JP3910948B2 - 電源計画についての情報処理方法及びコンピュータ・システム - Google Patents

電源計画についての情報処理方法及びコンピュータ・システム Download PDF

Info

Publication number
JP3910948B2
JP3910948B2 JP2003285666A JP2003285666A JP3910948B2 JP 3910948 B2 JP3910948 B2 JP 3910948B2 JP 2003285666 A JP2003285666 A JP 2003285666A JP 2003285666 A JP2003285666 A JP 2003285666A JP 3910948 B2 JP3910948 B2 JP 3910948B2
Authority
JP
Japan
Prior art keywords
data
power
storage unit
data storage
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003285666A
Other languages
English (en)
Other versions
JP2005056103A (ja
Inventor
邦明 矢部
武史 灰田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2003285666A priority Critical patent/JP3910948B2/ja
Publication of JP2005056103A publication Critical patent/JP2005056103A/ja
Application granted granted Critical
Publication of JP3910948B2 publication Critical patent/JP3910948B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、電源計画についての情報処理技術に関する。
電源の開発には長い期間と大きな資金を必要とする。電力需要が毎年大きく伸び続ける時代には、先行して設備投資を行い、将来需要に備える十分な供給力を確保することが優先されてきた。しかし、高度成長が見込めない一方で、電力市場が自由化された状況では、発電所建設が遊休設備を生んで発電原価を押し上げ、電気料金に転嫁すると更に需要を減らして原価が上がるというリスクが生じる。そこで、従来に増して経済性とリスクを十分に定量評価した上で、電源を計画する必要が生じている。
国内では日本電力調査委員会が、5年ごとに「電力需要想定および電力需給計画算定方式の解説」をまとめており、これに基づいて電源計画を作成するのが一般化している。この中の電力需要想定に従えば、時系列トレンド等から用途別の予測需要を積み上げることなどにより、年間電力量を想定する。この値と年負荷率の動向や、ベース分と冷房分それぞれの伸び予想等から最大電力を想定する。次に、想定した年間電力量を、過去の月別・平日休日別の実績等に基づき、月別の需要持続曲線に展開し、最大3日平均電力(月別に日間最大電力を大きい順に並べた時の上位3位までの平均)を求める。需要の予測誤差を含めた確率分布としては、累積確率が99%となる誤差が最大3日平均電力の6%となるような正規分布を仮定するものである。
一方供給力については、以下の計算を行う。すなわち、各発電ユニット毎の点検のための停止・自流式水力の渇水期の発電能力・他社からの融通分等を考慮し、供給力の合計を求める。更に、ユニット毎の計画外停止率を設定して実際の供給能力の確率分布を求める。これと 上で想定した需要の確率分布から、供給不足となる日数の期待値(見込み不足日数)を求め、供給信頼度の指標としている。これまでは、見込み不足日数が0.3日/月を確保できるように電源を確保してきた。なお、中央電力協議会の検討では、供給予備力(8月の最大3日平均電力想定値に加えて確保しておくべき供給力)として8乃至10%が必要としている。実際の電源計画検討においては、見込み不足日数0.3日/月を確保できる目安として供給予備力8%程度を用いている。
しかしながら、冷暖房の使われ方や、電力・電灯の用途別比率などが毎年少しずつ変わっていき、年間の負荷持続曲線は変化していく。過去実績についても、気温の分布が毎年異なるので、負荷持続曲線は特に需要の大きい部分で変化している。従来手法は、負荷持続曲線の形は年が変わっても相似形であることを仮定して、年間電力量と最大電力を結びつけているので、正確性に欠け、長期の需要構造変化を織り込みにくい。また、設備投資のリスク評価を行うに際して、従来手法では気象・景気・燃料単価等が経済性に及ぼす影響を分析しにくいので、燃料費等の期待値は推定できるが、そのばらつきが計画によってどう変わるかを評価できない。このため、電力自由化の下で他社と収益性を比較する場合などに困難を生じる。さらに、供給支障の影響は、その大きさ(kW)と継続時間によって大きく異なる。従来手法は、想定年の8月最大3日平均電力に注目して不足日数を評価しているため、供給支障の大きさや継続時間を評価できない。このため、供給信頼度をコストに換算して評価することが困難になる。
なお、特開2003−16374号公報には、以下の技術が開示されている。すなわち、発電設備に対する需要電力を予測し、その需要電力と供給可能電力とを比較して電力供給の可否及び発電電力を評価し、その発電電力と経済性の予測情報とに基づいて当該発電設備による発電事業の収益性を評価する。電力の需要予測には、1日の電力負荷変化が考慮される。なお、電力供給力の評価に、発電設備の信頼性や環境に与える影響を考慮しても良いとされている。さらに、電力の需要予測に他社との競争力を考慮するようにしても良いともされている。この公報では、1日の電力負荷変化を考慮するとされているが、具体的には電力価格に関連する契約形態毎に個別に予測するとされており、必ずしも連続する気象条件を予測した上で電力需要を予測するような構成は示していない。一般的には、契約に基づき予測を行っても実際的な予測はできないと考えられる。また、連続する気象条件を予測すること自体についても詳細な説明は無い。さらに、将来の特定の年における特定の時刻に対応する需要予測式を用いるといったことも何ら開示されておらず、木目細やかな需要予測は不可能である。
特開2003−16374号公報
以上述べたように従来の技術では様々な点において十分な詳細度をもって電力需要の予測及び電源計画の評価が行えるようになっていない。
従って、本発明の目的は、より現実に近い詳細な設定が可能な、電源計画に関連する新規な情報処理技術を提供することである。
また本発明の他の目的は、より現実に近いシミュレーションを可能にする、電源計画に関連する新規な情報処理方法を提供することである。
本発明に係る情報処理方法は、将来の特定の年において単位時間(例えば1時間)間隔で特定される特定の時刻における気象条件データ(例えば気温及び湿度データ)を、単位時間間隔での連続性を考慮した上で生成し、気象条件データ格納部に格納するステップと、将来の特定の年における景気条件データを生成し、景気条件データ格納部に格納するステップと、将来の特定の年において単位時間間隔で特定される特定の時刻に対応し、少なくとも気象条件及び景気条件とにより電力需要を算出するための予測式に係るデータ(例えば予測式の係数)を予測式データ格納部から取得する予測式データ取得ステップと、取得した予測式に係るデータと気象条件データ格納部及び景気条件データ格納部に格納されたデータとを用いて、将来の特定の年における特定の時刻における電力需要のデータを生成し、電力需要データ格納部に格納するステップとを含む。
このように、単純に過去の実績から得られる確率分布に基づき気象条件データを生成するのではなく、単位時間間隔での連続性を考慮した上で気象条件データを生成するため、より実際的な気象データを生成することができる。また、このようにして生成された特定の時刻の気象条件データを用いて特定の時刻における電力需要のデータを生成するため、より実際的な電力需要を予測できるようになる。連続性については例えばフーリエ級数展開で温度変化を表現する手法等が用いられることもある。なお、予測式に係るデータは、年によって変化させるようにすることも可能である。このような処理を必要な全ての時刻について繰り返し行えば、1つの電力需要カーブを得ることができる。なお、このような電力需要カーブを複数生成すれば、電力需要の確率分布を生成することができるようになる。
なお、上で述べた予測式データ取得ステップが、特定の時刻が属する分類を特定するステップと、特定された分類に対応する予測式に係るデータを予測式データ格納部から取得するステップとを含むようにしてもよい。例えば平日、土曜日、休日などによって同じ時刻でも電力需要は異なる。このような違いに対応するため予測式に係るデータを分類毎に用意するものである。
さらに、上で述べた予測式データ取得ステップが、特定の時刻及び気象条件データ格納部に格納された特定の時刻の気象条件データに対応する分類を特定するステップと、特定された分類に対応する予測式に係るデータを予測式データ格納部から取得するステップとを含むようにしてもよい。同じ平日で同じ時刻であっても気温帯によって電力需要への影響は異なる。このような違いに対応するため予測式に係るデータを分類毎に用意するものである。
さらに、本発明において、各発電ユニットの補修条件に関するデータと電力需要データ格納部に格納されたデータとを参照して将来の特定の年における単位時間毎の電力の供給力に関するデータを生成し、供給力データ格納部に格納する供給力データ生成ステップをさらに含むようにしても良い。これにより需要に対する供給力の時間変化を把握することができる。
さらに、本発明において、電力需要データ格納部と供給力データ格納部とに格納されたデータを用いて、供給支障電力に関するデータを生成し、供給支障電力データ格納部に格納する供給支障電力データ生成ステップをさらに含むようにしてもよい。
供給力データ生成ステップでは、基本的には電力需要カーブに対応してその電力需要カーブを満たすように電力供給を決定する。但し、突発事故などで供給できなくなる場合を考慮する場合もある。このような状況を加味して供給支障電力に関するデータは生成される。なお、発電所の新設又は廃止といったデータをさらに用いて電力の供給力に関するデータを生成するようにしても良い。
また、上で述べた供給力データ生成ステップが、各発電ユニットの補修条件に関するデータと電力需要データ格納部に格納されたデータとを参照して将来の特定の年における単位時間毎の電力の供給力を決定するステップと、各発電ユニットに設定されている計画外停止率に基づき、将来の特定の年における単位時間毎の電力の供給力の確率分布データを生成し、供給力データ格納部に格納するステップとを含むようにしてもよい。
さらに、供給支障電力データ格納部に格納されたデータに基づき所定の供給信頼度指標のデータを算出し、供給信頼度指標データ格納部に格納するステップをさらに有するようにしてもよい。この供給信頼度指標のデータに基づき電源計画の是非を判断するようにしても良い。例えば供給信頼度指標が基準以下である場合には、当該電源計画については採用できないという出力などを行うようにしても良い。
また、本発明において、停電コスト単価についてのデータと供給支障電力データ格納部に格納されたデータとを用いて将来の特定の年における停電コストについてのデータを生成し、停電コスト・データ格納部に格納するステップと、各発電ユニットの補修条件に関するデータと電力需要データ格納部及び供給力データ格納部に格納されたデータとを用いて、各発電ユニットの最適な運転パターン・データを生成し、運転パターン・データ格納部に格納するステップと、燃料単価についてのデータと運転パターン・データ格納部に格納されたデータとを用いて最適な運転パターン・データに対応する将来の特定の年の燃料費についてのデータを生成し、燃料費データ格納部に格納するステップと、将来の特定の年における発電に係る固定費を算出し、固定費データ格納部に格納するステップと、停電コスト・データ格納部と燃料費データ格納部と固定費データ格納部とに格納されたデータを用いて、発電単価についてのデータを生成し、発電単価データ格納部に格納するステップとをさらに含むようにしてもよい。
従来では制約条件として考慮されるのみであった停電をコスト換算して発電単価データを算出するので、より適切な設備投資を伴う電源計画を定量的に示すことができるようになる。
一方、本発明において、各発電ユニットの補修条件に関するデータと電力需要データ格納部及び供給力データ格納部に格納されたデータとを用いて、各発電ユニットの最適な運転パターン・データを生成し、運転パターン・データ格納部に格納するステップと、燃料単価についてのデータと運転パターン・データ格納部に格納されたデータとを用いて最適な運転パターン・データに対応する将来の特定の年の燃料費についてのデータを生成し、燃料費データ格納部に格納するステップと、将来の特定の年における発電に係る固定費を算出し、固定費データ格納部に格納するステップと、燃料費データ格納部と固定費データ格納部とに格納されたデータを用いて、発電単価についてのデータを生成し、発電単価データ格納部に格納するステップとをさらに含むようにしても良い。停電コストを考慮の対象外としても電源計画を定量的に評価することができるようになる。
なお、燃料単価の自己回帰モデル・データと過去の燃料単価データと長期的シナリオ設定に基づく平均燃料単価のデータとを用いて、将来の特定の年における燃料単価を算出し、燃料単価データ格納部に格納する燃料単価算出ステップをさらに含むようにしてもよい。このように燃料単価についても詳細な設定に基づき予測するようになるため、より実際的な燃料単価を予測できるようになる。
また、為替レートの自己回帰モデル・データと過去の為替レート・データと長期的シナリオ設定に基づく平均為替レートのデータとを用いて、将来の特定の年における為替レートを算出するステップをさらに含み、燃料単価算出ステップにおいて、為替レートを用いて燃料単価を計算するようにしてもよい。
また、本発明に係る情報処理方法をコンピュータに実行させるためのプログラムを作成することも可能であって、当該プログラムは、例えばフレキシブル・ディスク、CD−ROM、光磁気ディスク、半導体メモリ、ハードディスク等の記憶媒体又は記憶装置に格納される。プログラム等は、ネットワークを介してデジタル信号として配信される場合もある。また、処理途中のデータについては、コンピュータのメモリに一時保管される。
本発明によれば、より現実に近い詳細な設定が可能な、電源計画に関連する新規な情報処理技術を提供することができる。
また別の側面として、より現実に近いシミュレーションを可能にする、電源計画に関連する新規な情報処理方法を提供することができる。
本発明の一実施の形態に係るコンピュータ・システムのシステム概要図を図1乃至図3に示す。図1には、本実施の形態に係るコンピュータ・システムの第1の部分を示す。本コンピュータ・システムにおいては、過去の毎時の電力需要実績データを格納する電力需要実績データ格納部1と、過去の毎年のGDP(Gross Domestic Product)値などの景気指標実績データを格納する景気指標実績データ格納部3と、過去の毎時の気温及び湿度等の気象実績データを格納する気象実績データ格納部5と、電力需要実績データ格納部1と景気指標実績データ格納部3と気象実績データ格納部5に格納されたデータを用いてユーザによる設定入力に必要なデータを得るための処理を実施し、処理結果をユーザに提示する設定入力補助処理部7と、ユーザの電力需要予測式設定入力9により入力されたデータを格納する条件別予測式係数DB15と、ユーザの景気予測モデル設定入力11により入力されたデータを格納する景気予測モデル・データ格納部17と、ユーザの気象予測モデル設定入力13により入力されたデータを格納する気象予測モデル・データ格納部19と、景気予測モデル・データ格納部17に格納されたデータを用いて将来のGDP値などの景気条件データを生成する景気条件発生部23と、気象予測モデル・データ格納部19に格納されたデータを用いて将来の気温・湿度等の気象条件データを生成する気象条件発生部25と、ユーザの離脱獲得需要設定入力21により入力された、例えば他社から電力を購入することになる顧客についての需要(離脱需要)や新たに電力供給を始めることとなる顧客についての需要(獲得需要)についてのデータを格納する離脱獲得需要データ格納部27と、景気条件発生部23により生成された将来の景気条件データを格納する景気条件データ格納部29と、気象条件発生部25により生成された将来の気象条件データを格納する気象条件データ格納部31と、離脱獲得需要データ格納部27と条件別予測式係数DB15と景気条件データ格納部29と気象条件データ格納部31に格納されたデータを参照して年間の毎正時の電力需要データを生成する年間毎時需要計算部33と、年間毎時需要計算部33の処理結果を格納する年間毎時需要電力データ格納部35とが含まれる。
図2には、本実施の形態に係るコンピュータ・システムの第2の部分を示す。本コンピュータ・システムは、図1に示した部分に加えて、発電ユニット毎に特性データを格納する発電ユニット別特性DB39と、ユーザの電源計画設定入力37により入力される、新設又は廃止する発電所についてのデータ及び他社からの電力購入計画についてのデータを格納する電源計画データ格納部43と、電源計画データ格納部43と発電ユニット別特性DB39と年間毎時需要電力データ格納部35に格納されたデータを用いて各発電ユニットの補修計画を最適化するための処理を実施する補修計画最適化計算部45と、補修計画最適化計算部45により生成された各発電ユニットの補修計画のデータ(各電源ユニットの起動停止日時のデータ)を格納する年間毎時供給力データ格納部47と、発電ユニット別特性DB39と年間毎時供給力データ格納部47に格納されたデータを用いて年間の毎正時における供給力の確率分布データを生成する供給力確率分布計算部51と、供給力確率分布計算部51の処理結果を格納する年間毎時供給力確率分布データ格納部53と、年間毎時供給力確率分布データ格納部53と年間毎時需要電力データ格納部35に格納されているデータを用いて供給支障電力の確率分布データを生成する供給支障電力計算部57と、供給支障電力計算部57により生成されたデータを格納する供給支障電力確率分布データ格納部61と、ユーザの停電コスト単価設定入力59により入力される停電コスト単価のデータを格納する停電コスト単価データ格納部67と、供給支障電力確率分布データ格納部61と停電コスト単価データ格納部67に格納されたデータを用いて停電コストのデータを生成する停電コスト計算部69と、停電コスト計算部69の処理結果を格納する停電コストデータ格納部71と、供給支障電力確率分布データ格納部61に格納されたデータを用いて供給信頼度指標を計算する供給信頼度指標計算部63と、供給信頼度指標計算部63の処理結果である供給信頼度指標のデータを格納する供給信頼度指標データ格納部65と、年間毎時需要電力データ格納部35と発電ユニット別特性DB39と年間毎時供給力データ格納部47に格納されたデータを用いて各発電所の運転パターンを最適化するための処理を実施する各発電ユニット運転パターン最適化計算部49と、各発電ユニット運転パターン最適化計算部49の処理結果である各発電ユニットの起動停止日時データを格納するユニット別起動停止日時データ格納部55とを含む。
図3には、本実施の形態に係るコンピュータ・システムの第3の部分を示す。本コンピュータ・システムは、図1及び図2に示した部分に加えて、過去の燃料単価及び為替レートのデータを格納する燃料単価実績データ格納部73と、燃料単価実績データ格納部73に格納されたデータを用いてユーザが燃料単価予測モデルについての設定入力を行う際に参照されるデータを生成し、ユーザに提示するモデル設定補助処理部75と、ユーザの燃料単価予測モデル設定入力77により入力された燃料単価予測モデルについてのデータを格納する燃料単価予測モデル・データ格納部79と、燃料単価実績データ格納部73と燃料単価予測モデル・データ格納部79に格納されたデータを用いて将来の予測燃料単価の確率分布データを計算する予測燃料単価計算部81と、予測燃料単価計算部81の処理結果を格納する予測燃料単価確率分布データ格納部83と、発電ユニット別特性DB39と予測燃料単価確率分布データ格納部83とユニット別起動停止日時データ格納部55に格納されたデータを用いて燃料費の確率分布データを計算する燃料費計算部87と、燃料費計算部87の処理結果である燃料費の確率分布データを格納する燃料費確率分布データ格納部89と、ユーザの固定費配分設定入力91により入力された固定費配分データを格納する固定費配分データ格納部93と、固定費配分データ格納部93と電源計画データ格納部43に格納されたデータを用いて固定費データを計算する固定費計算部94と、固定費計算部94の処理結果を格納する固定費データ格納部96と、固定費データ格納部96と燃料費確率分布データ格納部89と年間毎時需要電力データ格納部35と停電コストデータ格納部71に格納されたデータを用いて発電単価の確率分布データを算出する発電単価計算部95と、発電単価計算部95の処理結果を格納する発電単価確率分布データ格納部97とを含む。
次に図1乃至図3に示した本実施の形態に係るコンピュータ・システムの処理内容について、図4に示す処理フローに沿って図5乃至図13を用いて説明する。まず、ユーザは入力装置を用いて電源計画設定入力37を行い、本コンピュータ・システムは電源計画設定入力37を受け付け、全ての電源計画データを電源計画データ格納部43に格納する(ステップS1)。電源計画データとは、例えばA火力発電所の2号機が2010年7月1日に運転開始するといったデータであったり、B火力発電所の1号機が2005年10月30日に廃止されるといったデータである。また、電源計画データには他社からの購入電力計画値のデータも含まれる。本実施の形態では、最終的に各電源計画についての発電単価の確率分布などを比較するため、以下では電源計画毎に繰り返し処理を実施する。このため、本実施の形態ではこの段階にて全ての電源計画データを入力するようになっている。但し、1つの電源計画について以下の処理を実施してもよく、必ずしも複数の電源計画について比較を行わなければならないわけではない。
次に、ユーザは各種データ入力を実施し、本コンピュータ・システムは各種データ入力を受け付け、各種データ格納部に格納する(ステップS3)。なお、設定入力補助処理が必要な場合には、設定入力補助処理部(設定入力補助処理部7及びモデル設定補助処理部75)が処理を実施してユーザに処理結果を提示し、ユーザは当該処理結果を参照して各種データ入力を実施する。なお、データ入力は手入力のみならずファイル等を用いた入力であっても良い。
最初に電力需要予測式設定入力9について説明する。前提として、年間毎時需要計算部33は、以下の予測式からある年における毎正時までの1時間の電力量P(平均電力)を推定する。
P=a(T−T0)+b(H−H0)+c(G−G0)+d (1)
ここでTは気温、T0は気温の設定基準値、Hは湿度、H0は湿度の設定基準値、GはGDPの年度実額の相対値(例えば1990年を1とする値)、G0はGDPの年度実額の相対値の設定基準値である。
なお、日時の条件の違いによって、需要に占める冷暖房負荷の割合や、産業用・民生用の比率などが異なるので、平日・土曜・日曜・祝日・盆・正月など日毎の種別と時刻によって、(1)式の各係数は異なる値をとる。従って、本実施の形態では、日種別として平日・土・日の3種類、時刻で24種に分けるものとする。また、電力需要への気温の影響は、冷房季・暖房季・中間季で異なるので、例えば15度と22度を境界値として3本の折れ線で近似する。図5に2001年度の平日14時における気温と電力需要の関係を表すグラフを示す。図5では、縦軸は電力需要[MW]、横軸は気温[度]を表す。気温と電力需要との関係は、15度までは直線501、15度から22度までは直線502、22度以上は直線503といったように、3つの区間において異なる直線で近似することが好ましいことが分かっている。
そうすると、1年間の毎時電力需要は、3×24×3=216種類の1次式で近似できるようになる。従って、予測を行う1年につきa,b,c及びdを216セット用意しなければならない。電力需要予測式設定入力9は、予測を行う1年につき216セットのa,b,c及びdの値の入力を含むものである。
但し、このようなデータを全てユーザが自らが設定することは難しい部分もあるので、電力需要実績データ格納部1に格納されたデータを用いて設定入力補助処理部7が処理を行い、処理結果をユーザに提示し、その結果をもってユーザは電力需要予測式設定入力9を行う。
以下、気温についての係数a、湿度についての係数b、GDPについての係数c、及び係数dについて個別に説明する。
最初に気温についての係数aについて説明する。図5に示したように、気温と電力需要との関係は直線で近似することができ、その直線近似した時の傾きが、気温感応度で係数aとなる。
気温について考察する場合には、以下の点も考慮するものとする。すなわち、冷暖房用電力需要は、室内外の気温差にほぼ比例すると考えられる。室内気温は、室外気温よりも時間遅れを持って変化するので、冷暖房負荷は数時間前からの平均(室外)気温に比例すると推定できる。そこで、ここでは過去実績の分析から、2時間前までの3点平均気温を用いる。また、気温としては想定する地域全体を考慮するため、例えば県庁所在地等の気温を県毎の平均需要比率によって加重平均した値を用いる。
係数aの過去分については電力需要実績データ格納部1に格納されているデータに対して設定入力補助処理部7が重回帰計算を実施すれば求めることができるが、今回必要な係数aは将来分である。従って、例えば過去の係数aを電力需要実績データ格納部1に格納されているデータに対して設定入力補助処理部7が重回帰計算を実施して求め、将来分については、気温感応度の増大傾向の態様についての設定に従って増加するものとして設定入力補助処理部7が予測値を計算する。
例えば、気温感応度は過去10年以上ほぼ直線的に増加しているので10年以内の予測であれば直線的に増大するという増加傾向の態様を採用するものとする。また、10年以上先の予測式を考える場合には直線的に増加するものとすると気温感応度が大きくなりすぎるので、例えば、増大するが次第に飽和するという増加傾向の態様を採用するものとする。
気温感応度が直線的に増加するという増加傾向の態様を採用する場合には、過去の気温感応度と年の関係から気温感応度の年変化を表す直線を求め、当該直線に従って予測すべき年の気温感応度を計算する。なお、1年につき216種類の気温感応度(係数a)があるので、それぞれにつき同様の計算を行う必要がある。
また次第に飽和するという増加傾向の態様を採用する場合には、x年の気温感応度yを例えばy=a(1−e-bx-c)(但し、この式におけるa,b及びcはこの式における係数で、(1)式における係数ではない)という関数で近似する。これは遠い将来aまでで気温感応度が飽和するものと設定したもので、過去の気温感応度(Xn,Yn)についてlog(1−Yn/a)=−bXn−c から定数b及びcを決定し、上記指数関数を特定する。そして、当該指数関数に従って予測すべき年の気温感応度を計算する。なお、1年につき216種類の気温感応度(係数a)があるので、それぞれにつき同様の計算を行う必要がある。
図6に平日22度以上の場合の気温感応度の年変化を表すグラフを示す。縦軸は気温感応度を示し、横軸は年度を表す。また、折れ線601は21時の気温感応度、折れ線602は15時の気温感応度、折れ線603は23時の気温感応度、折れ線604は9時の気温感応度、折れ線605は3時の気温感応度を表している。なお、本図では2002年以降は直線近似した場合の予測値となっている。
次に、湿度について考察する。湿度についても、気温と同様に、2時間前からの平均相対湿度について、地域ごとに加重平均した値を用いるものとする。例えば、図7に、2001年の平日14時における、気温比例分を除いた電力需要[MW]と相対湿度の関係を示すグラフを示す。図7では、縦軸は気温比例分を除いた電力需要[MW]を示し、横軸は相対湿度を示す。気温ほどの強い相関は認められないが、同一の気温でも、不快指数の高くなる高湿度時の冷房需要や、雨天時の照明負荷による需要増を反映できると考えられる。図7における直線701の傾きが湿度感応度であり、この湿度感応度が係数bとなる。
係数bの過去分については電力需要実績データ格納部1に格納されているデータに対して設定入力補助処理部7が重回帰計算を実施すれば求めることができるが、今回必要な係数bは将来分である。但し、湿度感応度については過去データでは増大傾向がはっきりしないので、本実施の形態では過去の湿度感応度の平均を将来の湿度感応度とする。従って、設定入力補助処理部7は、電力需要実績データ格納部1に格納されているデータに対して重回帰計算を実施して過去の係数bを求め、さらにそれらの平均値を計算する。なお、1年につき216種類の係数bが存在しているので、それぞれにつき計算を行う必要がある。
次に、GDPについて考察する。GDPについては、気温や湿度と異なり年に1つの数値(四半期毎のGDPを用いる場合には4つになるが、本実施の形態では1つであるものとする。)しかないので、各年のデータを用いて議論する。簡単のためGDPは気温及び湿度との間に相関は無いものと仮定すると、過去の各年電力需要Pは以下の式で表される。
P=a(T−T0)+b(H−H0)+e
そして、気象影響分を除いた切片eについて
e=c(G−G0)+d
となるように係数c及びdを決定する。GDPについては年度実額の相対値を用いる。そして、GDPの年度実額の相対値と気温及び湿度の影響を除いた電力需要との関係は、例えば図8のようになる。ここでは平日22度以上の場合を示す。三角は15時を、丸は9時を、ひし形は21時を、四角は24時を示している。各時刻におけるGDPの年度実額の相対値と電力需要との関係を直線で近似すると、15時については直線801、21時については直線802、9時については直線803、24時については直線804となる。この直線の傾きがGDP感応度(係数c)であり、切片が係数dとなる。
このように、係数cの過去分については電力需要実績データ格納部1に格納されているデータに対して設定入力補助処理部7が重回帰計算を実施すれば求めることができる。将来分については、気温感応度と同様に、直線的に増加する態様、飽和的に増加する態様、または年変化しない態様などユーザのポリシーに基づいて予測を行う必要がある。すなわち、設定入力補助処理部7は、当該ポリシーに従った形で予測すべき年のGDP感応度を算出する。係数dについても上で述べたような形で計算される。また、他の係数と同様に216種類の係数c及びdが存在しているので、それぞれにつき求める必要がある。
なお、上で述べたような計算を行うと、年間を通じ平休日区分・気温帯・時刻が同じならば同じ係数の予測式となる。しかし、例えば11月28日と4月4日の気象条件がほぼ同様であれば、予測式による電力需要はほぼ同じとなるが、実績値と予測値の乖離が17時乃至19時に大きくなることが分かっている。これは、日没の早い11月の方は住宅等の点灯負荷が工場やオフィス等の需要と重なるため予測値よりも大きく、4月の方はこれがないため予測値よりも需要が小さくなるためと考えられる。この季節による点灯負荷の時間的ずれ等を反映するため、次の補正を行う必要がある。すなわち、設定入力補助処理部7は、予測式に過去の実績の気温、湿度及びGDP値を代入して電力需要を計算し、実績需要との誤差を平日・土・日別、時刻別に求め、更に月別に平均する。この平均値を係数dから差し引く(又は加える)ためのデータとして月別に保持し、実際に需要予測を行う際に用いるデータとして需要予測式設定入力9に含める。
なお、上で述べたような形で1年分の係数a,b,c及びdを216セット計算する方法ではなく、他の方法を用いて係数を求め、その結果を採用するようにしても良い。
以上のような処理を設定入力補助処理部7又は他の計算機などを用いて実施する。また、電力需要予測式設定入力9により入力されたデータについては、条件別予測式係数DB15に格納される。なお、設定入力補助処理部7の処理結果をそのまま使用するか否かについてはユーザの判断による。従って、ユーザは設定入力補助処理部7の処理結果を修正してから電力需要予測式設定入力9として入力しても良いし、そのままの値を入力しても良い。
次に、景気予測モデル設定入力11について説明する。例えば、n年後のGDPnについて、今年度のGDP0及び例えば過去10年の平均伸び率rとその標準偏差σから、GDPnの期待値=GDP0(1+r)n、GDPnの標準偏差σn=n1/2σとし、正規分布で近似するものとする。従って、設定入力補助処理部7は、GDP0を景気指標実績データ格納部3から読み出すと共に、平均伸び率rとその標準偏差σを算出する。そしてこれらのデータをユーザに提示する。そして、ユーザは、GDP0、r、σ及び上記計算式についてのデータを含む景気予測モデル設定入力11を行う。但し、他の景気予測モデルを用いても良く、その場合には設定入力補助処理部7はそのモデルに沿った処理を実施し、景気予測モデル設定入力11はそのモデルに必要なデータを含むようになる。なお、設定入力補助処理部7の処理結果をそのまま使用するか否かについてはユーザの判断による。従って、ユーザは設定入力補助処理部7の処理結果を修正しても良いし、そのまま使用しても良い。なお、景気予測モデル設定入力11により入力されたデータは、景気予測モデル・データ格納部17に格納される。
次に、気象予測モデル設定入力13について説明する。年間毎時の気象データを生成するためのモデルとしては、過去実績に基づく確率分布だけでは不十分である。なぜなら、1時間毎にバラバラの気温が出てくるので、毎時需要予測には使えない。季節と時刻による周期的変化と雨のようなランダムな変化を連続的につなげたようなモデルが必要である。すなわち、平日14時の気温分布を過去実績から求めるのでは不十分で、8月1日13時の気温を予測した時のパラメータを少し変えることにより、8月1日14時の気温を予測するようにする。
そこで、例えば過去10年の毎時気温変化をフーリエ級数展開することにより、次式で近似するものとする。基本的には、毎時気温T=年周期変化Ty+日周期変化Td+ランダム変化Trとして、
Ty=Tm+A1sinθ+B1cosθ+A2sin2θ+B2cos2θ+A3sin3θ+B3cos3θ+...
(但し、θ=2π/365×(4月1日からの日数))
Td=C1sinτ+D1cosτ+C2sin2τ+D2cos2τ+C3sin3τ+D3cos3τ+...
(但し、τ=2π/24×(時刻))
Tr〜N(μ,σ)(平均μ、標準偏差σの正規分布)
このTm、A1、B1、A2、B2、...については年度毎に異なるが、設定入力補助処理部7はそれぞれの平均と標準偏差を算出する。さらに、C1、D1、C2、D2、...についても日毎に異なるが、季節による日変化の違いが反映されるように、設定入力補助処理部7はそれぞれの月毎の平均と標準偏差を算出する。そして、このような計算結果をユーザに対して提示する。ユーザは、提示された内容を参照し、最終的な気象予測モデル設定入力13に含める。
湿度についても同様に、各係数の平均及び標準偏差を設定入力補助処理部7が計算し、ユーザに提示する。ユーザは、提示された内容を参照し、最終的な気象予測モデル設定入力13に含める。
気象予測モデル設定入力13により入力されたデータは、気象予測モデル・データ格納部19に格納される。
次に、離脱獲得需要設定入力21について説明する。例えば、参入事業者の発電所建設計画等からn年後の離脱需要の最大電力を予測し、離脱しそうな需要家(例えば大口業務用など)の平均的な負荷曲線を積み重ねることにより毎時の離脱需要値を決定し、当該データを離脱獲得需要設定入力21に含める。なお、獲得しそうな需要家の平均的な負荷曲線を積み重ねることにより毎時の獲得需要値を決定し、当該データを離脱獲得需要設定入力21に含める。
なお、近似として、離脱需要家の負荷曲線が全体の負荷曲線と相似形であるとして毎時の離脱電力値を決定し、離脱獲得需要設定入力21に含めるようにしても良い。新規獲得需要についても同様である。
さらに、例えば公表された発電所増設計画等による他社の供給力と、離脱需要の最大電力がn年後までは等しい、すなわち増設分はすべて離脱してしまうと単純に予測した上で、n+1年後の離脱需要最大電力Pn+1を、n年後の自社発電コスト期待値Cn1と他社発電コスト期待値Cn2の関数として、Pn+1=Pn+k(Cn1−Cn2)とすることで、将来の離脱需要を予測するような方式を採用しても良い。
このような離脱獲得需要設定入力21により入力されたデータは、離脱獲得需要データ格納部27に格納される。
次に、停電コスト単価設定入力59について説明する。停電コストは、継続時間と規模(電力)で特定され、例えば継続時間1時間で、1kWの場合20円/kW、1000kWの場合200円/kW、100万kWで2000円/kWといった形で設定される。このようなデータが停電コスト単価設定入力59に含められる。停電コスト単価設定入力59により入力されたデータは、停電コスト単価データ格納部67に格納される。
次に、燃料単価予測モデル設定入力77について説明する。まず、原油価格についての設定内容について説明する。まず長期トレンドのシナリオの設定を行う。すなわち、原油価格と為替レートについての長期トレンドのシナリオを決定し、入力する。例えば、原油価格と為替レートの平均値は、10年後まで現在値と等しく、その後は年1%ずつ上昇するという長期トレンドのシナリオを決定し、燃料単価予測モデル設定入力77として入力する。
また、発電に用いる燃料の価格は互いに相関を有する複数種類の原油価格の加重平均であり、ドル建ての価格でも為替レートと相関を有するモデルを用いる。従って、mという月のn種類の原油価格y1(m),y2(m),...yn(m)[ドル/バレル]と、為替レートY(m)[円/ドル]について、ベクトルy(m)=(y1(m),y2(m),...,yn,Y(m))を定義し、以下の多変数自己回帰式を考える。
Figure 0003910948
そして、モデル設定補助計算部75は、燃料単価実績データ格納部73を参照して例えば過去データ10年分について最も当てはまる係数ベクトルa0(n+1行1列)と係数行列A1,A2,...(n+1行n+1列)とを最小二乗法などにより推定し、平均0の正規分布ベクトルεの各要素に対応する標準偏差(n+1種類)を決定する。そして、ユーザに処理結果を提示し、ユーザは提示された処理結果を参照して最終的な係数ベクトルなどのデータを決定し、長期価格シナリオについてのデータと共に燃料単価予測モデル設定入力77として入力する。
なお、他の燃料であるLNG価格については、例えば原油価格に比例するものとして比例定数などのデータを、モデル設定補助処理部75により計算し、ユーザに提示する。ユーザは、提示されたデータを参照して、比例定数などを燃料単価予測モデル設定入力77として入力する。また、変動の少ない石炭やウラン燃料については、モデル設定補助処理部75が、燃料単価実績データ格納部73に格納された過去の価格を平均するなどの処理を実施し、処理結果をユーザに提示する。ユーザは、提示されたデータを参照して最終的な価格を決定し、燃料単価予測モデル設定入力77として入力する。
燃料単価予測モデル設定入力77により入力されたデータは、燃料単価予測モデル・データ格納部79に格納する。
次に、固定費配分設定入力91について説明する。固定費には、減価償却費、修繕費、人件費が含まれる。減価償却費については、例えば発電種別毎に決められた法定耐用年数及び定率法により償却する場合の償却率といったデータが含まれる。修繕費については、発電種別毎に決められた修繕費率と、建設から所定の年数以上たった老朽施設の場合に適用される割増率又は割増額などのデータが含まれる。人件費については、容量に対する人件費率などについてのデータが含まれる。固定費配分設定入力91により入力されたデータは、固定費配分データ格納部93に格納される。
このような設定入力が行われると、図4のステップS3が実施されたことになる。図4の処理フローの説明に戻って、本コンピュータ・システムは、電源計画の番号Pを1に初期化し(ステップS4)、P番目の電源計画データを電源計画データ格納部43からメインメモリなどのワークメモリ領域に読み出す(ステップS5)。そして、予測年度Nを初期値(例えばN=2010)に設定し(ステップS7)、さらに計算回数Dを初期値(例えばD=1)に設定する(ステップS9)。
次に、景気条件発生部23は、景気予測モデル・データ格納部17に格納されたデータを読み出し、当該読み出したデータを用いてN年度D回目の景気条件データを生成し、景気条件データ格納部29に格納する(ステップS11)。景気予測モデル・データ格納部17に格納されているデータは、上で述べたように、n年後のGDPnの期待値とGDPnの標準偏差σnの式と、今年度のGDP0と平均伸び率rとその標準偏差σであるから、景気条件発生部23は、n年後のGDPnの期待値とGDPnの標準偏差σnを算出し、このような期待値及び標準偏差に従う正規分布として乱数を発生させ、n年後(=N年度)のGDP値とし、景気条件データ格納部29に格納する。
また、気象条件発生部25は、気象予測モデル・データ格納部19に格納されたデータを読み出し、当該読み出したデータを用いてN年度D回目の気象条件データを生成し、気象条件データ格納部31に格納する(ステップS13)。気象条件には気温と湿度が含まれる。基本的には気温も湿度も同様なモデルで表されているので、同様の処理を実施すればよい。
図9に気温データ生成処理の処理フローを示す。気象条件発生部25は、まず年周期変化Tyの各係数(Tm,A1,B1,A2,B2,...)について平均と標準偏差を気象予測モデル・データ格納部19から例えばワークメモリ領域に読み込む(ステップS201)。次に、各係数について読み出した平均と標準偏差を有する正規分布に従う乱数を発生させることにより各係数の値を算出し、例えば気象予測モデル・データ格納部19に格納する(ステップS203)。これにより、処理年の年周期変化を決定する。そして、t=1、n=0という初期設定を行う(ステップS205)。なおtは時間を表し、nは日を表すカウンタである。
次に、気象条件発生部25は、日周期変化Tdとランダム変化Trの各係数(C1,D1,C2,D2,...,Tr)の該当月(tの属する月)の平均と標準偏差とを気象予測モデル・データ格納部19から例えばワークメモリ領域に読み込む(ステップS207)。次に、気象条件発生部25は、各係数について読み出した平均と標準偏差を有する正規分布に従う乱数を発生させることにより各係数の値を算出し、例えば気象予測モデル・データ格納部19に格納する(ステップS209)。これにより、処理日における日周期変化とランダム変化を決定する。
上でも述べたが、毎時気温T=年周期変化Ty+日周期変化Td+ランダム変化Trであって、
Ty=Tm+A1sinθ+B1cosθ+A2sin2θ+B2cos2θ+A3sin3θ+B3cos3θ+...
(但し、θ=2π/365×(4月1日からの日数))
Td=C1sinτ+D1cosτ+C2sin2τ+D2cos2τ+C3sin3τ+D3cos3τ+...
(但し、τ=2π/24×(時刻))
Tr〜N(μ,σ)(平均μ、標準偏差σの正規分布)
である。
従って、気象条件発生部25は、ステップS203及びS209で算出された各係数の値を用いて上に示した毎時気温計算式に従って気温(ここでは1時の気温)を算出し、気象条件データ格納部31に格納する(ステップS211)。そして、tが8760より大きいか判断する(ステップS213)。なお、処理年がうるう年である場合にはt>8784であるか判断する。もし、tが8760未満である場合には、nを1インクリメントし、t=24n+1と設定する(ステップS215)。そしてステップS207に戻る。このように、ステップS207乃至S215では処理年の毎日1時の気温を算出するようになっている。
一方、tが8760より大きい場合には、t=2、n=0と設定する(ステップS217)。そして、気象条件発生部25は、t=24n+1とt=24n+25の時の各係数からt=24n+2からt=24n+24の時の各係数を内挿補間により算出し、例えば気象予測モデル・データ格納部19に格納する(ステップS219)。この内挿補間は、直線や高次の多項式によるスプライン補間であり、各時刻の係数を連続して変化させるものである。例えば直線補間の場合、t=24n+1の時の係数がa、t=24n+25の時の係数がbとすれば、t=24n+k(kは2から24)の時の補間値は、a+(b−a)・(k−1)/24)となる。この処理により、自然の変化に近い気温(湿度も同じ処理を実施する)を得ることができるようになる。そして、気象条件発生部25は、算出された各係数(補間値)と上に示した毎時気温計算式とを用いて、t=24n+2からt=24n+24までの毎時の気温を算出し、気象条件データ格納部31に格納する(ステップS221)。
その後tを1インクリメントする(ステップS223)。そして、tが8760より大きいか判断する(ステップS225)。なお、処理年がうるう年である場合にはt>8784であるか判断する。もし、tが8760未満である場合には、tが24n+24より大きいか判断する(ステップS227)。tが24n+24以下であれば、まだ1日の処理が終了していないのでステップS219に戻る。一方、tが24n+24より大きい場合には、nを1インクリメントすると共にt=24n+2にセットする(ステップS229)。そしてステップS219に戻る。一方ステップS225において、tが8760より大きいと判断された場合には、処理年の毎時の気温を算出することができたことになるので、図4の処理に戻る。このようにステップS217乃至S229により毎日の2時から24時までの気温を算出するようになっている。
以上図9に述べたような処理を実施すれば1年8760時間(うるう年の場合には8784時間)全ての気温及び湿度が気象条件データ格納部31に格納される。
図4の処理フローの説明に戻って、年間毎時需要計算部33は、離脱獲得需要データ格納部27と景気条件データ格納部29と条件別予測式係数DB15と気象条件データ格納部31とに格納されたデータを例えばワークメモリ領域に読み出して、当該読み出したデータを用いてN年度D回目の毎時電力需要を算出し、年間毎時需要電力データ格納部35に格納する(ステップS15)。上で述べたが、電力需要Pは基本的には以下の式で計算される。
P=a(T−T0)+b(H−H0)+c(G−G0)+d (1)
本コンピュータ・システムに予め保持されているN年度のカレンダ及び気象条件データ格納部31に格納された気温データ(温度帯が異なる場合もあるので)に基づいて、N年度の各正時につき、条件別予測式係数DB15から該当する係数のセット(必要な場合には係数dの補正係数を含む)を読み出し、景気条件データ格納部29に格納されたN年度のGDP値(ここでは相対値を用いる)と気象条件データ格納部31に格納された当該日時の気温及び湿度データを用いて電力需要Pを計算し、例えばワークメモリ領域に格納する。さらに、離脱獲得需要データ格納部27に格納されているN年度の各正時における離脱電力需要と獲得電力需要若しくはそれらを総合した電力需要により、算出した電力需要Pを調整する。最終的なN年度の各正時における電力需要のデータは、年間毎時需要電力データ格納部35に格納される。
そして、補修計画最適化計算部45は、発電ユニット別特性DB39と年間毎時需要電力データ格納部35とに格納されたデータを例えばワークメモリ領域に読み出して、当該読み出したデータを用いてN年度D回目の補修計画最適化処理を実施し、年間毎時供給力データを生成し、年間毎時供給力データ格納部47に格納する(ステップS17)。なお、電源計画データ格納部43に格納されたP番目の電源計画データについては既にワークメモリ領域に読み出されているので、そのデータを用いる。
発電ユニット別特性DB39には、以下のようなデータが格納されている。すなわち、火力原子力発電の場合、容量と年間所要補修日数のほか、燃料種別(石油・石炭・LNG・原子力)、効率(1時間当たりの燃料消費量F(=aP2+bP+c)を出力Pの2次式で表したときの3つの係数a, b及びc)、起動停止に伴うロス(kcal/回)、最低負荷率(あまり小さな出力では安定して発電できないため)、周波数調整(AFC)特性(電力系統全体の周波数調整に使える出力調整幅)、計画外停止率、停止を週単位でするか日単位でするか毎日止められるかの区分などが含まれる。また、ダムのない小さな水力発電の場合、降水量によって出力が変化するので、夏と冬に分けて日平均出力などのデータが含まれる。大きな水力発電の場合、下流に流せる水量に上下限があるので、最低出力や1日の最大発電量などのデータも含まれる。さらに、揚水式水力発電の場合は、揚水運転の時の効率のデータも含まれる。
補修計画最適化計算部45は、年間毎時需要電力データ格納部35に格納されているN年度の毎時の電力需要を満たし、発電ユニット別特性DB39に格納された発電ユニットの補修等の条件を満たし、さらにステップS5で読み出したP番目の電源計画データに従って、発電ユニットの補修計画(起動停止日時スケジュール・データ)を立案する。簡単に説明すると、A火力発電所1号機は、4月第1乃至第4週目に点検のため停止といったように、全ての発電ユニットについて停止時期が決定される。そして、このような予定を時系列に並べ替えれば、N年度の毎時の供給力が確定するため、起動停止日時スケジュール・データ及び供給力データを年間毎時供給力データ格納部47に格納する。N年度の毎時の供給力は、全発電ユニット出力−補修停止電力+他社からの購入電力計画値となる。なお、この処理の詳細は周知であり、例えば関根泰次著「電力系統工学」(電気書院)p298乃至p299などに詳細が開示されている。よって、ここではこれ以上述べない。
そして、供給力確率分布計算部51は、発電ユニット別特性DB39と年間毎時供給力データ格納部47に格納されたデータを例えばワークメモリ領域に読み出し、当該読み出したデータに含まれる各発電ユニットの起動停止日時スケジュール・データと計画外停止率とから、N年度D回目の毎時の供給力確率分布データを計算し、年間毎時供給力確率分布データ格納部53に格納する(ステップS19)。この計算方法についても周知であるので、これ以上説明しない。
次に、供給支障電力計算部57は、N年度D回目の停電コスト算出処理を実施する(ステップS21)。この処理については、図10を用いて説明する。
まず、供給支障電力計算部57は、年間毎時需要電力データ格納部35と年間毎時供給力確率分布データ格納部53とに格納されたデータを例えばワークメモリ領域に読み出し、当該読み出したデータを用いてN年度D回目の供給支障電力確率分布を算出し、供給支障電力確率分布データ格納部61に格納する(ステップS65)。年間毎時需要電力データ格納部35のデータから、N年度の時刻tの電力需要L(t)を得ることができる。一方、年間毎時供給力確率分布データ格納部53のデータから、時刻tにおける供給力の確率密度関数ft(y)が得られる。このときx(=L−y[kW])の供給支障が発生する確率は以下のとおりになる。
Figure 0003910948
これが供給支障電力の確率分布となり、供給支障電力確率分布データ格納部61に格納される。なお、上で述べた処理については周知であり、例えば「電気工学ハンドブック第6版」(電気学会)p1002乃至p1003に詳細に開示されている。従って、ここではこれ以上述べない。
そして、停電コスト計算部69は、供給支障電力確率分布データ格納部61と停電コスト単価データ格納部67に格納されたデータを例えばワークメモリ領域に読み出し、当該読み出したデータを用いてN年度D回目の停止コストデータを計算し、停電コストデータ格納部71に格納する(ステップS67)。このステップでは、供給支障電力確率分布データ格納部61に格納されているP(x,t)のデータを読み出し、以下の計算式によりN年度にx[kW]の供給支障が発生する時間の期待値を算出し、例えばワークメモリ領域に格納する。
Figure 0003910948
一方、x[kW]の停電が1時間発生した場合のコストをC(x)[円/kWh]とする。このデータは停電コスト単価データ格納部67に格納されたデータである。なお、厳密には3時間連続の停電コストは1時間の停電3回よりも高いというように、停電コストは継続時間によって異なるが、ここでは停電コストは単純に時間に比例するものとする。そうするとN年度の停電コストは、以下のようになる。
Figure 0003910948
このように計算された停電コストデータは停電コスト分布確率分布データ格納部71に格納される。そして処理は図4の処理フローに戻る。
本実施の形態では、従来の電源計画では制約条件としか考慮されていなかった停電をコスト換算して発電単価に包含させることができるため、例えば発電所に対する投資が不十分で停電が多く発生するような電源計画では停電コストは高くなるので、供給信頼度において問題のある電源計画を定量的に示すことができるようになる。但し、停電コストの算出を行わずに発電単価を算出するようにしても良い。すなわち図10の処理をスキップする場合もある。
次に、N年度D回目の燃料費確率分布算出処理を実施する(ステップS23)。これについては図11を用いて説明する。まず、各発電ユニット運転パターン最適化計算部49は、年間毎時需要電力データ格納部35と発電ユニット別特性DB39と年間毎時供給力データ格納部47とからデータを例えばワークメモリ領域に読み出し、当該読み出したデータを用いてN年度D回目の各発電ユニット運転パターン最適化処理を実施し、最適化された運転パターン・データをユニット別起動停止日時データ格納部55に格納する(ステップS71)。基本的に、N年度の毎時供給電力は毎時需要電力を超えているので、その差である停止又は出力低下可能電力を発電単価が高い発電ユニットから割り振って、止めたり、出力を抑えたりする発電ユニットを決定する。すなわち、N年度の毎時供給電力(計画外停止分を除く)を毎時需要電力と同じになるように各発電ユニットの停止日時を決定し、結果として最適化されたユニット別の起動停止日時のデータがユニット別起動停止日時データ格納部55に格納される。なお、この処理については周知であり、例えば関根泰次著「電力系統工学」(電気書院)p115乃至p128に詳細に述べられている。従って、ここではこれ以上述べない。
そして、繰り返しのカウンタFを1に初期化する(ステップS73)。また、予測燃料単価計算部81は、燃料単価予測モデル設定入力77により燃料単価予測モデル・データ格納部79に格納された、多変数自己回帰式((2)式)における係数ベクトルa0と係数行列A1,A2,...と正規分布ベクトルの各要素に対応する標準偏差(n+1種類)のデータと長期価格シナリオのデータ(原油価格及び為替レート)及び燃料単価実績データ格納部73に格納された過去の原油価格データ(為替レート・データを含む過去のベクトルyold(m)のデータ)を例えばワークメモリ領域に読み出す(ステップS75)。
また、予測燃料単価計算部81は、N年度の月に対応する番号mを1に初期化し(ステップS77)、平均が0で標準偏差が読み出されたn+1種類の値となる正規分布の乱数をn+1個発生することにより正規分布ベクトルεを生成し、例えばワークメモリ領域に格納する(ステップS79)。そして、ステップS75において読み出した係数ベクトルと係数行列と発生させた正規分布ベクトルεと過去の原油価格等のデータ(為替レート・データを含む過去のベクトルyold(m)のデータ)とを上で示した(2)式の多変数自己回帰式に代入し、N年度のmという月のベクトルy(m)を算出し、記憶装置に格納する(ステップS81)。そして、mが12以上になったか判断し(ステップS83)、12未満であればmを1インクリメントする(ステップS85)。すなわち、F回目の計算によるN年度の1月から12月における各種原油価格及び為替レートを要素とするベクトルyF(m)={y1F(m),y2F(m),・・・,ynF(m),YF(m)}を生成する。一方mが12以上であれば、予測燃料単価計算部81は、以下の式でN年度におけるn種類の原油価格の加重平均QFを求めて、予測燃料単価確率分布データ格納部83に格納する(ステップS87)。
Figure 0003910948
なお、b1+b2+b3+...+bn=1であり、各bnは使用予定の原油の各種類の使用割合を示している。
そして繰り返し回数Fが最大値になったか判断する(ステップS91)。もし、繰り返し回数Fが最大値未満であれば、Fを1インクリメントし(ステップS92)、ステップS75に戻る。
一方、Fが最大値(Fmax)以上である場合には、予測燃料単価計算部81は、長期価格シナリオに従ったN年度の平均燃料価格PN(=長期的シナリオ設定に基づく平均燃料単価×長期的シナリオ設定に基づく平均為替レート)を算出すると共に、以下の式に従って長期シナリオに基づいて修正したN年度の燃料価格PFを算出し、予測燃料単価確率分布データ格納部83に格納する(ステップS93)。
Figure 0003910948
また、燃料単価予測モデル設定入力77の説明で述べたように、本実施の形態では、LNG価格は原油価格に比例し、石炭及びウランの価格は一定であるとすると設定したので、この設定に従って予測燃料単価計算部81は、原油以外のN年度の燃料価格データを算出し、同じく予測燃料単価確率分布データ格納部83に格納する(ステップS94)。
このような処理を行えば、燃料単価の確率分布が生成されたことになる。そして燃料費計算部87は、ユニット別起動停止日時データ55と予測燃料単価確率分布データ格納部83と発電ユニット別特性DB39に格納されているデータを例えばワークメモリ領域に読み出し、それらのデータを用いて燃料費確率分布データを算出し、燃料費確率分布データ格納部89に格納する(ステップS95)。ユニット別起動停止日時データ格納部55に格納されているデータにより、N年度にどのユニットがどの程度発電するかが分かる。また、発電ユニット別特性DB39には、各発電ユニットの効率のデータが格納されている。基本的に、単価×発電量/効率により燃料費が計算される。従って、各種燃料の燃料単価の確率分布データと、各発電ユニットの発電量及び種類と、各発電ユニットの効率とにより、燃料費の確率分布データが生成され、燃料費確率分布データ格納部89に格納される。
図4の処理フローの説明に戻って、次に固定費計算部94は、電源計画データ格納部43と固定費配分データ格納部93に格納されたデータを読み出し、当該データを用いてN年度の固定費を算出し、固定費データ格納部96に格納する(ステップS25)。ユニット毎に異なる減価償却費や修繕費を加算し、さらに共通の人件費などを加算して、N年度の固定費を計算するものである。電源計画によって、新設又は廃止する電源ユニットが変わってくるため、N年度の固定費は電源計画毎に変わってくる。また、減価償却費についても定率法を用いる場合には毎年額は変化する。計算結果は、固定費データ格納部96に格納される。
そして発電単価計算部95は、年間毎時需要電力データ格納部35と固定費データ格納部96と燃料費確率分布データ格納部89と停電コストデータ格納部71とに格納されたデータを例えばワークメモリ領域に読み出し、読み出したデータを基にN年度D回目の発電単価の確率分布データを生成し、発電単価確率分布データ格納部97に格納する(ステップS27)。トータルの発電単価は、固定費と燃料費と停電コストの総和を年間毎時需要電力データ格納部35から求められる発電量[kWh]で除した値となる。従って、N年度D回目の発電単価の確率分布は、N年度の固定費とN年度D回目の停電コストとN年度D回目の燃料費の確率分布との総和をN年度D回目の発電量[kWh]で除した値となる。計算結果は発電単価確率分布データ格納部97に格納する。このようにすれば、N年度の1回分の計算が終了することになる。上でも述べたが、停電コストについては考慮しないで発電単価の確率分布データを算出する場合もある。
次に、本コンピュータ・システムは、繰り返し回数Dが最大値以上になったか判断する(ステップS29)。繰り返し回数Dが最大値未満である場合には、Dを1インクリメントして(ステップS31)、ステップS11に戻る。一方、Dが最大値以上である場合には、予測年度Nが最大値以上になったか判断する(ステップS33)。予測年度Nが最大値未満である場合には、Nを1インクリメントして(ステップS35)、ステップS9に戻る。一方、Nが最大値以上である場合には、予測する必要がある全ての年度についての処理が終了したことになる。そして、N年度についての各種データが得られたことになる。そして、電源計画番号Pが最大値以上になったか判断する(ステップS37)。電源計画番号Pが最大値未満である場合には、Pを1インクリメントし(ステップS39)、ステップS5に戻る。Pが最大値以上である場合には、検討すべき全ての電源計画について処理が行われたことになる。そして、各種統計処理を実施する(ステップS41)。これは、各電源計画について、発電単価の確率分布に対して所定の統計処理を実施したり、年間毎時需要電力データ格納部35に格納されているデータに対して所定の統計処理を施したりする処理である。統計処理については平均を算出したり、最大値又は最小値若しくは99%tile点を求めるといった処理を含む。さらに、供給信頼度指標計算部63が、供給支障電力確率分布データ格納部61に格納されたデータを例えばワークメモリ領域に読み出して、当該データを用いて各電源計画について供給信頼度指標を算出し、供給信頼度指標データ格納部65に格納する。供給信頼度指標は、例えば見込み不足日数、週毎及び年間の供給支障電力量の期待値、年間平均停電時間などである。これらの指標の計算方式は周知であるからここではこれ以上述べない。
そして、例えばユーザが指示したデータを表示装置や印刷装置などの出力装置に出力する(ステップS43)。例えば、ステップS41の統計処理の結果や、各データ格納部に格納されているデータを例えばユーザの要求に応じて出力する。ファイル出力の場合もある。
例えば、年間毎時需要電力データ格納部35に格納されている年間毎時の電力需要のデータの中からN年度D回目の最大電力を見つけ出し、その確率分布を年度毎に示すと図12に示すようなグラフが得られる。図12では、縦軸は発生確率[%]、横軸は電力[kW]を示す。なお、この例では1992年を現在として1994年、1998年、2001年を予測した場合を示している。曲線1201は1994年の最大電力の確率分布を、曲線1202は1998年の最大電力の確率分布を、曲線1203は2001年の最大電力の確率分布を示している。先の予測ほどGDPの予測が当たり難くなるため、ばらつきが大きい分布となることが示されている。これは将来の計画ほど予備率を大きくした計画とすべきことを定量的に示している。
図13に、発電単価の確率分布を示す。図13では、縦軸が発生確率[%]を、横軸が発電単価[円/kWh]を示す。例えば計画Aとして原子力や石炭火力を含めた多種電源新設の組み合わせ、計画BとしてLNG火力新設のみを設定する。このような場合、計画Aの発電単価の確率分布は曲線1301で、計画Bの発電単価の確率分布は曲線1302で表される。これを見ると計画Bの方が発電単価の期待値は少し安くなるが、燃料価格変動などによる振れ幅が大きくなるので、計画Aの方がリスクの少ない計画であることが分かる。
図12及び図13は出力の一例であって様々な統計処理や各データ格納部に格納されているデータそのままを出力するようにしても良い。また、コンピュータ・システムでは、統計処理等を実施せず、各データ格納部に格納されているデータをそのままファイルなどで出力して、他のシステムにおいて必要な統計処理を実施するようにしても良い。
このように複数の電源計画について比較を行うことにより、より適切と考えられる電源計画を選択することができるようになる。なお、適切と判断するための判断要素は様々であるが、年度毎の発電単価が競争相手の想定単価より低くなるという点(長期的に競争相手より低くなる、又は短期的にも競争相手より低くなるという点)、需要や燃料単価の変動に対してのリスクが大きくならない点などが要素として判断され、妥当性が決定される。
以上のような処理を実施することにより、年間の毎時の電力値を推定するため、電力(kW)と電力量(kWh)を一体的に推定できる。従来の負荷率(年間の最大3日平均電力/年間電力量)のみの傾向だけでなく、平休日・時間等の条件で異なる気温感応度の大きさと年度推移を反映できる。これは、将来の電源構成としてベース電源・ミドル電源・ピーク電源の比率を最適にするために必要であり、電力自由化の下で需要の離脱・獲得による需要曲線の変化が予想される場合には更に重要となる。
また、供給信頼度を上げると発電コストが高くなるが、その関係を明確化でき、需要・燃料単価等の予測値が気象・景気ほか状況変化によって大きくはずれた場合についても、収支に与える影響を、状況変化の確率を設定できる範囲において定量評価できる。このため、需要が予想よりも伸びずに、新設した発電設備への投資を回収できないリスクなどを定量評価できる。
さらに、同一の見込み不足日数でも、短時間の大停電のコストを高く、小さいが比較的長い供給支障は、他社からの購入や需給調整契約発動等の対策を踏まえて安いコストに設定することにより、より現実に即した細かい供給信頼度を設定でき、サービス条件の明確化と予備率の最適化が図れる。
なお図4に示した処理フローでは、一部のステップの処理負荷が高く処理時間が長時間になってしまう場合がある。従って、以下のような処理を実施して、処理時間の短縮を行う場合もある。なお、各ステップの詳細については、上で述べた処理と同様であれば説明を省略する。
まず、ユーザは入力装置を用いて電源計画設定入力37を行い、本コンピュータ・システムは電源計画設定入力37を受け付け、全ての電源計画データを電源計画データ格納部43に格納する(ステップS101)。次に、ユーザは各種データ入力を実施し、本システムは各種データ入力を受け付け、各種データ格納部に格納する(ステップS103)。なお、設定入力補助処理が必要な場合には、設定入力補助処理部7及びモデル設定補助処理部75が処理を実施して、ユーザに処理結果を提示し、ユーザは各種データ入力を実施する。ここでは、電力需要予測式設定入力9により入力されたデータを条件別予測式係数DB15に、景気予測モデル設定入力11により入力されたデータを景気予測モデル・データ格納部17に、気象予測モデル設定入力13により入力されたデータを気象予測モデル・データ格納部19に、離脱獲得需要設定入力21により入力されたデータを離脱獲得需要データ格納部27に、停電コスト単価設定入力59により入力されたデータを停電コスト単価データ格納部67に、固定費配分設定入力91により入力されたデータを固定費配分データ格納部93に格納する。
そして、電源計画番号Pを1に初期化し(ステップS105)、P番目の電源計画データを電源計画データ格納部43からメインメモリなどのワークメモリ領域に読み出す(ステップS107)。そして、予測年度Nを初期値(例えばN=2010)に設定し(ステップS109)、さらに計算回数Dを初期値(例えばD=1)に設定する(ステップS111)。
次に、景気条件発生部23は、景気予測モデル・データ格納部17に格納されたデータを読み出し、当該データを用いてN年度D回目の景気条件データを生成し、景気条件データ格納部29に格納する(ステップS113)。さらに、気象条件発生部25は、気象予測モデル・データ格納部19に格納されたデータを読み出し、当該データを用いてN年度D回目の気象条件データを生成し、気象条件データ格納部31に格納する(ステップS115)。そして、年間毎時需要計算部33は、条件別予測式係数DB15と離脱獲得需要データ格納部27と景気条件データ格納部29と気象条件データ格納部31に格納されたデータを例えばワークメモリ領域に読み出し、当該データを用いてN年度D回目の毎時電力需要を算出し、算出結果を年間毎時需要電力データ格納部35に格納する(ステップS117)。その後繰り返し回数Dは最大値以上になったか判断する(ステップS119)。繰り返し回数Dが最大値未満である場合にはDを1インクリメントして(ステップS121)、ステップS113に戻る。このように、本処理フローでは年間毎時電力需要の確率分布を先に全て計算してしまう処理フローとなっている。
一方繰り返し回数Dが最大値以上となった場合には、年間毎時需要計算部33は、N年度毎時需要について平均μ1と標準偏差σ1とを計算し、年間毎時需要電力データ格納部35に格納する(ステップS123)。このように、本処理フローでは年間毎時電力需要の確率分布は正規分布などに従うものとして近似する。そして、補修計画最適化計算部45は、発電ユニット別特性DB39と年間毎時需要電力データ格納部35に格納されたデータを例えばワークメモリ領域に読み出し、当該データ及び電源計画データ格納部43に格納されていたデータを用いて、N年度毎時需要の平均μ1とμ1±σ1のそれぞれについて補修計画最適化処理を実施し、3通りの年間毎時供給力データを生成して年間毎時供給力データ格納部47に格納する(ステップS125)。図4の処理フローによれば補修計画最適化計算部45の処理は繰り返し回数Dの最大値回数分実施されていたが、今回は3回実施すればよいので、処理回数が減り処理時間が短くなる。端子Aを介して処理は図15に移行する。
図15の処理に移って、供給力確率分布計算部51は、年間毎時供給力データ格納部47と発電ユニット別特性DB39とに格納されたデータを例えばワークメモリ領域に読み出し、当該データを用いて3通りの年間毎時供給力データに対応して3通りの供給支障電力確率分布データを算出し、年間毎時供給力確率分布データ格納部53に格納する(ステップS127)。N年度毎時需要の平均μ1とμ1±σ1とに対応する3通りの年間毎時供給力データが生成されているので、各発電ユニットに対応する計画外停止率を用いて、3通りの年間毎時供給力確率分布データを生成するものである。そして、供給支障電力計算部57は、年間毎時供給力確率分布データ格納部53と年間毎時需要電力データ格納部35とに格納されたデータを例えばワークメモリ領域に読み出し、当該データに含まれる3通りの年間毎時供給力確率分布データと対応する3通りの年間毎時電力需要データとを用いて3通りの供給支障電力確率分布データを算出し、供給支障電力確率分布データ格納部61に格納する(ステップS129)。
また、停電コスト計算部69は、供給支障電力確率分布データ格納部61と停電コスト単価データ格納部67とに格納されたデータを例えばワークメモリ領域に読み出し、当該データに含まれる3通りの供給支障電力確率分布データと停電コスト単価データとを用いて3通りの停電コストデータを算出し、停電コストデータ格納部71に格納する(ステップS131)。
一方、各発電ユニット運転パターン最適化計算部49は、年間毎時需要電力データ格納部35と発電ユニット別特性DB39と年間毎時供給力データ格納部47とに格納されたデータを例えばワークメモリ領域に読み出し、当該データを用いて各発電ユニット運転パターン最適化処理を実施し、3通りの年間毎時供給力データに対応する3通りの運転パターン・データを生成し、ユニット別起動停止日時データ格納部55に格納する(ステップS133)。
また、予測燃料単価計算部81は、燃料単価予測モデル・データ格納部79と燃料単価実績データ格納部73とに格納されたデータを例えばワークメモリ領域に読み出し、当該データを用いてN年度の予測燃料単価計算をF回実施し、当該計算結果を予測燃料単価確率分布データ格納部83に格納する(ステップS135)。例えば図11のステップS73乃至S95の処理を実施するものである。そして、予測燃料単価計算部81は、予測燃料単価確率分布データ格納部83に格納されたデータを例えばワークメモリ領域に読み出し、当該データを用いて各燃料についてN年度の燃料単価の平均μ2と標準偏差σ2を算出し、予測燃料単価確率分布データ格納部83に格納する(ステップS137)。
そして、燃料費計算部87は、ユニット別起動停止日時データ格納部55と予測燃料単価確率分布データ格納部83と発電ユニット別特性DB39に格納されたデータを例えばワークメモリ領域に読み出し、当該データに含まれる3通りの運転パターン・データについてそれぞれN年度燃料単価μ2及びμ2±σ2を適用して9通りの燃料費を算出し、燃料費確率分布データ格納部89に格納する(ステップS139)。
また、固定費計算部94は、固定費配分データ格納部93と電源計画データ格納部43とに格納されたデータを例えばワークメモリ領域に読み出して、当該データを用いてN年度の固定費を計算し、固定費データ格納部96に格納する(ステップS141)。そして、発電単価計算部95は、年間毎時需要電力データ格納部35と固定費データ格納部96と燃料費確率分布データ格納部89と停電コストデータ格納部71に格納されたデータを例えばワークメモリ領域に読み出し、当該データに含まれる3通りの停電コストのデータと9通りの燃料費データと固定費のデータと3通りの総発電量(年間毎時需要電力の総和)を用いて発電単価の確率分布データを算出し、発電単価確率分布データ格納部97に格納する(ステップS143)。基本的には、(停電コスト+燃料費+固定費)/発電量となるので、これに従って発電単価確率分布データを生成する。
次に、本コンピュータ・システムは、予測年度Nが最大値以上になったか判断する(ステップS145)。予測年度Nが最大値未満である場合には、Nを1インクリメントして(ステップS153)、端子Bを介して図14のステップS111に戻る。一方、Nが最大値以上である場合には、予測する必要がある全ての年度についての処理が終了したことになる。そして、N年度についての各種データが得られたことになる。そして、電源計画番号Pが最大値以上になったか判断する(ステップS147)。電源計画番号Pが最大値未満である場合には、Pを1インクリメントし(ステップS155)、端子Cを介して図14のステップS107に戻る。Pが最大値以上である場合には、検討すべき全ての電源計画について処理が行われたことになる。そして、各種統計処理を実施する(ステップS149)。これは、各電源計画について、発電単価の確率分布に対して所定の統計処理を実施したり、年間毎時需要電力データ格納部35に格納されているデータに対して所定の統計処理を施したりする処理である。但し、図15ではスキップしてもよい場合もある。さらに、供給信頼度指標計算部63が、供給支障電力確率分布データ格納部61に格納されたデータを例えばワークメモリ領域に読み出して、当該データを用いて各電源計画について供給信頼度指標を算出し、供給信頼度指標データ格納部65に格納する。
そして、例えばユーザが指示したデータを表示装置や印刷装置などの出力装置に出力する(ステップS151)。例えば、ステップS149の統計処理の結果や、各データ格納部に格納されているデータを例えばユーザの要求に応じて出力する。ファイル出力でも良い。
以上のような処理を実施すれば1年分の計算をD回ではなく少数に集約して計算することになるので、処理量が相当少なくなり処理時間が短くなる。なお、かなり先の予測を行う場合には、実態が予測から大きくずれることもありうるため、多くの種類の電源計画について考察するような場合にはこのような簡易な方法でも十分である。
以上本発明の実施の形態を説明したが、本発明はこれに限定されるものではない。例えば、図1乃至図3に述べた本コンピュータ・システムの機能ブロック図は、実施の形態を説明するために作成するものであって、必ずしも機能ブロックに対応してプログラム・モジュールが用意されない場合もある。なお、図4並びに図14及び図15に示した処理フローでは、並列に実行できる処理ステップであってもシリアルに実行する例を示した。従って、複数プロセッサを利用できる場合などにおいては並列処理を実施させ、処理時間を短縮させることも可能である。また、一部処理の順番を入れ替えても問題ない部分もある。
なお、上で述べた処理フローでは供給信頼度指標を最後に計算する例を示したが、例えば供給支障電力確率分布データが生成された時点で計算を行い、所定の供給信頼指標が所定の閾値未満である場合には当該電源計画についての計算を打ち切るといった処理フローに変更することができる。すなわち、あまりに信頼性の悪い電源計画については採用することはありえないということで、処理時間を短縮するためである。
また図14及び図15では標準偏差σを基準に処理を行ったが、例えば2σなどを用いて処理を行う場合もある。即ちμ±2σの場合の処理をμ±σに加えて又はμ±σに代えて行うものである。
さらに設定入力補助処理部により提示されたデータに基づき設定入力を行う例を示したが、設定入力補助処理部から直接入力がなされるような構成であってもよい。さらに、繰り返し回数や予測年度についても設定入力により変更するような構成であってもよい。
本発明の一実施の形態に係る第1のシステム概要図である。 本発明の一実施の形態に係る第2のシステム概要図である。 本発明の一実施の形態に係る第3のシステム概要図である。 本発明の一実施の形態に係る処理フローを示す図である。 気温感応度を説明するための図である。 気温感応度の経年変化を説明するための図である。 湿度感応度を説明するための図である。 GDP感応度を説明するための図である。 気温データ生成処理の処理フローを示す図である。 停電コスト算出処理の処理フローを示す図である。 燃料費確率分布算出処理の処理フローを示す図である。 最大電力の確率分布を示す図である。 発電単価の確率分布を示す図である。 本発明の一実施の形態に係る簡易処理についての処理フローを示す図である。 本発明の一実施の形態に係る簡易処理についての処理フローを示す図である。
符号の説明
1 電力需要実績データ格納部 3 景気指標実績データ格納部
5 気象実績データ格納部 7 設定入力補助処理部
9 電力需要予測式設定入力 11 景気予測モデル設定入力
13 気象予測モデル設定入力 15 条件別予測式係数DB
17 景気予測モデル・データ格納部 19 気象予測モデル・データ格納部
21 離脱獲得需要設定入力 23 景気条件発生部
25 気象条件発生部 27 離脱獲得需要データ格納部
29 景気条件データ格納部 31 気象条件データ格納部
33 年間毎時需要計算部 35 年間毎時需要電力データ格納部
37 電源計画設定入力 39 発電ユニット別特性DB
43 電源計画データ格納部 45 補修計画最適化計算部
47 年間毎時供給力データ格納部 49 各発電ユニット運転パターン最適化計算部
51 供給力確率分布計算部 53 年間毎時供給力確率分布データ格納部
55 ユニット別起動停止日時データ格納部 57 供給支障電力計算部
59 停電コスト単価設定入力 61 供給支障電力確率分布データ格納部
63 供給信頼度指標計算部 65 供給信頼度指標データ格納部
67 停電コスト単価データ格納部 69 停電コスト計算部
71 停電コストデータ格納部 73 燃料単価実績データ格納部
75 モデル設定補助処理部 77 燃料単価予測モデル設定入力
79 燃料単価予測モデル・データ格納部 81 予測燃料単価計算部
83 予測燃料単価確率分布データ格納部 87 燃料費計算部
89 燃料費確率分布データ格納部 91 固定費配分設定入力
93 固定費配分データ格納部 94 固定費計算部
95 発電単価計算部 96 固定費データ格納部
97 発電単価確率分布データ格納部

Claims (12)

  1. 処理部と気象条件データ格納部と景気条件データ格納部と予測式データ格納部と電力需要データ格納部とを有するコンピュータにより実行される情報処理方法であって、
    前記処理部により、将来の特定の年において単位時間間隔で特定される特定の時刻における気象条件データを、過去の気象実績データを基に、滑らかな連続的変化を再現するための周期関数を使った数式によって生成し、前記気象条件データ格納部に格納するステップと、
    前記処理部により、過去の景気実績に関する確率分布データに基づき、前記将来の特定の年における景気条件データを生成し、前記景気条件データ格納部に格納するステップと、
    前記処理部により、前記将来の特定の年における特定の時刻と、前記気象条件データ格納部に格納された前記将来の特定の年における特定の時刻の前記気象条件データとに対応する予測式の分類を特定するステップと、
    前記処理部により、少なくとも前記気象条件データ及び前記景気条件データにより電力需要を算出するための前記予測式に係るデータを格納している前記予測式データ格納部から、特定された前記予測式の分類に対応する前記予測式に係るデータを取得する予測式データ取得ステップと、
    前記処理部により、取得した前記予測式に係るデータと前記気象条件データ格納部及び前記景気条件データ格納部に格納されたデータとを用いて、前記将来の特定の年における前記特定の時刻における電力需要のデータを生成し、前記電力需要データ格納部に格納するステップと、
    を含情報処理方法。
  2. 前記処理部により、各発電ユニットの補修条件に関するデータと前記電力需要データ格納部に格納されたデータとを参照して前記将来の特定の年における単位時間毎の電力の供給力に関するデータを生成し、供給力データ格納部に格納する供給力データ生成ステップ
    をさらに含む請求項記載の情報処理方法。
  3. 前記処理部により、前記電力需要データ格納部と前記供給力データ格納部とに格納されたデータを用いて、供給支障電力に関するデータを生成し、供給支障電力データ格納部に格納するステップと、
    をさらに含む請求項記載の情報処理方法。
  4. 前記供給力データ生成ステップが、
    前記処理部により、前記各発電ユニットの補修条件及び前記電力需要データ格納部に格納された電力需要を満たす補修計画のデータを生成し、前記補修計画のデータに基づき、前記将来の特定の年における単位時間毎の電力の供給力を決定するステップと、
    前記処理部により、前記各発電ユニットに設定されている計画外停止率に基づき、前記将来の特定の年における単位時間毎の電力の供給力の確率分布データを生成し、前記供給力データ格納部に格納するステップと、
    を含む請求項記載の情報処理方法。
  5. 前記処理部により、前記供給支障電力データ格納部に格納されたデータに基づき所定の供給信頼度指標のデータを算出し、供給信頼度指標データ格納部に格納するステップ
    をさらに含む請求項又は記載の情報処理方法。
  6. 前記処理部により、停電コスト単価についてのデータと前記供給支障電力データ格納部に格納されたデータとを用いて前記将来の特定の年における停電コストについてのデータを生成し、停電コスト・データ格納部に格納するステップと、
    前記処理部により、前記各発電ユニットの補修条件に関するデータと前記電力需要データ格納部及び前記供給力データ格納部に格納されたデータとを用いて、前記将来の特定の年における毎時電力需要と毎時電力供給とが等しくなるように各発電ユニット運転パターン・データを生成し、運転パターン・データ格納部に格納するステップと、
    前記処理部により、燃料単価についてのデータと前記運転パターン・データ格納部に格納されたデータとを用いて前記運転パターン・データに対応する前記将来の特定の年の燃料費についてのデータを生成し、燃料費データ格納部に格納するステップと、
    前記処理部により、前記将来の特定の年における発電に係る固定費を算出し、固定費データ格納部に格納するステップと、
    前記処理部により、前記固定費と前記停電コストについてのデータと前記燃料費についてのデータとの総和を前記電力需要データ格納部に格納されるデータから算出した発電量で除算することにより、発電単価についてのデータを生成し、発電単価データ格納部に格納するステップと、
    をさらに含む請求項乃至のいずれか1つ記載の情報処理方法。
  7. 前記処理部により、前記各発電ユニットの補修条件に関するデータと前記電力需要データ格納部及び前記供給力データ格納部に格納されたデータとを用いて、前記将来の特定の年における毎時電力需要と毎時電力供給とが等しくなるように各発電ユニット運転パターン・データを生成し、運転パターン・データ格納部に格納するステップと、
    前記処理部により、燃料単価についてのデータと前記運転パターン・データ格納部に格納されたデータとを用いて前記運転パターン・データに対応する前記将来の特定の年の燃料費についてのデータを生成し、燃料費データ格納部に格納するステップと、
    前記処理部により、前記将来の特定の年における発電に係る固定費を算出し、固定費データ格納部に格納するステップと、
    前記処理部により、前記固定費と前記燃料費についてのデータとの総和を前記電力需要データ格納部に格納されるデータから算出した発電量で除算することにより、発電単価についてのデータを生成し、発電単価データ格納部に格納するステップと、
    をさらに含む請求項乃至のいずれか1つ記載の情報処理方法。
  8. 前記処理部により、燃料単価の自己回帰モデル・データと過去の燃料単価データと長期的シナリオ設定に基づく平均燃料単価のデータとを用いて、前記将来の特定の年における燃料単価を算出し、燃料単価データ格納部に格納する燃料単価算出ステップ
    をさらに含む請求項又は記載の情報処理方法。
  9. 前記処理部により、為替レートの自己回帰モデル・データと過去の為替レート・データと長期的シナリオ設定に基づく平均為替レートのデータとを用いて、前記将来の特定の年における為替レートを算出するステップ
    をさらに含み、
    前記燃料単価算出ステップにおいて、前記為替レートを用いて前記燃料単価を計算する
    ことを特徴とする請求項記載の情報処理方法。
  10. 請求項1乃至のいずれか1つ記載の情報処理方法をコンピュータに実行させるためのプログラム。
  11. 将来の特定の年において単位時間間隔で特定される特定の時刻における気象条件データを、過去の気象実績データを基に、滑らかな連続的変化を再現するための周期関数を使った数式によって生成し、気象条件データ格納部に格納する手段と、
    過去の景気実績に関する確率分布データに基づき、前記将来の特定の年における景気条件データを生成し、景気条件データ格納部に格納する手段と、
    前記将来の特定の年における特定の時刻と、前記気象条件データ格納部に格納された前記将来の特定の年における特定の時刻の前記気象条件データとに対応する予測式の分類を特定する手段と、
    少なくとも前記気象条件データ及び前記景気条件データにより電力需要を算出するための前記予測式に係るデータを格納している予測式データ格納部から、特定された前記予測式の分類に対応する前記予測式に係るデータを取得する予測式データ取得手段と、
    取得した前記予測式に係るデータと前記気象条件データ格納部及び前記景気条件データ格納部に格納されたデータとを用いて、前記将来の特定の年における前記特定の時刻における電力需要のデータを生成し、電力需要データ格納部に格納する手段と、
    を有するコンピュータ・システム。
  12. 各発電ユニットの補修条件に関するデータと前記電力需要データ格納部に格納されたデータとを参照して前記将来の特定の年における単位時間毎の電力の供給力に関するデータを生成し、供給力データ格納部に格納する供給力データ生成手段と、
    前記電力需要データ格納部と前記供給力データ格納部とに格納されたデータを用いて、供給支障電力に関するデータを生成し、供給支障電力データ格納部に格納する手段と、
    停電コスト単価についてのデータと前記供給支障電力データ格納部に格納されたデータとを用いて前記将来の特定の年における停電コストについてのデータを生成し、停電コスト・データ格納部に格納する手段と、
    前記各発電ユニットの補修条件に関するデータと前記電力需要データ格納部及び前記供給力データ格納部に格納されたデータとを用いて、前記将来の特定の年における毎時電力需要と毎時電力供給とが等しくなるように各発電ユニットの運転パターン・データを生成し、運転パターン・データ格納部に格納する手段と、
    燃料単価についてのデータと前記運転パターン・データ格納部に格納されたデータとを用いて前記運転パターン・データに対応する前記将来の特定の年の燃料費についてのデータを生成し、燃料費データ格納部に格納する手段と、
    前記将来の特定の年における発電に係る固定費を算出し、固定費データ格納部に格納する手段と、
    前記固定費と前記停電コストについてのデータと前記燃料費についてのデータとの総和を前記電力需要データ格納部に格納されるデータから算出した発電量で除算することにより、発電単価についてのデータを生成し、発電単価データ格納部に格納する手段と、
    をさらに有する請求項11記載のコンピュータ・システム。
JP2003285666A 2003-08-04 2003-08-04 電源計画についての情報処理方法及びコンピュータ・システム Expired - Fee Related JP3910948B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003285666A JP3910948B2 (ja) 2003-08-04 2003-08-04 電源計画についての情報処理方法及びコンピュータ・システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003285666A JP3910948B2 (ja) 2003-08-04 2003-08-04 電源計画についての情報処理方法及びコンピュータ・システム

Publications (2)

Publication Number Publication Date
JP2005056103A JP2005056103A (ja) 2005-03-03
JP3910948B2 true JP3910948B2 (ja) 2007-04-25

Family

ID=34365230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285666A Expired - Fee Related JP3910948B2 (ja) 2003-08-04 2003-08-04 電源計画についての情報処理方法及びコンピュータ・システム

Country Status (1)

Country Link
JP (1) JP3910948B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4812317B2 (ja) * 2005-03-28 2011-11-09 大阪瓦斯株式会社 エネルギ需要変動リスク予測システム
JP2007108024A (ja) * 2005-10-13 2007-04-26 Chugoku Electric Power Co Inc:The 電力個別情報生成装置及び電力個別情報生成方法
JP2007259545A (ja) * 2006-03-22 2007-10-04 Tokyo Electric Power Co Inc:The 需給制御システムの系統周波数緊急補正方式
JP4902850B2 (ja) * 2006-06-27 2012-03-21 中部電力株式会社 発電装置の発電費用算出装置
JP5248372B2 (ja) * 2009-03-11 2013-07-31 株式会社東芝 発電計画作成方法、装置、プログラムおよび記憶装置
JP5665501B2 (ja) * 2010-11-19 2015-02-04 三菱電機株式会社 情報処理装置およびプログラム
JP4841703B1 (ja) * 2011-06-03 2011-12-21 三菱電機インフォメーションシステムズ株式会社 推定値算出装置及びプログラム
JP6230055B2 (ja) * 2013-11-15 2017-11-15 株式会社日立パワーソリューションズ 電力需要予測装置及び電力需要予測方法
JP7114956B2 (ja) * 2018-03-15 2022-08-09 東京電力ホールディングス株式会社 電力需要算出装置およびプログラム
JP6915156B2 (ja) * 2018-04-23 2021-08-04 株式会社東芝 電力需要予測装置、電力需要予測方法、およびそのプログラム

Also Published As

Publication number Publication date
JP2005056103A (ja) 2005-03-03

Similar Documents

Publication Publication Date Title
Das et al. Day-ahead optimal bidding strategy of microgrid with demand response program considering uncertainties and outages of renewable energy resources
CN109002937A (zh) 电网负荷预测方法、装置、计算机设备和存储介质
Sommerfeldt et al. Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one–Review
US20040215529A1 (en) System and method for energy price forecasting automation
JP5086968B2 (ja) 定検計画策定装置、方法、及びその制御プログラム
Sommerfeldt et al. Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part two-Application
US20040181491A1 (en) Method, computer equipment and a program for planning of electric power generation and electric power trade
Delarue et al. Effect of the accuracy of price forecasting on profit in a price based unit commitment
Liu et al. Quantitative evaluation of the building energy performance based on short-term energy predictions
JP2006235888A (ja) 電力事業会社における収益予測及び収益計測のためのコンピュータ・システム、収益予測方法及び収益計測方法
Cucchiella et al. A multicriteria analysis of photovoltaic systems: energetic, environmental, and economic assessments
Petrichenko et al. District heating demand short-term forecasting
JP3910948B2 (ja) 電源計画についての情報処理方法及びコンピュータ・システム
El Kafazi et al. Modeling and forecasting energy demand
Oliveira et al. Capacity expansion under uncertainty in an oligopoly using indirect reinforcement-learning
Ilham et al. Optimizing solar PV investments: A comprehensive decision-making index using CRITIC and TOPSIS
JP2008021170A (ja) 発電所の価値評価システムおよびそのプログラム
Matos et al. Operating reserve adequacy evaluation using uncertainties of wind power forecast
Lindner Bi-objective generator maintenance scheduling for a national power utility
Meibom et al. Wind power integration studies using a multi-stage stochastic electricity system model
Havel et al. Optimal planning of ancillary services for reliable power balance control
Riddervold et al. Rolling horizon simulator for evaluation of bidding strategies for reservoir hydro
Rosekrans et al. Issues in electricity planning with computer models: illustrations with Elfin and WASP
JP6848647B2 (ja) 需給計画計算支援装置、方法、及びプログラム
Lindström Forecasting day-ahead electricity prices in Sweden: Has the forecasting accuracy decreased?

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees