JP3911037B2 - Flame retardant resin composition - Google Patents

Flame retardant resin composition Download PDF

Info

Publication number
JP3911037B2
JP3911037B2 JP17454995A JP17454995A JP3911037B2 JP 3911037 B2 JP3911037 B2 JP 3911037B2 JP 17454995 A JP17454995 A JP 17454995A JP 17454995 A JP17454995 A JP 17454995A JP 3911037 B2 JP3911037 B2 JP 3911037B2
Authority
JP
Japan
Prior art keywords
compound
resin composition
weight
molybdenum
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17454995A
Other languages
Japanese (ja)
Other versions
JPH0925377A (en
Inventor
俊也 清
由紀 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP17454995A priority Critical patent/JP3911037B2/en
Publication of JPH0925377A publication Critical patent/JPH0925377A/en
Application granted granted Critical
Publication of JP3911037B2 publication Critical patent/JP3911037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、スチレン系樹脂の優れた特性を保持しながら、燃焼時に熱分解溶融物の滴下がなく、しかも高い難燃性を有する樹脂組成物に関する。
【0002】
【従来の技術】
近年、プラスチック材料の使用分野はますます多岐にわたっている。なかでも、ハイインパクトポリスチレン、ABS樹脂等のスチレン系樹脂はその優れた耐衝撃性、成形性、寸法安定性によって自動車部品、電気用品機器、事務機器その他各種成形品として非常に多くの分野において使用されている。
【0003】
一方、このような使用用途の拡大に伴い、安全上の問題から、難燃材料に対して高度の難燃性が要求されてきている。従来、スチレン系樹脂の難燃化には、主にハロゲン含有化合物等が使用され、さらにそれらの難燃化添加剤に加えて三酸化アンチモン等が難燃助剤として必要に応じて添加する方法が採用されている。これらの方法において、難燃化は達成できても、燃焼時の溶融物の滴下を防止することは容易でない。溶融物滴下防止法として、ガラス繊維等の無機化合物やフッ素系樹脂等の高分子物質の添加、過酸化物の添加による架橋化などが試みられている。また、ある種の金属の添加による試み(特開昭51−137737号公報)もなされているが、いずれも未だ満足すべき方法が見出だされていない。また、上述のハロゲン系難燃剤の添加量を大幅に増加すれば、溶融物の滴下をある程度防止できるが、樹脂の物性低下が著しく、また製品コストも大幅に上昇する。
【0004】
【発明が解決しようとする課題】
本発明の目的は、樹脂の優れた特性を保持しながら、燃焼時に熱分解溶融物の滴下がなく、しかも高い難燃性を有する樹脂組成物を提供することである。
【0005】
【課題を解決するための手段】
本発明者は、これら諸問題を解決すべく鋭意研究した結果、スチレン系熱可塑性能樹脂100重量部に対し、(A)難燃性を向上させる有機ハロゲン系化合物5〜30重量部、(B)アンチモン化合物2〜15重量部、(C)モリブデン化合物(但し、モリブデン酸アルミニウム及び金属モリブデンを除く)0.05〜5重量部を配合し、前記モリブデン化合物に対する前記アンチモン化合物の重量比を4〜300とすることにより、スチレン系樹脂の優れた特性を保持しながら、燃焼時に熱分解溶融物の滴下がなく、しかも高い難燃性を有する樹脂組成物を見出だし、本発明に到達した。前記モリブデン化合物は、酸化物、モリブデン酸カルシウム、モリブデン酸カリウム、モリブデン酸亜鉛、又はモリブデン酸アンモニウムであってもよい。
【0006】
本発明の組成物は、熱分解時の溶融物の滴下がまったく無く、しかも難燃性に優れている。さらに驚くべきことは、極めて少量のモリブデン化合物が存在することにより、ハロゲン系難燃剤および三酸化アンチモンの量を大幅に低減できることである。
【0007】
本発明において用いられるスチレン系樹脂は、スチレン系単量体ならびに該単量体と共重合可能な他のビニル単量体からそれぞれ選ばれる少なくとも1種の単量体を用い、さらに必要に応じて、ゴム状物質をも存在させて重合せしめて得られるものも含まれる。
【0008】
本発明で使用されるスチレン系単量体とは、スチレン、α−メチルスチレンおよびベンゼン核の水素原子がハロゲン原子、水酸基、炭素数1〜4なるアルキル基、またはハロゲン化アルキルまたはヒドロキシアルキル基で置換されたスチレン誘導体などを総称するものである。かかるスチレン系単量体としてスチレン、p−メチルスチレン、p−クロルスチレン、2,4−ジメチルスチレン、p−タ−シャリ−ブチルスチレンなどである。
【0009】
また、前記した共重合可能な他のビニル単量体として代表的なものには(メタ)アクリロニトリル、α−クロロアクリロニトリルもしくはシアンかビニリデンの如きアクリロニトリル系単量体;(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸−2−エチルヘキシルもしくは(メタ)アクリル酸−β−ヒドロキシエチルの如き(メタ)アクリル酸およびそれらの各種エステル類;あるいは酢酸ビニル、塩化ビニル、塩化ビニリデン、ビニルピロリドン、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、無水マレイン酸、無水イタコン酸またはマレイイミドをはじめ、ビニルケトン類またはビニルエーテル類などがある。
【0010】
さらに、前記したゴム状物質として代表的なものには、ポリブタジエンゴム、スチレン・ブタジエン共重合ゴム、スチレン・ブタジエン・スチレンブロック共重合ゴム、エチレン・プロピレンターポリマー系ゴム、ブタジエン・アクリロニトリル共重合ゴム、ブチルゴム、アクリル系ゴム、スチレン・イソブチレン・ブタジエン系共重合ゴム、またはイソプレン・アクリル酸エステル系共重合ゴム、をはじめとするイソプレンもしくはクロロプレンの如き共役1,3−ジエン系単量体を用いて得られるゴムなどがあるが、これらは1種あるいは2種以上の組み合わせで用いられる。
【0011】
また、本発明において用いられるハロゲン系有機化合物は、通常この分野において使用されるものを限定なく使用することができる、たとえば、テトラブロモビスフェノールAおよびテトラブロモビスフェノールAのカーボネートオリゴマー、テトラブロモビスフェノールAビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノールAビス(2−ブロモエチルエーテル)、テトラブロモビスフェノールAジグリシジルエーテルとブロム化ビスフェノール付加物エポキシオリゴマー、テトラブロモビスフェノールAジグリシジルエーテルとトリブロモフェノール付加物などのテトラブロモビスフェノールA誘導体、デカブロモジフェニルエーテル、オクタブロモジフェニルエーテル、エチレンビステトラブロモフタルイミド、エチレンビスジブロモノルボルナンジカルボキシイミド、ヘキサブロモシクロドデカン、1,2−ビス(ペンタブロモフェニル)エタン、2,3−ジブロモプロピルペンタブロモフェニルエーテル、ビス(2,4,6−トリブロモフェノキシ)エタン、などの臭素系芳香族化合物、塩素化パラフィン、塩素化ナフタレン、パークロロシクロペンタデカン、塩素化芳香族化合物、塩素化脂環状化合物などが上げられる。この中で、ブロム化ビスフェノール型エポキシ化合物やデカブロモジフェニルエーテルなどが好ましく用いられる。これらの化合物は単独または二種以上を用いることにより目的を達する。スチレン系樹脂100重量部に対する上記化合物の配合割合は5〜30重量部が良く、5重量部未満では難燃性が十分でなく、30重量部を越える範囲では、当然難燃性は向上するが、逆に諸物性が低下し、経済性の面からも適当でない。
【0012】
本発明のおけるアンチモン化合物は、三酸化アンチモン、四酸化二アンチモン、五酸化二アンチモンなどの酸化物やアンチモン酸ソーダなどのアンチモン酸塩などがあるが、耐炎性効果の面から三酸化アンチモンが好ましい。
【0013】
本発明において用いられるモリブデン化合物は、二酸化モリブデン、三酸化モリブデンなどの酸化物やモリブデン酸カルシウム、モリブデン酸カリウム、モリブデン酸亜鉛、モリブデン酸アンモニウムなどのモリブデン酸塩などがあるが、耐炎性効果の面から三酸化モリブデン、モリブデン酸カルシウム、モリブデン酸カリウムが特に好ましい。金属モリブデンは熱分解時の溶融滴下防止効果の面で有効ではない。また、上記金属化合物は単独はもちろん、2種以上の混合物としても用いることが可能である。
【0014】
本発明の難燃性スチレン系熱可塑性樹脂組成物の組成は各成分の種類により多少異なるが、一般的に、熱可塑性樹脂100重量部に対し、ハロゲン系化合物5〜30重量部、アンチモン化合物2〜15重量部、モリブデン化合物を0.05〜5重量部であり、かつ、モリブデン化合物に対するアンチモン化合物の重量比は1.5〜300である。
【0015】
アンチモン化合物の配合量が2重量部未満では難燃性が不十分であり、15重量部を越えると物性が低下し好ましくない。
【0016】
モリブデン化合物の配合量が0.05重量部未満では難燃性が不十分であり、5重量部を越えると物性や熱安定性が低下し、経済的な点からも好ましくない。また、アンチモン化合物のモリブデン化合物に対する重量比が前述の範囲から外れると、アンチモン化合物とモリブデン化合物との相乗効果が得られなくなる。
【0017】
難燃性、物性および経済性等の点で好ましい範囲は、アンチモン化合物の量が1〜9重量%、モリブデン化合物の量が0.05〜1重量%であり、かつ、アンチモン化合物のモリブデン化合物に対する重量比が4〜100である。
【0018】
本発明に用いられるモリブデン化合物はそれ自身単独では大きな難燃効果を示さないが、有機ハロゲン系化合物およびアンチモン化合物と共存することにより大きな相乗効果を示す。
【0019】
また、本発明における熱可塑性樹脂組成物に対して、ガラス繊維、金属繊維、アラミド繊維、セラミック繊維、チタン酸カリウイスカー、炭素繊維、アスベストのような繊維状強化剤、タルク、炭酸カルシウム、マイカ、クレー、酸化チタン、酸化アルミニウム、ガラスフレーク、ガラスビーズ、ミルドファイバー、金属フレーク、金属粉末のような粒状の補強剤を混入させても良い。
【0020】
なお本発明における熱可塑性樹脂組成物においては更に熱安定剤、酸化安定剤、光安定剤、滑剤、顔料、可塑剤等の添加剤を一種以上混入させてもよい。本発明の熱可塑性樹脂組成物の製造方法は特に限定されるものではないが、好ましくは押出機、ニーダー、バンバリミキサー等、公知の溶融混練法が好ましく用いられる。
【0021】
【実施例】
以下に本発明を実施例によって詳しく説明するが、本発明はこれらに限定されるものではない。
【0022】
実施例、比較例中の添加割合はすべて重量部を示す。本発明において、燃焼性の評価は、米国におけるアンダーライターズ・ラボラトリーズ(UL)で規格化されたサブジェクト94号(略称UL−94)に基づき実施した。
【0023】
引張強度はASTM D 638、アイゾット衝撃強度は、ASTM D 256(厚さ1/4″、ノッチ付き、23℃測定)、熱変形温度 ASTM D 648(厚さ1/4″、荷重18.6kg/cm2 )に基づいた試験法を用いて測定した。
【0024】
実施例1〜4
ABS樹脂(セビアン−V320、ダイセル化学KK製)、臭素化ビスフェノール型エポキシ樹脂(EC20、大日本インキKK製)、三酸化アンチモン(東湖産業KK製)および三酸化モリブデン(太陽鉱工KK製)を表1に示した割合でブレンドし、シリンダー温度240℃の押出機でペレット化し、スチレン系樹脂組成物を得た。さらに、シリンダー温度240℃で射出成形機により試験片を作成し評価した。結果を表1に示した。
【0025】
実施例5
三酸化モリブデンの代わりにモリブデン酸カルシウム(日本無機化学工業KK製)を用いた以外は実施例1〜4と同様に試験を行った。結果を表1に示した。
【0026】
実施例6
三酸化モリブデンの代わりにモリブデン酸カリウム(日本無機化学工業KK製)を用いた以外は実施例1〜4と同様に試験を行った。結果を表1に示した。
【0027】
比較例1〜2
三酸化モリブデンを用いない以外は実施例1〜4と同様に試験を行った。結果を表1に示した。
【0028】
比較例3〜4
三酸化モリブデンの代わりに金属モリブデン(和光純薬KK製)を用いた以外は実施例1〜4と同様に試験を行った。結果を表1に示した。
【0029】
比較例
三酸化アンチモンを用いない以外は実施例1〜4と同様に試験を行った。結果を表1に示した。
【0030】
【表1】

Figure 0003911037
【0031】
実施例10
ハロゲン系有機化合物としてデカブロモジフェニルエーテルを用いた以外は実施例5と同様に試験を行った。結果を表2に示した。
【0032】
実施例11
ハロゲン系有機化合物としてデカブロモジフェニルエーテルを用いた以外は実施例6と同様に試験を行った。結果を表2に示した。
【0033】
比較例および
三酸化モリブデンを用いない以外は実施例7〜9および12と同様に試験を行った。結果を表2に示した。
【0034】
比較例
三酸化モリブデンの代わりに金属モリブデンを用いた以外は実施例7〜9および12と同様に試験を行った。結果を表2に示した。
【0035】
比較例
三酸化アンチモンを用いない以外は実施例7〜9および12と同様に試験を行った。結果を表2に示した。
【0036】
【表2】
Figure 0003911037
【0037】
【発明の効果】
スチレン系熱可塑性樹脂組成物において、少量のモリブデン化合物を有機ハロゲン系化合物およびアンチモン化合物と併用することにより、樹脂の本来の諸性能を失うことなく、高い難燃性を有する熱可塑性樹脂組成物が得られた。[0001]
[Industrial application fields]
The present invention relates to a resin composition having high flame retardancy while maintaining excellent characteristics of a styrene-based resin, free from dripping of a pyrolysis melt during combustion.
[0002]
[Prior art]
In recent years, the fields of use of plastic materials are increasingly diverse. Among them, styrene resins such as high-impact polystyrene and ABS resin are used in many fields as automotive parts, electrical equipment, office equipment and other various molded products due to their excellent impact resistance, moldability and dimensional stability. Has been.
[0003]
On the other hand, along with the expansion of such usage, a high degree of flame retardancy has been required for flame retardant materials due to safety problems. Conventionally, halogen-containing compounds are mainly used to make styrene-based resins flame-retardant, and in addition to those flame-retardant additives, antimony trioxide or the like is added as a flame-retardant aid as needed. Is adopted. In these methods, although flame retardancy can be achieved, it is not easy to prevent dripping of the melt during combustion. As a melt dripping prevention method, an addition of an inorganic compound such as glass fiber or a polymer material such as a fluorine resin, or a crosslinking by addition of a peroxide has been attempted. Attempts have also been made by the addition of certain metals (Japanese Patent Laid-Open No. 51-137737), but no satisfactory method has yet been found. Moreover, if the addition amount of the above-mentioned halogen flame retardant is greatly increased, dripping of the melt can be prevented to some extent, but the physical properties of the resin are remarkably lowered, and the product cost is also greatly increased.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a resin composition having a high flame retardance without dripping of a pyrolysis melt during combustion while maintaining excellent properties of the resin.
[0005]
[Means for Solving the Problems]
As a result of diligent research to solve these problems, the present inventor has found that (A) 5 to 30 parts by weight of an organic halogen compound that improves flame retardancy with respect to 100 parts by weight of a styrene-based thermoplastic performance resin, (B ) Antimony compound 2 to 15 parts by weight, (C) Molybdenum compound (excluding aluminum molybdate and metallic molybdenum ) 0 . By blending 05 to 5 parts by weight and setting the weight ratio of the antimony compound to the molybdenum compound to 4 to 300, there is no dripping of the pyrolysis melt during combustion while maintaining the excellent characteristics of the styrene resin. And the resin composition which has high flame retardance was found, and it reached | attained this invention. The molybdenum compound may be an oxide, calcium molybdate, potassium molybdate, zinc molybdate, or ammonium molybdate.
[0006]
The composition of the present invention has no dripping of the melt during pyrolysis and is excellent in flame retardancy. Even more surprising is that the presence of very small amounts of molybdenum compounds can greatly reduce the amount of halogenated flame retardant and antimony trioxide.
[0007]
The styrenic resin used in the present invention uses at least one monomer selected from a styrenic monomer and another vinyl monomer copolymerizable with the monomer, and if necessary, Further, those obtained by polymerizing in the presence of a rubbery substance are also included.
[0008]
The styrenic monomer used in the present invention is a styrene, α-methylstyrene, or a benzene nucleus in which a hydrogen atom is a halogen atom, a hydroxyl group, an alkyl group having 1 to 4 carbon atoms, or an alkyl halide or hydroxyalkyl group. It is a general term for substituted styrene derivatives and the like. Examples of such styrenic monomers include styrene, p-methylstyrene, p-chlorostyrene, 2,4-dimethylstyrene, and p-tert-butylstyrene.
[0009]
Typical examples of the other copolymerizable vinyl monomers include (meth) acrylonitrile, α-chloroacrylonitrile, acrylonitrile monomers such as cyan or vinylidene; (meth) acrylic acid, (meth ) Methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, glycidyl (meth) acrylate, (meth) acrylic acid-2-ethylhexyl or (meth) acrylic acid-β-hydroxyethyl ) Acrylic acid and various esters thereof; or vinyl acetate, vinyl chloride, vinylidene chloride, vinyl pyrrolidone, (meth) acrylamide, dimethyl (meth) acrylamide, maleic anhydride, itaconic anhydride or maleimide, vinyl ketones or vinyl ether There is kind .
[0010]
Further, representative examples of the rubber-like substance include polybutadiene rubber, styrene / butadiene copolymer rubber, styrene / butadiene / styrene block copolymer rubber, ethylene / propylene terpolymer rubber, butadiene / acrylonitrile copolymer rubber, Obtained using conjugated 1,3-diene monomers such as isoprene or chloroprene, including butyl rubber, acrylic rubber, styrene / isobutylene / butadiene copolymer rubber, or isoprene / acrylate copolymer rubber. These are used, but these are used alone or in combination of two or more.
[0011]
In addition, as the halogen-based organic compound used in the present invention, those usually used in this field can be used without limitation, for example, tetrabromobisphenol A and tetrabromobisphenol A carbonate oligomer, tetrabromobisphenol A bis. (2,3-dibromopropyl ether), tetrabromobisphenol A bis (2-bromoethyl ether), tetrabromobisphenol A diglycidyl ether and brominated bisphenol adduct epoxy oligomer, tetrabromobisphenol A diglycidyl ether and tribromophenol Tetrabromobisphenol A derivatives such as adducts, decabromodiphenyl ether, octabromodiphenyl ether, ethylenebistetrabromophthalimide, Tylene bisdibromonorbornane dicarboximide, hexabromocyclododecane, 1,2-bis (pentabromophenyl) ethane, 2,3-dibromopropylpentabromophenyl ether, bis (2,4,6-tribromophenoxy) ethane, Brominated aromatic compounds such as chlorinated paraffin, chlorinated naphthalene, perchlorocyclopentadecane, chlorinated aromatic compounds, and chlorinated alicyclic compounds. Of these, brominated bisphenol-type epoxy compounds and decabromodiphenyl ether are preferably used. These compounds achieve the object by using one kind or two or more kinds. The blending ratio of the above compound with respect to 100 parts by weight of the styrenic resin is 5 to 30 parts by weight. If the amount is less than 5 parts by weight, the flame retardancy is not sufficient, and if it exceeds 30 parts by weight, the flame retardancy is naturally improved. On the other hand, various physical properties are lowered, which is not appropriate from the viewpoint of economic efficiency.
[0012]
Antimony compounds in the present invention include oxides such as antimony trioxide, antimony tetroxide, and diantimony pentoxide, and antimonates such as sodium antimonate, but antimony trioxide is preferred from the standpoint of flame resistance. .
[0013]
Molybdenum compounds used in the present invention include oxides such as molybdenum dioxide and molybdenum trioxide, and molybdates such as calcium molybdate, potassium molybdate, zinc molybdate, and ammonium molybdate. To molybdenum trioxide, calcium molybdate, and potassium molybdate are particularly preferred. Metal molybdenum is not effective in terms of the effect of preventing melting and dripping during thermal decomposition. The above metal compounds can be used alone or as a mixture of two or more.
[0014]
The composition of the flame-retardant styrene-based thermoplastic resin composition of the present invention is slightly different depending on the type of each component, but generally, the halogen-based compound is 5 to 30 parts by weight, and the antimony compound 2 with respect to 100 parts by weight of the thermoplastic resin. -15 parts by weight, 0.05-5 parts by weight of the molybdenum compound, and the weight ratio of the antimony compound to the molybdenum compound is 1.5-300.
[0015]
When the blending amount of the antimony compound is less than 2 parts by weight, the flame retardancy is insufficient, and when it exceeds 15 parts by weight, the physical properties are lowered, which is not preferable.
[0016]
When the blending amount of the molybdenum compound is less than 0.05 parts by weight, the flame retardancy is insufficient, and when it exceeds 5 parts by weight, the physical properties and the thermal stability are lowered, which is not preferable from an economical point of view. If the weight ratio of the antimony compound to the molybdenum compound is out of the above range, the synergistic effect between the antimony compound and the molybdenum compound cannot be obtained.
[0017]
A preferable range in terms of flame retardancy, physical properties, economical efficiency, and the like is that the amount of the antimony compound is 1 to 9% by weight, the amount of the molybdenum compound is 0.05 to 1% by weight, and the antimony compound with respect to the molybdenum compound. The weight ratio is 4-100.
[0018]
The molybdenum compound used in the present invention does not exhibit a large flame retardant effect by itself, but exhibits a large synergistic effect when it coexists with an organic halogen compound and an antimony compound.
[0019]
Further, for the thermoplastic resin composition in the present invention, glass fiber, metal fiber, aramid fiber, ceramic fiber, titanic acid whisker, carbon fiber, fibrous reinforcing agent such as asbestos, talc, calcium carbonate, mica, A granular reinforcing agent such as clay, titanium oxide, aluminum oxide, glass flake, glass bead, milled fiber, metal flake, or metal powder may be mixed.
[0020]
In the thermoplastic resin composition of the present invention, one or more additives such as a heat stabilizer, an oxidation stabilizer, a light stabilizer, a lubricant, a pigment, and a plasticizer may be mixed. The method for producing the thermoplastic resin composition of the present invention is not particularly limited, but a known melt-kneading method such as an extruder, kneader, Banbury mixer, etc. is preferably used.
[0021]
【Example】
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.
[0022]
In the examples and comparative examples, all addition ratios indicate parts by weight. In the present invention, the evaluation of combustibility was carried out based on Subject No. 94 (abbreviation UL-94) standardized by the Underwriters Laboratories (UL) in the United States.
[0023]
The tensile strength is ASTM D 638, the Izod impact strength is ASTM D 256 (thickness 1/4 ″, notched, measured at 23 ° C.), thermal deformation temperature ASTM D 648 (thickness 1/4 ″, load 18.6 kg / It was measured using a test method based on cm 2 ).
[0024]
Examples 1-4
ABS resin (Cebian-V320, manufactured by Daicel Chemical KK), brominated bisphenol type epoxy resin (EC20, manufactured by Dainippon Ink KK), antimony trioxide (manufactured by Toko Sangyo KK) and molybdenum trioxide (manufactured by Taiyo Mining KK) The blends were blended in the proportions shown in Table 1 and pelletized with an extruder having a cylinder temperature of 240 ° C. to obtain a styrene resin composition. Further, test pieces were prepared and evaluated by an injection molding machine at a cylinder temperature of 240 ° C. The results are shown in Table 1.
[0025]
Example 5
The test was performed in the same manner as in Examples 1 to 4 except that calcium molybdate (manufactured by Nippon Inorganic Chemical Industry KK) was used instead of molybdenum trioxide. The results are shown in Table 1.
[0026]
Example 6
The test was performed in the same manner as in Examples 1 to 4 except that potassium molybdate (manufactured by Nippon Inorganic Chemical Industry KK) was used instead of molybdenum trioxide. The results are shown in Table 1.
[0027]
Comparative Examples 1-2
The test was performed in the same manner as in Examples 1 to 4 except that molybdenum trioxide was not used. The results are shown in Table 1.
[0028]
Comparative Examples 3-4
The test was performed in the same manner as in Examples 1 to 4 except that metal molybdenum (manufactured by Wako Pure Chemical Industries, Ltd. KK) was used instead of molybdenum trioxide. The results are shown in Table 1.
[0029]
Comparative Example 5
The test was performed in the same manner as in Examples 1 to 4 except that antimony trioxide was not used. The results are shown in Table 1.
[0030]
[Table 1]
Figure 0003911037
[0031]
Example 10
The test was conducted in the same manner as in Example 5 except that decabromodiphenyl ether was used as the halogen-based organic compound. The results are shown in Table 2.
[0032]
Example 11
The test was performed in the same manner as in Example 6 except that decabromodiphenyl ether was used as the halogen-based organic compound. The results are shown in Table 2.
[0033]
Comparative Examples 6 and 9
Tests were performed in the same manner as in Examples 7 to 9 and 12 except that molybdenum trioxide was not used. The results are shown in Table 2.
[0034]
Comparative Example 7
Tests were performed in the same manner as in Examples 7 to 9 and 12 except that metal molybdenum was used instead of molybdenum trioxide. The results are shown in Table 2.
[0035]
Comparative Example 8
The test was conducted in the same manner as in Examples 7 to 9 and 12 except that antimony trioxide was not used. The results are shown in Table 2.
[0036]
[Table 2]
Figure 0003911037
[0037]
【The invention's effect】
In a styrene-based thermoplastic resin composition, by using a small amount of a molybdenum compound in combination with an organic halogen compound and an antimony compound, a thermoplastic resin composition having high flame retardancy can be obtained without losing the original performances of the resin. Obtained.

Claims (3)

スチレン系樹脂100重量部に対し、(A)難燃性を向上させる有機ハロゲン系化合物5〜30重量部、(B)アンチモン化合物2〜15重量部、(C)モリブデン化合物(但し、モリブデン酸アルミニウム及び金属モリブデンを除く)0.05〜5重量部を含有してなる難燃性スチレン系樹脂組成物であって、前記モリブデン化合物に対する前記アンチモン化合物の重量比が4〜300である難燃性スチレン系樹脂組成物(A) 5 to 30 parts by weight of an organic halogen compound that improves flame retardancy, (B) 2 to 15 parts by weight of an antimony compound, (C) a molybdenum compound (however, aluminum molybdate with respect to 100 parts by weight of a styrene resin) And metal molybdenum ) 0 . 05-5 A flame-retardant styrene resin composition ing containing parts, the weight ratio of the antimony compound to the molybdenum compound flame retardant styrenic resin composition which is 4 to 300. 成分Bのアンチモン化合物が三酸化アンチモンである請求項1記載の難燃性スチレン系樹脂組成物。The flame retardant styrene resin composition according to claim 1, wherein the antimony compound of component B is antimony trioxide. モリブデン化合物が、酸化物、モリブデン酸カルシウム、モリブデン酸カリウム、モリブデン酸亜鉛、又はモリブデン酸アンモニウムである請求項1記載の難燃性スチレン系樹脂組成物。The flame-retardant styrene-based resin composition according to claim 1, wherein the molybdenum compound is an oxide, calcium molybdate, potassium molybdate, zinc molybdate, or ammonium molybdate.
JP17454995A 1995-07-11 1995-07-11 Flame retardant resin composition Expired - Lifetime JP3911037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17454995A JP3911037B2 (en) 1995-07-11 1995-07-11 Flame retardant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17454995A JP3911037B2 (en) 1995-07-11 1995-07-11 Flame retardant resin composition

Publications (2)

Publication Number Publication Date
JPH0925377A JPH0925377A (en) 1997-01-28
JP3911037B2 true JP3911037B2 (en) 2007-05-09

Family

ID=15980505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17454995A Expired - Lifetime JP3911037B2 (en) 1995-07-11 1995-07-11 Flame retardant resin composition

Country Status (1)

Country Link
JP (1) JP3911037B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69803267T2 (en) 1997-07-02 2002-05-16 Sumitomo Bakelite Co. Ltd., Tokio/Tokyo EPOXY RESIN COMPOSITIONS FOR SEMICONDUCTOR SEALING AND SEMICONDUCTOR DEVICE
US6607794B1 (en) * 1998-04-16 2003-08-19 Alliedsignal Inc. Light-reflecting molded articles and methods of making the same

Also Published As

Publication number Publication date
JPH0925377A (en) 1997-01-28

Similar Documents

Publication Publication Date Title
KR910008556B1 (en) Combustion difficulty resin composition
JP3911037B2 (en) Flame retardant resin composition
US4219466A (en) Impact resistant resin containing compositions having reduced flammability
JP3584134B2 (en) Flame retardant styrenic resin composition
JP2824067B2 (en) Flame retardant resin composition
JPH11323064A (en) Flame-retardant styrene-based resin composition
JPH0959461A (en) Flame-retardant resin composition
JPH10120863A (en) Flame-retardant resin composition
GB2300860A (en) Flame retardant styrene polymer
EP0003257A1 (en) Combustion resistant aromatic polymers containing char-forming benzyl and/or allyl moieties and a combustion retarding agent
US20230133560A1 (en) Resin composition and molded article
JP2664418B2 (en) Flame-retardant styrenic resin composition with excellent light resistance
JPS5837333B2 (en) Flame-retardant styrenic resin composition
KR0139183B1 (en) Non-halogen polystyrene resin
JP3217924B2 (en) Flame retardant rubber-modified polystyrene resin composition
JPS6210265B2 (en)
JPH07228739A (en) Styrene resin composition
JPS5818948B2 (en) Flame retardant resin composition
JPH08291241A (en) Flame-retardant styrene-based resin composition
JPH04117443A (en) Flame-retardant thermoplastic styrene resin composition
JP2000086854A (en) Glass-fiber-reinforced flame-retardant styrene resin composition
JPH09208768A (en) Flame-retardant polystyrene-based resin composition
JPH07216160A (en) Flame-retardant styrene-based resin composition
JPH05148386A (en) Flame-retardant thermoplastic resin composition
JPH07278384A (en) Flame retardant polystyrenic resin composition and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040323

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

EXPY Cancellation because of completion of term