JP3911102B2 - Radiant tube combustion device - Google Patents

Radiant tube combustion device Download PDF

Info

Publication number
JP3911102B2
JP3911102B2 JP14731699A JP14731699A JP3911102B2 JP 3911102 B2 JP3911102 B2 JP 3911102B2 JP 14731699 A JP14731699 A JP 14731699A JP 14731699 A JP14731699 A JP 14731699A JP 3911102 B2 JP3911102 B2 JP 3911102B2
Authority
JP
Japan
Prior art keywords
exhaust
supply
radiant tube
port
burners
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14731699A
Other languages
Japanese (ja)
Other versions
JP2000337614A (en
Inventor
俊 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP14731699A priority Critical patent/JP3911102B2/en
Publication of JP2000337614A publication Critical patent/JP2000337614A/en
Application granted granted Critical
Publication of JP3911102B2 publication Critical patent/JP3911102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/66Preheating the combustion air or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/002Combustion apparatus characterised by the shape of the combustion chamber the chamber having an elongated tubular form, e.g. for a radiant tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/02Arrangements of regenerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Air Supply (AREA)
  • Combustion Of Fluid Fuel (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、蓄熱式バーナを用いたラジアントチューブ燃焼装置の低NOx化に関するものである。
【0002】
【従来の技術】
この種のラジアントチューブ燃焼装置は、熱処理炉等で間接加熱を行うためのものであるが、通常蓄熱式バーナを2台一組で使用し、各バーナを数十秒間隔で交互に燃焼させながら、それぞれに内蔵した蓄熱体で排熱を回収し、その熱で燃焼用空気を予熱するものであって、蓄熱体により高効率の熱回収が行える反面、燃焼用空気が高温になるために、NOxを排出し易いという問題がある。またラジアントチューブ加熱用のバーナは、直火加熱用バーナに比し燃焼空間が狭いために、火炎形状の工夫による低NOx化は困難であり、従って炉外で強制的に排気を再循環させる手法が多く採用されている。
【0003】
【発明が解決しようとする課題】
この種の排気再循環させる手段として、次の四つの方法が挙げられる。
▲1▼ 蓄熱体に入る前の排気を燃焼気流で吸引する方法(図1)。
▲2▼ 燃焼用空気圧で蓄熱体を出た後の排気を吸引する方法(図2)。
▲3▼ 燃焼ガス圧で蓄熱体を出た後の排気を吸引する方法(図3)。
▲4▼ 燃焼空気用ブロアで煙道の排気を吸引する方法(図4)。
このうち▲1▼〜▲3▼はベンチュリ効果を応用して、燃焼していない側のバーナの排気若しくは煙道の排気を吸引するものであるが、図1に示すように蓄熱体Aよりも高温側で排気再循環を行う▲1▼の方法は、吸引される排気が高温であるため、排気再循環管17を断熱構造にする必要があり、従って炉の前面に断熱被覆用の場所をとり作業スペースを確保し難いという問題があり、またその対策として排気再循環管17を炉内あるいは炉壁内に収めるのは、構造が複雑となってコスト高になるという問題がある。
【0004】
また▲2▼の方法は、図2に示すように、蓄熱体Aよりも低温側に供給空気圧で排気を吸引するためのベンチュリミキサ19を設けたものであるが、蓄熱体Aの温度が高くなるとラジアントチューブ1内の圧力が上昇してベンチュリミキサ19の吸引力が低下するために、これをカバーするためには給気用ブロア15をかなり大型化する必要がある。更に▲3▼の方法は、図3に示すように、燃料ガス圧により排気を吸引するものであって、ガス圧を高くするために中圧の都市ガスをそのまま利用するのは安全管理上問題が多く、従って通常は低圧の都市ガスを昇圧するためにブースターを設ける必要があるが、通常のブースターでは高温時におけるベンチュリミキサ20の吸引力が不足するという問題がある。このようにベンチュリミキサを蓄熱体Aよりも低温側で使用する場合、ラジアントチューブ1の内圧の上昇のために吸引能力が不足し、あるいはブロア15が大型化するという問題があった。
【0005】
また▲4▼の方法は、図4に示すように、燃焼空気用のブロア15を利用して煙道18から排気の一部を吸引するものであるが、給気用ダクトと排気用ダクトは通常反対方向から四方弁3に連結されているため、これらを連結するためにはダクトの配置あるいはブロア設置場所等に制約が生じ、やはり作業スペースの確保が困難になるという問題がある。そこで本発明は上述のような種々のの問題点を解消し、通常多数の配管やバルブ類で錯綜しているラジアントチューブ前面において、できるだけ設置スペースをとらず、しかも高温時に吸引能力が不足しないようなベンチュリ式の排気再循環手段を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、図5に示すように、ラジアントチューブ1の両端にそれぞれ装着した蓄熱式バーナ2a,2bに交互に燃料ガスを供給すると共に、両バーナ2a,2bへの給排気を四方弁3により切り換えるようにしたラジアントチューブ燃焼装置において、上記四方弁3をドラム状筒体で構成し、該筒体の周面の相対する2箇所に給気口8と排気口9を設け、その中間2箇所に両バーナ2a、2bに接続する給排気口6a、6bを設けて、筒体内で羽根板10を回動させることにより両バーナ2a、2bの給気と排気を交互に切り換えるようにすると共に、該筒体の一端面において、上記給気口8の近傍に排気取入口12を、上記排気口9の近傍に排気吸引口13をそれぞれ設けて、筒体外部で上記排気吸引口13と排気取入口12を連結する連絡配管4を設け、該連絡配管4に介装したベンチュリミキサ5に高圧空気を送入することにより、排気の一部を給気側へ再循環せしめたものであって、高圧空気を用いることによりベンチュリミキサ5及び排気再循環用の連絡配管4を小型化して、少しでも広い作業スペースを確保すると共に、ベンチュリミキサ5の吸引圧を大きくすることによって、この種のラジアントチューブバーナでは不足しがちな再循環排気量を確保し得る点に特徴を有するものである。
【0007】
【発明の実施の形態】
図1は本発明の一実施例を示したもので、ラジアントチューブ1の両端にそれぞれ蓄熱式バーナ2a,2bが装着されており、燃料バルブ7a,7bを通じて両バーナ2a,2bに交互に燃料ガスが供給されると同時に、給排気も四方弁3により切り換えられて、両バーナ2a,2bが数十秒毎に交互に燃焼するようになっている。この四方弁3は図6(a)及び(b)に示すように、ドラム状の筒体で構成されており、筒体の周面の相対する2箇所に給気入口8と排気出口9が設けられ、その中間2箇所に両バーナ2a,2bに接続する給排気口6a,6bが設けられている。この筒体内でエアシリンダ11によって駆動される羽根板10が回動し、両バーナ2a,2bの給気と排気が交互に切り換えるようになっている。本発明では同図に示すように、筒体の一端面において、給気入口8の近傍に排気取入口12を、上記排気出口9の近傍に排気吸引口13をそれぞれ設けると共に、排気取入口12と排気吸引口13とを筒体の外部で連結する連絡配管4を設け、この連絡配管4にベンチュリミキサ5を介装して、コンプレッサ14からベンチュリミキサ5に高圧空気を送入することにより、排気路から給気路へ排気の一部を再循環させている。
【0008】
図5において、矢印は右側のバーナ2aが給気に切り換えられたときの給排気の流れを示しており、このとき燃料バルブ7aが開かれてバーナ2aに燃料ガスが供給されると共に、四方弁3から蓄熱体Aを通して燃焼用空気が供給され、蓄熱体Aに蓄えられていた熱により予熱された空気によって右側バーナ2aが燃焼する一方、左側バーナ2bでは蓄熱体Aを通してチューブ1内の高温排気が吸引され、蓄熱体を通って温度の低下した排気が四方弁3を通して排気用ブロア16に吸引される。このとき排気の一部がベンチュリミキサ5の吸引力により図6(a)の排気吸引口13から吸引され、連絡配管4を通って排気取入口12から四方弁3の給気側区画へ送り込まれ、ここで給気用ブロア15から送られてくる新しい空気に混入されて、燃焼用空気の酸素濃度を低下させることによって火炎温度を低下させ、低NOx化が実現されるのである。
【0009】
【発明の効果】
本発明によれば上述のように、排気吸引用に高圧空気を用いてベンチュリミキサ5の吸引圧を大きくすることにより、ベンチュリミキサ5及び排気再循環用パイプ6を小型化して、少しでも広い作業スペースを確保すると共に、この種のラジアントチューブバーナでは不足し勝ちな再循環排気量を確保し得るという利点があり、しかもこれに使用する高圧空気は従来四方弁3の羽根板10の駆動用エアシリンダ11に高圧空気を供給していたコンプレッサ14がそのまま利用できるので、比較的安価に構成できるという利点がある。
【図面の簡単な説明】
【図1】従来例を示す系統図。
【図2】他の従来例を示す系統図。
【図3】更に従来例を示す系統図。
【図4】更に他の従来例を示す系統図。
【図5】本発明の一実施例を示す系統図。
【図6】同上に使用する四方弁の正面断面図及び側面断面図。
【符号の説明】
1 ラジアントチューブ
2a,2b 蓄熱式バーナ
3 四方弁
4 連絡配管
5 ベンチュリミキサ
6a,6b 給排気口
7a,7b 燃料バルブ
8 給気入口
9 排気出口
10 羽根板
11 エアシリンダ
12 排気取入口
13 排気吸引口
14 コンプレッサ
15 給気用ブロア
16 排気用ブロア
17 排気再循環管
18 煙道
19 ベンチュリミキサ
20 ベンチュリミキサ
A 蓄熱体
[0001]
[Industrial application fields]
The present invention relates to reducing NOx in a radiant tube combustion apparatus using a heat storage burner.
[0002]
[Prior art]
This type of radiant tube combustion device is for indirect heating in a heat treatment furnace or the like, but normally uses two regenerative burners as a set, and burns each burner alternately at intervals of several tens of seconds. In addition, it collects exhaust heat with each built-in heat storage body and preheats combustion air with that heat, and while it can perform highly efficient heat recovery with the heat storage body, the combustion air becomes high temperature, There is a problem that NOx is easily discharged. In addition, the burner for radiant tube heating has a narrow combustion space compared to the burner for direct fire heating, so it is difficult to reduce NOx by devising the flame shape. Therefore, the exhaust gas is forced to recirculate outside the furnace. Is often adopted.
[0003]
[Problems to be solved by the invention]
There are the following four methods for this type of exhaust gas recirculation.
(1) A method of sucking exhaust gas before entering a heat storage body with a combustion airflow (FIG. 1).
(2) A method of sucking exhaust gas after exiting the heat accumulator with combustion air pressure (FIG. 2).
(3) A method of sucking exhaust gas after exiting the heat accumulator with combustion gas pressure (FIG. 3).
(4) A method for sucking flue exhaust with a combustion air blower (FIG. 4).
Among these, (1) to (3) apply the venturi effect and suck the exhaust of the burner on the non-burning side or the exhaust of the flue, but as shown in FIG. In the method of (1) in which exhaust gas recirculation is performed on the high temperature side, the exhaust gas to be sucked is high temperature, so it is necessary to make the exhaust gas recirculation pipe 17 in a heat insulating structure. In addition, there is a problem that it is difficult to secure a working space, and as a countermeasure against this, the problem is that the exhaust recirculation pipe 17 is housed in the furnace or the furnace wall because the structure is complicated and the cost is increased.
[0004]
In the method (2), as shown in FIG. 2, a venturi mixer 19 is provided on the lower temperature side than the heat accumulator A for sucking exhaust gas with the supply air pressure. However, the temperature of the heat accumulator A is high. Then, since the pressure in the radiant tube 1 rises and the suction force of the venturi mixer 19 decreases, it is necessary to considerably increase the size of the air supply blower 15 in order to cover this. Furthermore, as shown in FIG. 3, the method of (3) is to suck exhaust gas by the fuel gas pressure, and it is a problem in terms of safety management to use medium-pressure city gas as it is to increase the gas pressure. Therefore, it is usually necessary to provide a booster to boost the low-pressure city gas. However, the normal booster has a problem that the suction force of the venturi mixer 20 at a high temperature is insufficient. As described above, when the venturi mixer is used on the lower temperature side than the heat storage body A, there is a problem that the suction capacity is insufficient due to the increase of the internal pressure of the radiant tube 1 or the blower 15 is enlarged.
[0005]
In the method (4), as shown in FIG. 4, a part of the exhaust is sucked from the flue 18 using the blower 15 for combustion air. Since they are normally connected to the four-way valve 3 from the opposite direction, there is a problem in that it is difficult to secure a working space due to restrictions on the arrangement of ducts or the location of the blower in order to connect them. Therefore, the present invention solves the various problems as described above, and does not take up installation space as much as possible on the front surface of the radiant tube, which is usually complicated by a large number of pipes and valves, and does not have insufficient suction capacity at high temperatures. An object of the present invention is to provide a venturi type exhaust gas recirculation means.
[0006]
[Means for Solving the Problems]
In the present invention, as shown in FIG. 5, the fuel gas is alternately supplied to the regenerative burners 2a and 2b attached to both ends of the radiant tube 1, and the four-way valve 3 supplies and exhausts the fuel gas to both the burners 2a and 2b. In the radiant tube combustion apparatus to be switched, the four-way valve 3 is constituted by a drum-shaped cylinder, and an air supply port 8 and an exhaust port 9 are provided at two opposite positions on the peripheral surface of the cylinder, and two intermediate points thereof Are provided with air supply / exhaust ports 6a and 6b connected to both burners 2a and 2b, and the blade plate 10 is rotated in the cylinder to alternately switch the supply and exhaust of the burners 2a and 2b. An exhaust inlet 12 is provided in the vicinity of the air supply port 8 and an exhaust suction port 13 is provided in the vicinity of the exhaust port 9 on one end surface of the cylinder, and the exhaust suction port 13 and the exhaust intake are provided outside the cylinder. connecting the inlet 12 A high-pressure air is used in which a part of the exhaust gas is recirculated to the air supply side by providing high voltage air to the venturi mixer 5 provided in the connecting pipe 4 and connecting the high-pressure air. By reducing the size of the venturi mixer 5 and the connecting pipe 4 for exhaust gas recirculation to secure a wide working space as much as possible, and increasing the suction pressure of the venturi mixer 5, this type of radiant tube burner is not sufficient. It has a feature in that it can secure a recirculation exhaust amount.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of the present invention, wherein regenerative burners 2a and 2b are respectively attached to both ends of a radiant tube 1, and fuel gas is alternately supplied to both burners 2a and 2b through fuel valves 7a and 7b. At the same time, the supply / exhaust is switched by the four-way valve 3 so that the burners 2a and 2b are alternately burned every several tens of seconds. As shown in FIGS. 6 (a) and 6 (b), the four-way valve 3 is constituted by a drum-shaped cylinder, and an air supply inlet 8 and an exhaust outlet 9 are provided at two opposite positions on the peripheral surface of the cylinder. Air supply / exhaust ports 6a, 6b connected to both burners 2a, 2b are provided at two intermediate positions. The vane plate 10 driven by the air cylinder 11 rotates in the cylinder, and the supply and exhaust of the burners 2a and 2b are alternately switched. In the present invention, as shown in the figure, an exhaust inlet 12 is provided in the vicinity of the air inlet 8 on one end face of the cylinder, an exhaust suction port 13 is provided in the vicinity of the exhaust outlet 9, and the exhaust inlet 12 is provided. And connecting the exhaust suction port 13 to the outside of the cylinder, by providing a venturi mixer 5 in the connection pipe 4 and sending high-pressure air from the compressor 14 to the venturi mixer 5, Part of the exhaust gas is recirculated from the exhaust path to the air supply path.
[0008]
In FIG. 5, the arrows indicate the flow of supply / exhaust when the right burner 2a is switched to supply air. At this time, the fuel valve 7a is opened and fuel gas is supplied to the burner 2a. Combustion air is supplied from the heat storage body A through the heat storage body A, and the right burner 2a is combusted by the air preheated by the heat stored in the heat storage body A, while the left burner 2b passes the heat storage body A through the high temperature exhaust in the tube 1 And the exhaust gas whose temperature has decreased through the heat storage body is sucked into the exhaust blower 16 through the four-way valve 3. At this time, a part of the exhaust is sucked from the exhaust suction port 13 of FIG. 6A by the suction force of the venturi mixer 5 and is sent from the exhaust intake 12 to the supply side section of the four-way valve 3 through the communication pipe 4. Here, the flame temperature is lowered by reducing the oxygen concentration of the combustion air, which is mixed into the new air sent from the air supply blower 15, thereby realizing low NOx.
[0009]
【The invention's effect】
According to the present invention, as described above, the venturi mixer 5 and the exhaust gas recirculation pipe 6 are reduced in size by increasing the suction pressure of the venturi mixer 5 using high-pressure air for exhaust suction. In addition to securing space, this type of radiant tube burner has the advantage of being able to secure a recirculation displacement that is likely to be insufficient, and the high-pressure air used for this is air for driving the blade plate 10 of the conventional four-way valve 3. Since the compressor 14 that has supplied the high-pressure air to the cylinder 11 can be used as it is, there is an advantage that it can be configured relatively inexpensively.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a conventional example.
FIG. 2 is a system diagram showing another conventional example.
FIG. 3 is a system diagram showing a further conventional example.
FIG. 4 is a system diagram showing still another conventional example.
FIG. 5 is a system diagram showing an embodiment of the present invention.
FIG. 6 is a front sectional view and a side sectional view of a four-way valve used in the above.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Radiant tube 2a, 2b Regenerative burner 3 Four-way valve 4 Connection piping 5 Venturi mixer 6a, 6b Supply / exhaust port 7a, 7b Fuel valve 8 Supply inlet 9 Exhaust outlet 10 Blade plate 11 Air cylinder 12 Exhaust inlet 13 Exhaust inlet 14 Compressor 15 Supply Blower 16 Exhaust Blower 17 Exhaust Recirculation Pipe 18 Flue 19 Venturi Mixer 20 Venturi Mixer A Heat Storage

Claims (1)

ラジアントチューブの両端にそれぞれ装着した蓄熱式バーナに交互に燃料ガスを供給すると共に、両バーナへの給排気を四方弁により切り換えるようにしたラジアントチューブ燃焼装置において、上記四方弁をドラム状筒体で構成し、該筒体の周面の相対する2箇所に給気口と排気口を設け、その中間2箇所に両バーナに接続する給排気口を設けて、筒体内で羽根板を回動させることにより両バーナの給気と排気を交互に切り換えるようにすると共に、該筒体の一端面において、上記給気口の近傍に排気取入口を、上記排気口の近傍に排気吸引口をそれぞれ設けて、筒体外部で上記排気吸引口と排気取入口を連通させる連絡配管を設け、該連絡配管に介装したベンチュリミキサに高圧空気を送入することにより、排気の一部を給気側へ再循環せしめたことを特徴とするラジアントチューブ燃焼装置。In the radiant tube combustion apparatus in which the fuel gas is alternately supplied to the regenerative burners attached to both ends of the radiant tube, and the supply / exhaust to both burners is switched by the four-way valve, the four-way valve is a drum-shaped cylinder. The air supply port and the exhaust port are provided at two opposite locations on the peripheral surface of the cylindrical body, and the air supply and exhaust ports connected to both burners are provided at two intermediate positions to rotate the blades within the cylindrical body. As a result, the supply and exhaust of the burners are alternately switched, and an exhaust inlet is provided near the supply port and an exhaust suction port is provided near the exhaust port on one end surface of the cylinder. In addition, a communication pipe that communicates the exhaust suction port and the exhaust intake port outside the cylinder is provided, and by sending high-pressure air to the venturi mixer that is interposed in the communication pipe, a part of the exhaust is sent to the supply side Recirculation Radiant tube combustion device being characterized in that tighten.
JP14731699A 1999-05-26 1999-05-26 Radiant tube combustion device Expired - Fee Related JP3911102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14731699A JP3911102B2 (en) 1999-05-26 1999-05-26 Radiant tube combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14731699A JP3911102B2 (en) 1999-05-26 1999-05-26 Radiant tube combustion device

Publications (2)

Publication Number Publication Date
JP2000337614A JP2000337614A (en) 2000-12-08
JP3911102B2 true JP3911102B2 (en) 2007-05-09

Family

ID=15427443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14731699A Expired - Fee Related JP3911102B2 (en) 1999-05-26 1999-05-26 Radiant tube combustion device

Country Status (1)

Country Link
JP (1) JP3911102B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3883885B2 (en) * 2002-03-04 2007-02-21 中外炉工業株式会社 Single-ended regenerative radiant tube burner device and combustion method thereof
FR2934033B1 (en) * 2008-07-15 2010-09-03 Fives Stein DEVICE FOR CONTROLLING REGENERATIVE BURNERS.
WO2016070977A1 (en) * 2014-11-03 2016-05-12 Linde Aktiengesellschaft Method for operating a regenerative burner system, and regenerative burner system
JP6620192B1 (en) * 2018-07-10 2019-12-11 株式会社横井機械工作所 Four-way valve device

Also Published As

Publication number Publication date
JP2000337614A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
CN104976763A (en) Premix air heater
CN218209606U (en) RTO waste gas recovery clean system
JP3911102B2 (en) Radiant tube combustion device
CN111426068A (en) Combustor and water heater
WO2002006646A1 (en) Internal combustion engine with combustion heater
JP2001020755A (en) Exhaust re-circulation type gas turbine system and combined cycle generator facility with the gas turbine system
JPS6078819A (en) Heater with combustion-type heating unit for vehicle
JP4400378B2 (en) Exhaust gas purification device for internal combustion engine
CN201053827Y (en) Heat treatment furnace waste gas circulation and utilization system
CN201043489Y (en) Internal and external combustion engine
CN109269094A (en) A kind of power economized boiler combustion system
JP3178572B2 (en) Alternating burner device
CN210891692U (en) NO reduction with steam sprayingXFour-section type incinerator device
CN215372565U (en) Air preheater of pulverized coal furnace
JPH033901Y2 (en)
CN211781977U (en) Full-premixing ultralow-nitrogen condensation bathing furnace device
JPH0624641Y2 (en) boiler
JPS626419Y2 (en)
CN211822366U (en) Condensation hot water module furnace burner
CN115608123A (en) System and method for saving energy by waste heat of flue gas of hot blast stove system in SCR (selective catalytic reduction) denitration
JPS59125349A (en) Composite hot water supplyer
JPS6349616A (en) Hot air device by exhaust gas combustion
JPH0579237U (en) Oiled hot water boiler
JP2513190Y2 (en) Turbo Combustor
JPH085026A (en) Alternate combustion burner device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070126

R150 Certificate of patent or registration of utility model

Ref document number: 3911102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees