内面に、無機分離膜(以下、分離膜と略す。)が被着形成されたガス分離フィルタ管(以下、フィルタと略す。)21を複数本収束してなる収束体22がハウジング24内に収納されており、同様に、複数本のフィルタ21’の収束体22’がハウジング24内に、収束体22と平行に配置して収納されている。
【0016】
なお、前記分離膜は支持管の外面に形成されていてもよいが、ガス分離モジュール20を特定ガスが溶解した液体から該特定ガスを分離するいわゆる脱気フィルタとして用いる場合には、前記液体がフィルタ2121’の他方の面に漏れガス分離性能が低下することを防止する点で、支持管の内面に分離膜が形成されることが望ましい。
【0017】
支持管は、気孔率が20〜40%、平均細孔径0.1〜2μmの多数の細孔を有し、α−アルミナ、コージェライト等からなるものであって、望ましくは、内径3.0mm以下、特に1.5mm以下であることが被処理物中の特定ガスがフィルタ表面に拡散する距離が短くガス分離性能が向上する点、また、被処理物の支持管内の流れを乱流状態に促す点で望ましい。
【0018】
他方、分離膜は平均細孔径0.2〜5nm、特に0.5〜1.0nmの細孔径を有する樹脂等からなる有機分離膜、または、アルミナ、チタニア、ジルコニア、シリカ等、特に容易に製造できる点で非晶質のアルミナやシリカからなる無機分離膜が使用可能であり、膜厚0.1〜2μmであることが望ましいものである。なお、上記分離膜のうち無機分離膜はガス分離性能が高く、かつ安定な無機物からなることから耐熱性および耐薬品性に優れたものであるとともに、ガス分離性能が高いものである。
【0019】
さらに、支持管と分離膜との間には分離膜の成膜性を向上させる点で支持管と分離膜との間の細孔径を有する中間層が介在してもよい。
【0020】
なお、フィルタ2121’は、混合ガス中から特定ガスを分離回収するためのフィルタや気体が溶した液体中から該気体を除去する脱気フィルタ等として使用することができるが、特に被処理物のうち拡散速度が遅い液体中から前記気体を除去する脱気フィルタに好適に利用できる。
【0021】
また、フィルタ2121’としては上述したもの以外に樹脂等からなる中空糸体等の有機物からなるガス分離フィルタ管も使用可能である。
【0022】
ハウジング24はステンレス等の金属、ガラスまたはセラミックス等の剛性および気密性が高い材料によって構成され、断面が概略円形、概略楕円形、概略矩形等の多角形の柱状体形状であることが望ましい。
【0023】
また、図1によれば、フィルタ2121’は、例えば、ドーナツ形状の樹脂、金属、緻密質のセラミックス等により構成された固定用治具2323’それぞれを介してハウジング24の内壁に支持固定されている。
【0024】
さらに、ハウジング24の端部は、特定ガスが混合または溶解した被処理物を装置内へ導入するための被処理物導入口25と、処理済物を排出するための処理済物回収口26とがそれぞれ形成されている。
【0025】
また、ハウジング24の側壁面には前記被処理物のうち特定ガスを分離、回収するための特定ガス回収口27が形成されている。なお、特定ガス回収口27は、ガス分離性能の向上の点でハウジング24の被処理物導入口25形成側端面に近い位置に形成されることが望ましい。
【0026】
なお、ハウジング24内が気密に封止されている。さらに、ハウジング24にガスケット(図示せず。)を設けることもできる。
【0027】
本発明によれば、収束体22、22’を平行に配置するとともに、収束体2222’間に乱流発生部材30を配設したことが大きな特徴である。
【0028】
これによって、フィルタ21との接触部において被処理物中の特定ガス濃度が低下しガス分離性能が低下したフィルタ21終端部に比較してフィルタ21’の被処理物導入部では乱流状態となり、該被処理物中の特定ガスがフィルタ21’の内壁面に接触する頻度を高めることができる結果、ガス分離性能を高めることができ、モジュール全体としてのガス分離性能が向上する。
【0029】
また、図1によれば、収束体2222’の複数のフィルタ2121’が1つの乱流発生部材30に接続されていることからガス分離モジュール20を容易に製造することができるとともに、乱流発生部材30からフィルタ21’へと被処理物が導入される際に乱流状態をさらに促進することができ、該特定ガス分離性能をさらに高めることができる。
【0030】
乱流発生部材30は、被処理物の流れの障壁となり該被処理物を撹拌することにより該被処理物の流れに乱流を促進するものであるが、フィルタ2121’の内径より小さい空隙を有するもの、望ましくは、平均空隙径100〜900μm、空隙率40〜80%であることが望ましい。
【0031】
また、乱流発生部材30の具体的な構成は、(1)管状体の収束体からなり、該管状体の内径がフィルタ2121’の内径より小さいもの、(2)乱流発生部材30が粒状体を充填してなるもの、(3)乱流発生部材30がフィルタ2121’の内径よりも小さい平均気孔径の気孔を有する多孔質体等からなることが望ましく、また、その材質は、セラミックス、ガラス、樹脂、ウレタン等からなる。
【0032】
上記構成のガス分離モジュール20におけるガス分離方法は、例えば、被処理物導入口25から特定ガスが溶解した液体を供給し、フィルタ21の管内に導入して前記被処理物がフィルタ21の管内を通過するとともにハウジング24内、すなわちフィルタ21の外周部を減圧するか、フィルタ21の外周部に前記特定ガス濃度の低いガスを流して前記特定ガスが溶解した液体から該特定ガスのみがフィルタ21の壁面を透過しハウジング24内から特定ガス回収口27から系外へ排出される。
【0033】
また、フィルタ21の管内を通過した処理済物は、乱流発生部材導入口31を経由して乱流発生部材30へと導かれ、乱流発生部材30を通過することによってフィルタ21を通過した被処理物の乱流状態が促進される。
【0034】
さらに、乱流発生部材30を通過した被処理物は、乱流発生部材排出口32を経由してフィルタ21’内に導入され、上記同様の方法によりフィルタ21’を特定ガスが管内から外周部に透過し、特定ガス回収口27を経由して系外へと導出され、残部は処理済物回収口26から系外へ排出される。
【0035】
なお、図のガス分離モジュール20に対して、フィルタ2121’それぞれ内に上述した乱流発生部材と同様の構成からなる第2の乱流発生部材(図示せず)を介在させて、上記同様の効果によりガス分離性能を高めることができる。
【0036
また、図の構成によれば、モジュールの小型化が可能であるとともに、撹拌効率が高くなり乱流を促進することができる。
【0037
なお、図1においては、収束体が2本であったが3本以上であってもよい。また、収束体−乱流発生部材−収束体を一組として複数組存在する場合、2組以上における乱流発生部材を1つで兼用してもよい。
【0038
【実施例】
(実施例1)
まず、純度99.9%、平均粒径0.1μmのアルミナと、有機バインダと、潤滑剤と、可塑剤と水とを混合し、押し出し成形することによって長尺状の管状体に成形した後、大気中、1200℃にて焼成し、内径2.0mm、肉厚0.3mm、支持管の長さが250mmの長尺状支持管で、平均細孔径0.2μm、気孔率39%を有するα−アルミナ質多孔質支持管を作製した。
【0039
次に、水100molに対してアルミニウムセカンダリーブトキシドを1mol添加して加水分解し、更に硝酸を添加した後、16時間還流してベーマイトゾルを作製した。そして、前記α―アルミナらせん状多孔質支持管の端部にシリンジを取り付け、シリンジを用いて得られたベーマイトゾルを吸い上げ、3分間保持して、排出し、室温で1時間乾燥した後、500℃で焼成する一連の工程を15回繰り返し、支持体の内周表面に膜厚0.1μmのγアルミナを形成したガス分離フィルタ管を作製した。
【0040
一方、得られたフィルタについてアルゴン吸着法による細孔径分布測定を行ったところ、図に示すように平均細孔径0.8nm、かつ1nm以下の細孔径が全細孔容積中80%以上の細孔容積を占めていることが分かった。
【0041
次に、得られたフィルタの両端を緻密なアルミナ質の固定用部材に挿入しガラスを用いて接合、封止固定した後、さらに、内径60mm、長さ50mmの概略円筒形状のステンレス製ハウジング内に樹脂からなる固定用部材にて固定した。そして、同じハウジング内に2本の収束体を挿入し、前記ハウジング内の端部に60mmφ×厚さ15mmの円柱形状で、表1の構成からなる乱流発生部材を接続し、図1のガス分離モジュール20を作製した。
【0042
得られたガス分離モジュールについて、被処理物導入口より溶存酸素濃度が8ppmの純水を7l/分の流速で流すとともに、特定ガス回収口を真空ポンプで100torrに減圧して脱気した。そして、処理済物回収口から回収された純水の溶存酸素量を測定して表1に示した。
【0043
【表1】

Figure 0003911370
【0044
1の結果より、本発明に従い乱流発生部材を収束体内の複数のフィルタと接続して前記収束体間に介在させることにより、溶存酸素量が減少し、ガス分離性能が高いことがわかった。
【0045
これに対して、試料No.9の乱流発生部材を設けないガス分離モジュールは、ガス分離性能が低いものであった。
【0046】
【発明の効果】
以上詳述したとおり、本発明のガス分離モジュールは、同一のハウジング内に該複数の収束体を平行に配置して収納し乱流発生部材を介在させることによって被処理物である気体または液体の乱流を促進し、ガス分離性能を高めることができる。
【図面の簡単な説明】
【図1】本発明のガス分離モジュールの一例を示す概略断面図である。
【図】実施例のガス分離モジュールにおけるガス分離フィルタ管の分離膜の細孔分布を示す図である。
【符号の説明】
20 ガス分離モジュール
2121’ ガス分離フィルタ管(フィルタ)
2222’ 収束体
24 ハウジング
2323’ 固定用部材
25 被処理物導入口
26 処理済物回収口
27 特定ガス回収口
30 乱流発生部材[0001]
BACKGROUND OF THE INVENTION
The present invention separates and recovers a specific gas from an object to be processed such as a specific gas separation filter for separating and recovering a specific gas from a mixed gas, or a degassing filter for removing the gas from a dissolved liquid. The present invention relates to a gas separation module and a liquid deaeration device using the same .
[0002]
[Prior art]
Conventionally, a gas separation module having a gas separation filter such as a specific gas separation filter for separating and recovering a specific gas from a mixed gas or a degassing filter for removing the gas from a liquid in which the gas is dissolved is known. ing.
[0003]
For example, cooling water used in various devices, deoxygenation and decarbonation have sought to prevent corrosion of the apparatus, also, ultrapure water used for semiconductor cleaning, suppress the generation of live bacteria In order to prevent oxidation of the silicon wafer, it is necessary to super-deaerate the dissolved oxygen concentration to 10 ppb or less.
[0004]
As such liquid degassing, for example, a heating boiling method, a decompression method, an ion exchange resin method, an inert gas replacement method, and the like are well known. However, the heating boiling method is highly dangerous due to high temperature operation, the depressurization method has poor degassing efficiency, the ion exchange resin method requires resin regeneration treatment, and the inert gas replacement method has a running cost. It was stuffy.
[0005]
On the other hand, many gas separation modules equipped with a filter capable of selectively permeating and separating only a specific gas have been adopted because of the advantage that the apparatus is small and the processing process is simple.
[0006]
The gas separation module having such a gas separation filter tube is composed of, for example, a polymer membrane using a so-called dissolution diffusion mechanism in which a specific gas is absorbed inside the filter and the gas permeates through the membrane by diffusion, In recent years, it has been studied to use a filter in which an inorganic separation membrane such as SiO 2 is deposited on the surface of a porous ceramic support tube. Has been reported to improve the gas separation performance (see JP-A-10-5557, etc.).
[0007]
[Problems to be solved by the invention]
However, in the gas separation module having a gas separation filter tube disclosed in Japanese Patent Application Laid-Open No. 10-5557, etc., the material to be processed is supplied into the support tube and passes through the filter tube. Has a laminar flow state, and the ratio of contact of the specific gas in the object to be treated with the wall surface of the support tube is reduced, so that the gas separation performance is limited.
[0008]
Therefore, Japanese Patent Laid-Open No. 3-169304 proposes that a spiral tubular body is used as a filter to promote turbulent flow of the liquid to be treated and increase the deaeration efficiency.
[0009]
However, in the above spiral tubular body, a wasteful volume is generated inside the spiral and the module is enlarged, and a converging body is produced by bundling a plurality of like a long tubular body to reduce the surface area of the gas separation filter tube. In addition, there is a problem that the gas separation efficiency of the object to be processed cannot be increased.
[0010]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a gas separation module capable of enhancing gas separation performance by promoting turbulent flow of an object to be processed.
[0011]
[Means for Solving the Problems]
As a result of repeated research on the structure of the gas separation module, the present inventor has arranged two converging bodies formed by converging a plurality of gas separation filter tubes existing in the module in the same housing in parallel . Are connected to each other through a turbulent flow generating member formed by filling the end of the housing with a granular material , one of the two converging bodies being the forward path portion and the other being the return path As a result of the gas separation filter pipe being separated, the flow of the object to be processed in the filter can be promoted to a turbulent state at the end of the gas separation filter pipe. It has been found that the performance can be improved.
[0012]
That is, the gas separation module of the present invention, the converging member only certain gas comprising a gas separation filter tube having a permeable gas separation function to a plurality of convergence with comprising two, the convergence of the two The two converging bodies are arranged and stored in parallel in the same housing, provided with a turbulent flow generating member formed by filling the end of the housing with a granular material, and the two converging bodies are connected to each other. the connected via a turbulence generating member, while the forward portion of said two converging body, is characterized in that the other was used as a return unit.
[0013]
Here, it is also possible within the previous SL gas separation filter tube providing a second turbulators.
[0014]
In addition, the turbulent flow generating member is formed of a convergent body of a tubular body, and the inner diameter of the tubular body is smaller than the inner diameter of the gas separation filter tube, or the turbulent flow generating member is filled with a granular material. Alternatively, it is desirable that the turbulent flow generating member is made of a porous body having pores smaller than the inner diameter of the gas separation filter tube.
The liquid degassing apparatus of the present invention includes the gas separation module described above and a vacuum pump connected to a specific gas recovery port from which the specific gas is recovered in the gas separation module. Is.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
A schematic sectional view of an example of the gas separation module of the present invention is shown in FIG. The gas separation module 20 of FIG. 1 has an inorganic separation membrane (hereinafter abbreviated as “separation membrane”) deposited on the inner surface of a long support tube (hereinafter abbreviated as “support tube”) made of porous ceramics. A converging body 22 formed by converging a plurality of gas separation filter tubes (hereinafter abbreviated as filters) 21 is housed in a housing 24, and similarly, converging bodies 22 ′ of a plurality of filters 21 ′ are housing 24. It is housed in parallel with the converging body 22 .
[0016]
The separation membrane may be formed on the outer surface of the support tube. However, when the gas separation module 20 is used as a so-called degassing filter that separates the specific gas from the liquid in which the specific gas is dissolved, the liquid It is desirable that a separation membrane be formed on the inner surface of the support tube in order to prevent the leakage gas separation performance from deteriorating on the other surface of the filters 21 and 21 ′ .
[0017]
The support tube has a large number of pores having a porosity of 20 to 40% and an average pore diameter of 0.1 to 2 μm, and is made of α-alumina, cordierite, etc., and preferably has an inner diameter of 3.0 mm. In the following, the distance that the specific gas in the object to be processed diffuses to the filter surface is short and the gas separation performance is improved, and the flow in the support pipe of the object to be processed is turbulent. Desirable in terms of prompting.
[0018]
On the other hand, the separation membrane is an organic separation membrane made of a resin having an average pore size of 0.2 to 5 nm, particularly 0.5 to 1.0 nm, or alumina, titania, zirconia, silica, etc., particularly easily manufactured. An inorganic separation membrane made of amorphous alumina or silica can be used because it can be used, and it is desirable that the film thickness is 0.1 to 2 μm. Of the above-mentioned separation membranes, the inorganic separation membrane has high gas separation performance and is made of a stable inorganic material, so that it has excellent heat resistance and chemical resistance, and also has high gas separation performance.
[0019]
Furthermore, an intermediate layer having a pore diameter between the support tube and the separation membrane may be interposed between the support tube and the separation membrane in terms of improving the film formability of the separation membrane.
[0020]
The filter 21, 21 'can be a filter or a gas for a certain gas is separated and recovered from the mixed gas is used as the degassing filter or the like for removing the gas from the liquid was Dissolved, especially the It can utilize suitably for the deaeration filter which removes the said gas from the liquid with a slow diffusion speed among processed materials.
[0021]
Further, as the filters 21 and 21 ′ , gas separation filter tubes made of an organic substance such as a hollow fiber body made of a resin or the like can be used in addition to those described above.
[0022]
The housing 24 is preferably made of a metal such as stainless steel, a material having high rigidity and airtightness such as glass or ceramics, and has a polygonal columnar body shape such as a substantially circular shape, a substantially elliptical shape, or a substantially rectangular shape in cross section.
[0023]
Further, according to FIG. 1, the filters 21 and 21 ′ are formed on the inner wall of the housing 24 via fixing jigs 23 and 23 ′ made of, for example, donut-shaped resin, metal, dense ceramics, or the like. The support is fixed.
[0024]
Further, the end portion of the housing 24, with an object to be processed inlet 25 for introducing the object to be processed which specific gas is mixed or dissolved into the device, the treated product for discharging the processed product recovery port 26 And are formed respectively.
[0025]
Moreover, separation of specific gases of the processing object in the side wall surface of the housing 24, the specific gas recovery port 27 for recovering is made form. The specific gas recovery port 27 is preferably formed at a position close to the end surface of the housing 24 on the side of forming the workpiece introduction port 25 in terms of improving gas separation performance.
[0026]
Incidentally, housings 24 are hermetically sealed. Further, a gasket (not shown) can be provided on the housing 24 .
[0027]
According to the present invention , the converging bodies 22 and 22 ′ are arranged in parallel, and the turbulent flow generating member 30 is disposed between the converging bodies 22 and 22 ′.
[0028]
As a result, compared with the end portion of the filter 21 in which the specific gas concentration in the object to be processed is lowered at the contact portion with the filter 21 and the gas separation performance is deteriorated, the object introduction part of the filter 21 ′ is in a turbulent state. As a result of increasing the frequency with which the specific gas in the workpiece contacts the inner wall surface of the filter 21 ′ , the gas separation performance can be enhanced, and the gas separation performance as a whole module is improved.
[0029]
Further, according to FIG. 1, since the plurality of filters 21 , 21 ′ of the converging bodies 22 , 22 ′ are connected to one turbulent flow generation member 30 , the gas separation module 20 can be easily manufactured. When the workpiece is introduced from the turbulent flow generating member 30 to the filter 21 ′ , the turbulent flow state can be further promoted, and the specific gas separation performance can be further enhanced.
[0030]
The turbulent flow generating member 30 acts as a barrier to the flow of the object to be processed and promotes turbulent flow in the flow of the object to be processed by stirring the object to be processed, but is smaller than the inner diameters of the filters 21 and 21 ′ . Those having voids, desirably an average void diameter of 100 to 900 μm and a porosity of 40 to 80% are desirable.
[0031]
The specific configuration of the turbulent flow generating member 30 includes (1) a converging body of a tubular body, the inner diameter of the tubular body being smaller than the inner diameters of the filters 21 and 21 ′ , and (2) the turbulent flow generating member 30. (3) The turbulent flow generating member 30 is preferably made of a porous body having pores having an average pore diameter smaller than the inner diameters of the filters 21 and 21 ' , and the material thereof. Is made of ceramics, glass, resin, urethane or the like.
[0032]
The gas separation method in the gas separation module 20 having the above configuration is, for example, that a liquid in which a specific gas is dissolved is supplied from the workpiece inlet 25 and introduced into the tube of the filter 21 so that the workpiece is passed through the tube of the filter 21 . the housing 24 with passing through, i.e. either to decompress the outer peripheral portion of the filter 21, from the specific gas by flowing said specific gas concentration low gas on the outer peripheral portion of the filter 21 is dissolved liquid only the specific gas filter 21 It passes through the wall surface and is discharged out of the system from the specific gas recovery port 27 from within the housing 24 .
[0033]
Also, the treated product that has passed through the tubes of the filter 21, through the turbulent flow generating member inlet 31 is guided to the turbulence generator 30, passed through the filter 21 by passing through the turbulence generator 30 The turbulent state of the workpiece is promoted.
[0034]
Further, the object to be processed that has passed through the turbulent flow generating member 30 is introduced into the filter 21 ′ via the turbulent flow generating member discharge port 32, and the specific gas is passed through the outer periphery of the filter 21 ′ from the inside of the pipe by the same method as described above. , And is led out of the system via the specific gas recovery port 27 , and the remainder is discharged out of the system from the processed material recovery port 26 .
[0035]
Note that with respect to gas separation module 20 of FIG. 1, with intervening filters 21, 21 'the same configuration as the turbulent flow generating member as described above into the respective second turbulators (not shown) The gas separation performance can be enhanced by the same effect as described above.
[00 36 ]
In addition, according to the configuration of FIG. 1 , the module can be reduced in size, and the stirring efficiency can be increased to promote turbulent flow.
[00 37 ]
In FIG. 1, yield Tabatai may be not but 3 or more was two. In addition, when there are a plurality of sets of converging bodies, turbulent flow generating members, and converging bodies, two or more turbulent flow generating members may be used together.
[00 38 ]
【Example】
Example 1
First, after forming into a long tubular body by mixing alumina having an purity of 99.9% and an average particle size of 0.1 μm, an organic binder, a lubricant, a plasticizer and water, and extrusion molding. , Fired at 1200 ° C. in the atmosphere, an elongated support tube having an inner diameter of 2.0 mm, a wall thickness of 0.3 mm, and a support tube length of 250 mm, having an average pore diameter of 0.2 μm and a porosity of 39% An α-alumina porous support tube was prepared.
[00 39 ]
Next, 1 mol of aluminum secondary butoxide was added to 100 mol of water for hydrolysis, and further nitric acid was added, followed by refluxing for 16 hours to prepare a boehmite sol. A syringe is attached to the end of the α-alumina spiral porous support tube, the boehmite sol obtained using the syringe is sucked up, held for 3 minutes, discharged, dried at room temperature for 1 hour, A series of steps of baking at 0 ° C. was repeated 15 times to produce a gas separation filter tube in which γ-alumina having a film thickness of 0.1 μm was formed on the inner peripheral surface of the support.
[00 40 ]
On the other hand, when the pore size distribution measurement by the argon adsorption method was performed on the obtained filter, as shown in FIG. 2 , the average pore size was 0.8 nm and the pore size of 1 nm or less was a fine pore size of 80% or more in the total pore volume. It was found to occupy the pore volume.
[00 41 ]
Next, both ends of the obtained filter are inserted into a dense alumina fixing member, joined and sealed using glass, and further inside an approximately cylindrical stainless steel housing having an inner diameter of 60 mm and a length of 50 mm. It fixed with the fixing member which consists of resin. Then, two converging bodies are inserted into the same housing, and a turbulent flow generating member having a structure of Table 1 is connected to the end portion of the housing in a cylindrical shape of 60 mmφ × thickness 15 mm . A separation module 20 was produced.
[00 42 ]
The obtained gas separation module was deaerated by flowing pure water with a dissolved oxygen concentration of 8 ppm from the workpiece inlet at a flow rate of 7 l / min and reducing the specific gas recovery port to 100 torr with a vacuum pump. And the dissolved oxygen amount of the pure water collect | recovered from the processed material collection | recovery port was measured, and it showed in Table 1.
[00 43 ]
[Table 1]
Figure 0003911370
[00 44 ]
From the results of Table 1, it was found that the amount of dissolved oxygen is reduced and the gas separation performance is high by connecting the turbulent flow generating member with a plurality of filters in the converging body and interposing them between the converging bodies according to the present invention. .
[00 45 ]
On the other hand, sample no . The gas separation module having no turbulent flow generating member 9 had a low gas separation performance.
[0046]
【The invention's effect】
As described above in detail, the gas separation module of the present invention has a plurality of converging bodies arranged in parallel in the same housing and accommodates a turbulent flow generating member, thereby interposing a gas or liquid as an object to be processed. It can promote turbulent flow and improve gas separation performance.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an example of a gas separation module of the present invention.
FIG. 2 is a diagram showing a pore distribution of a separation membrane of a gas separation filter tube in a gas separation module of an example.
[Explanation of symbols]
20 gas separation module
21 , 21 ' gas separation filter tube (filter)
22 and 22 ' convergent body
24 housing
23 , 23 ' fixing member
25 workpiece inlet
26 Processed product collection port
27 specific gas recovery port
30 turbulence generating members

Claims (6)

特定のガスのみが透過可能なガス分離機能を有するガス分離フィルタ管を複数本収束してなる収束体を2本具備するとともに、前記2本の収束体を同一のハウジング内に該2本の収束体を並列に配置して収納し、該ハウジング内の端部に粒状体を充填してなる乱流発生部材を設け、かつ前記2本の収束体同士を前記乱流発生部材を介して接続し、前記2本の収束体のうちの一方を往路部、他方を復路部としたことを特徴とするガス分離モジュール。With only a specific gas comprises two convergent body a gas separation filter tube formed by a plurality of convergence with permeable gas separation function, converging the two convergence of the two on the same housing body was housed arranged in parallel, a turbulent flow generating member formed by filling the granules in the end portion in the housing is provided, and the converging bodies of the two connected through the turbulence generating member A gas separation module characterized in that one of the two converging bodies is an outward path portion and the other is a return path portion . 前記ガス分離フィルタ管の内部に第2の乱流発生部材を設けたことを特徴とする請求項1記載のガス分離モジュール。The gas separation module according to claim 1, wherein a second turbulent flow generation member is provided inside the gas separation filter tube. 前記第2の乱流発生部材が管状体の収束体からなり、該管状体の内径が前記ガス分離フィルタ管の内径より小さいことを特徴とする請求項2記載のガス分離モジュール。Wherein the second turbulence generating member consists convergence of the tubular body, a gas separation module of claim 2, wherein the inner diameter of the tubular body is smaller than the inner diameter of the gas separation filter tube. 前記第2の乱流発生部材が粒状体を充填してなることを特徴とする請求項2記載のガス分離モジュール。Gas separation module of claim 2, wherein said second turbulence generating member is characterized by being filled with the granular material. 前記第2の乱流発生部材が前記ガス分離フィルタ管の内径よりも小さい気孔を有する多孔質体からなることを特徴とする請求項2記載のガス分離モジュール。Gas separation module according to claim 2, characterized by comprising a porous body having smaller pores than the inner diameter of the second turbulators said gas separation filter tubes. 請求項1〜5のいずれかに記載のガス分離モジュールと、該ガス分離モジュールにおいて前記特定のガスが回収される特定ガス回収口に接続された真空ポンプとを具備することを特徴とする液体脱気装置。A liquid desorption comprising the gas separation module according to claim 1 and a vacuum pump connected to a specific gas recovery port from which the specific gas is recovered in the gas separation module. Qi device.
JP20937599A 1998-07-24 1999-07-23 Gas separation module and liquid deaerator Expired - Fee Related JP3911370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20937599A JP3911370B2 (en) 1998-07-24 1999-07-23 Gas separation module and liquid deaerator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20976798 1998-07-24
JP10-209767 1998-07-24
JP20937599A JP3911370B2 (en) 1998-07-24 1999-07-23 Gas separation module and liquid deaerator

Publications (2)

Publication Number Publication Date
JP2000093729A JP2000093729A (en) 2000-04-04
JP3911370B2 true JP3911370B2 (en) 2007-05-09

Family

ID=26517420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20937599A Expired - Fee Related JP3911370B2 (en) 1998-07-24 1999-07-23 Gas separation module and liquid deaerator

Country Status (1)

Country Link
JP (1) JP3911370B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10345818A1 (en) * 2003-09-30 2005-04-28 Boehringer Ingelheim Micropart Method and device for separating and removing gas bubbles from liquids
JP4543907B2 (en) * 2004-12-07 2010-09-15 日産自動車株式会社 Hydrogen separation membrane device
JP5148578B2 (en) * 2007-03-15 2013-02-20 三菱重工業株式会社 Dehydration system
JP4929269B2 (en) * 2008-11-13 2012-05-09 三菱重工業株式会社 Membrane container
JP5378180B2 (en) 2009-12-02 2013-12-25 愛三工業株式会社 Separation membrane module and evaporative fuel processing apparatus having the same

Also Published As

Publication number Publication date
JP2000093729A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
Okamoto et al. Zeolite NaA membrane: preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures
JP3431973B2 (en) Method for producing liquid mixture separation membrane
JP3402515B2 (en) Hydrogen separator, hydrogen separator using the same, and method for producing hydrogen separator
KR102216401B1 (en) Gas purification filter unit
JPWO2020195105A1 (en) Zeolite Membrane Complex, Method for Producing Zeolite Membrane Complex, Method for Treating Zeolite Membrane Complex, and Method for Separation
JP3685289B2 (en) Liquid degassing module
JP3911370B2 (en) Gas separation module and liquid deaerator
US8357228B2 (en) Gas purification method
JP2021016858A (en) Separation device, and operation method of the separation device
WO2014192433A1 (en) Filtration device and immersed filtration method using same
JPH05317605A (en) Membrane vacuum deaerating method and device therefor
JPWO2020179432A1 (en) Zeolite Membrane Complex, Method for Producing Zeolite Membrane Complex, and Method for Separation
JP2000334250A (en) Gas separating filter and its production
JP3582986B2 (en) Ceramic composite member for degassing and degassing method using the same
JP3638426B2 (en) Ceramic composite member for deaeration and deaeration method using the same
JP4721575B2 (en) Exposure equipment
JP2002102640A (en) Gas separation module and gas separation apparatus
JP2021154240A (en) Rare gas recovery system and recovery method
JPH06134446A (en) Method for manufacturing deaerated water and module for manufacture of deaerated water
JP3409863B2 (en) Removal device for dissolved organic matter in water
JPH11216303A (en) Ceramic composite member for degassing and degassing method
JP2001276554A (en) Gas separating filter and gas separating module
JP3283072B2 (en) Underwater dissolved organic matter removal equipment
JP2005319383A (en) Hydrogen separating material and its manufacturing method
JP2003326138A (en) End sealing method of porous ceramic hollow-fiber membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees