JP3909658B2 - Vanadium-based coating film forming method and vanadium-based coating-treated inorganic product - Google Patents

Vanadium-based coating film forming method and vanadium-based coating-treated inorganic product Download PDF

Info

Publication number
JP3909658B2
JP3909658B2 JP2001182363A JP2001182363A JP3909658B2 JP 3909658 B2 JP3909658 B2 JP 3909658B2 JP 2001182363 A JP2001182363 A JP 2001182363A JP 2001182363 A JP2001182363 A JP 2001182363A JP 3909658 B2 JP3909658 B2 JP 3909658B2
Authority
JP
Japan
Prior art keywords
film
vanadium
inorganic
coating
product according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001182363A
Other languages
Japanese (ja)
Other versions
JP2002371352A (en
Inventor
稔 篠田
清彦 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuken Industry Co Ltd
Original Assignee
Yuken Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuken Industry Co Ltd filed Critical Yuken Industry Co Ltd
Priority to JP2001182363A priority Critical patent/JP3909658B2/en
Publication of JP2002371352A publication Critical patent/JP2002371352A/en
Application granted granted Critical
Publication of JP3909658B2 publication Critical patent/JP3909658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【技術分野】
本発明は、バナジウム系被膜を無機基材の表面に成膜する方法に関する。特に、鍛造やプレス成形等の金属塑性加工用金型に好適な被膜の形成方法に関する。
【0002】
【背景技術】
従来、プレス成形等の金型は、基材が一般に鋼製であるため、耐摩耗性等の耐久性を維持するために、硬質被膜処理をする必要がある。
【0003】
そして、硬質被膜処理のひとつとして炭化バナジウム(VC)膜処理がある。そして、VC膜の形成方法は、熱反応析出拡散法(TRD法:Thermal ReactiveDeposition and Diffusion)が主流であった(特開昭49−118637号・特公昭54−7610号・特公昭56−18670号公報等参照)。
【0004】
しかし、上記TRD法の場合、浴温を800〜1200℃(前記公報参照)とする必要があり、作業環境、省エネルギー、生産性等の見地から望ましくなかった。すなわち、作業環境が高温となり、浴温を維持するためのエネルギーが必要となるとともに、被膜処理後の製品の冷却にも時間を要した。
【0005】
また、母材(基材)が鋼である金型の場合、鋼の焼き戻し温度(通常、550〜650℃:「半導体・金属材料用語辞典」工業調査会、1999参照)よりはるかに高い温度に母材がさらされる。このため、金属塑性加工用金型のような高い寸法精度が要求される鋼製品の場合不適であった。
【0006】
【発明の開示】
本発明は、上記にかんがみて、鋼の焼き戻し温度より低い成膜温度でも熱反応析出拡散法(溶融塩拡散法)によるのと同等の硬度とともに、実用密着性および靱性を備えたバナジウム系被膜を形成可能なバナジウム系被膜の成膜方法を提供することを目的(課題)とする。
【0007】
上記課題を解決するために、鋭意開発に努力をする過程で、従来、硬度の低いバナジウム系被膜しか実用的な密着性や靱性が得られないとされていたイオンプレーティングにより鋼材等の表面に反応成膜させる場合において、注入ガス量/ガス比を膜種に対応させて調節・維持することにより上記課題を解決できることを見出して、下記構成のバナジウム系被膜の成膜方法に想到した。
【0008】
バナジウム系被膜をイオンプレーティングにより無機基材の表面に反応成膜させる方法において
前記バナジウム系被膜が、基材側から順に配されたVN膜、VCN膜及びVC膜からなる複合被膜であって、
バナジウムを蒸発源とし、注入ガスを窒素ガス及び/又は炭化水素ガスとして注入ガス量・ガス比を膜種に対応させて調節維持することにより、前記バナジウム系被膜の各層をそれぞれ反応成膜させることを特徴とする。
【0009】
上記の如く、ガス注入量ないしガス比を調節することにより、成膜組成を無機基材に対して密着性の良好な(通常硬度が低い)組成から耐摩耗性の良好な(通常硬度が高い)組成へと段階的にないし連続的に変化させることができる。そして、イオンプレーティングの成膜温度(基板温度)は、通常550℃が上限である。
【0011】
そして、硬度が、VN:HV2000、VCN:HV2500、VC:HV3500と順に高くなっており、成膜組成を無機基材に対して密着性の良好な(通常硬度が低い)組成から耐摩耗性の良好な(通常硬度が高い)組成へと段階的にないし連続的に変化させることができる
【0012】
さらに、各層の反応成膜工程間の移行に際して、注入ガス量・ガス比を段階的又は連続的に変化させて各傾斜組成の層間結合層を反応成膜させることが望ましい。各層間の組成変化の落差(ギャップ)が縮小されて、熱衝撃や機械的衝撃を受けた場合の層間剥離がより発生し難くなるためである。
【0013】
さらに、無機基材として鋼材を用いた場合、成膜時の基板温度を400〜500℃に調節することが望ましい。
【0014】
強靭鋼材の焼き戻し温度が、前述の如く、通常、約550〜650℃であるため、温度バラツキを考慮した場合、500℃以下が望ましく、逆に400℃未満であると、各成膜の密着性を得難くなる。
【0015】
上記イオンプレーティングによりバナジウム系被膜を反応成膜させたバナジウム系被膜処理無機製品は、下記構成のものとなる。
【0016】
バナジウム系被膜を無機基材の表面に備えた無機製品において、
前記バナジウム系被膜が、基材側から順に配されたVN膜、VCN膜及びVC膜からなる複合被膜であることを特徴とする。
【0017】
さらには、前記複合被膜の各層間に、傾斜組成の層間結合層を介在させることが望ましい
【0018】
そして、複合被膜の最外層硬度をビッカース硬度:HV3000以上とすることが耐摩耗性の見地から望ましく、当該硬度は、膜厚比を、VN膜/VCN膜/VC膜=0.5/0.5/9〜3/3/4とし、合計膜厚2〜50μmとすることにより得易くなる。
【0019】
また、無機基材としては、通常、強靭鋼材を使用し、製品としては機械的衝撃や熱衝撃にさらされ易く、寸法精度も要求される金属塑性加工用金型に適用すると、本発明の効果がさらに顕著となる。
【0020】
なお、特開平9−71856号公報に、バナジウム系被膜(VC+40%Ni)をAIP法により形成する技術が記載されているが、本発明の如く、硬度の高い(HV2000以上、望ましくはHV3000以上)バナジウム系被膜を予定していない。
【0021】
【発明を実施するための最良の形態】
以下、本発明を実施形態に基づいて、詳細に説明をする。本明細書で、化学式VN、VCN、VCは、それぞれ窒化バナジウム(立方晶系)、炭窒化バナジウム(同)、炭化バナジウム(同)を意味する。
【0022】
また、「HV」は、JIS Z 2244に準じて測定したビッカース硬さを意味する。
【0023】
図1は、本発明の一実施形態のバナジウム系被膜処理無機製品の部分断面図であり、基本的には、鋼材製の基材12の表面に基材12側から順に配されたVN膜14、VCN膜16、VC膜18からなる複合被膜(バナジウム系被膜)を備えた無機製品である。
【0024】
上記において、基材12側から順にVN膜14、VCN膜16、VC膜18と配すると、前述の如く、その順に硬度が高くなり、基材、特に鋼材製基材(通常、HV600〜900)との硬度差を小さくすることができる。したがって、表面硬度が高くても基材との密着性を確保し易くなる。そして、VC膜18は、前述の如く、HV3500であり、耐摩耗性確保の要因(パラメータ)となる表面硬度を確保しやすい。なお、さらに耐摩耗性の向上が要求される場合は、耐摩耗性の他の要因である摩擦係数(動摩擦係数:JIS K 7125)を低減させることが望ましい。その動摩擦係数(μ)は、0.3以下、望ましくは,0.2以下とする。当該摩擦係数は、後述の如く、炭化水素(炭素供給源)の量を増大させることにより容易に得ることができる。
【0025】
本実施形態では、必然的ではないが、さらに、複合被膜の各層間、すなわちVN膜14/VCN膜16間およびVCN膜16/VC膜18間に、傾斜組成の第一・第二層間結合層20、22を介在させてある。
【0026】
これらの層間結合層20、22の存在により、各層間の硬度差がさらに縮まり、結果的に機械的衝撃や熱衝撃による層間剥離が発生し難くなり、結果的にバナジウム系被膜の靱性が増大する、すなわち、耐久性が増大する。
【0027】
より具体的には、各膜層の膜厚比を、VN膜14/VCN膜16/VC膜18=0.5/0.5/9〜3/3/4、望ましくは、1/1/8〜2.5/2.5/5、最も望ましくは、約2/2/6とし、合計膜厚2〜50μm、望ましくは3〜10μm、最も望ましくは約6μmとする。
【0028】
当該VC膜のVN膜またはVCN膜に対する膜厚比が大きすぎると、VC膜の膜厚が特に10μmを越えるような場合、膜の圧縮応力が増大するために、VC膜が自己破壊若しくは下層(VCN膜)との層間剥離が発生し易い。また、膜靱性が低くなるため、鍛造時の衝撃により、VC膜に亀裂が発生し易くなる。
【0029】
逆にVC膜のVN膜またはVCN膜に対する膜厚比が小さすぎると、被膜全体の硬度がHV3300以下となって、耐摩耗性を得難くなる。
【0030】
また、複合被膜の合計膜厚が小さすぎると、所要の表面硬さ(耐摩耗性)を得難く、逆に大きすぎると、バナジウム系被膜の基材からの層剥離が発生し易くなる。また、膜靱性が低下するためプレス・鍛造時の衝撃により被膜に亀裂が発生し易くなる。
【0031】
また、層間結合層20、22の層厚(膜厚)は、バナジウム系被膜の構成層であるVN膜、VCN膜、VC膜に比べて、格段に薄いものである。層間結合の作用を奏すれば、可及的に薄い方が望ましく、通常、VN膜、VCN膜の0.5/10〜3/10、望ましくは、1/10〜2/10、最も望ましくは約1.5/10とする。設定理由は、下記の如くであると推定される。
【0032】
基材と被膜との硬度格差による剥離を抑制するために三層構造とするだけで充分と考えられる。また、層間結合層が無くても被膜層間の硬度格差はHV1000以内であるため、使用目的に対して上記設定以上の厚さは必要ないと考えられる。
【0033】
ここで、強靭鋼材を使用するのは、金属塑性加工用金型の如く、機械的衝撃、熱衝撃を受け易い金属塑性加工用金型等の金属製品(無機製品)を予定しているためである。
【0034】
鋼材としては、高速度鋼、ダイス鋼、粉末ハイス鋼、セミハイス鋼等のFe基合金(強靭鋼材)を好適に使用できる。基材としては、550℃以上の耐熱性を有すれば、Fe基合金に限られず、Ti基合金、銅基合金、サーメットさらにはセラミックス等が使用可能である。ただし、Fe基合金、特に、強靭鋼以外は、焼き戻しによる寸法歪が発生しないため、本発明の効果の全てを享受できない。
【0035】
上記Fe基合金の具体例としては、SKH51、SKH55、SKH57等の高速度鋼、SKD11、SKD61等の冷間・熱間ダイス鋼、さらには、HAP10、HAP40等の粉末ハイス鋼(日立金属社製)、YXR3、YXR7、YXR33等のセミハイス鋼(同社製)等を挙げることができる。
【0036】
次に、上記実施形態の無機製品の製造方法、すなわち、バナジウム被膜の成膜方法について説明をする。
【0037】
本実施形態では、図2に示すようなイオンプレーティング装置、通常、アークイオンプレーティング(AIP)装置を用いて行う。AIP法は、バナジウムを蒸発源とし、反応ガスを窒素ガス及び/又は炭化水素ガスとして注入ガス量・ガス比を膜種・膜厚に対応させて調節維持することにより、VN膜、VCN膜、VC膜を高純度で基材上に反応成膜させることが容易なためである。当然、多陰極熱電子照射法、高周波励起法、ホロカソードディスチャージ法、クラスタ法、活性化反応蒸着法、等他のタイプのイオンプレーティング法も可能である。
【0038】
イオンプレーティング装置は、チャンバー24内に、バナジウム金属を保持する蒸発源保持部(ポット部)25と、バイアス電圧源26と接続された被処理物(基材)28を載置する回転テーブル30を備えている。さらに、チャンバー24は、チャンバー内を所定真空度に維持する排気ポンプと接続される排気口32と、反応ガス(窒素及び/又はメタン)を導入する反応ガス導入口34とを備えるとともに、チャンバー24内を所定温度に維持するとともに基材(基板)28も所定温度に維持するヒータ36を備えている。
【0039】
そして、AIP法により反応成膜する場合を例に採り説明する。
【0040】
蒸発源とするバナジウム(V)は、通常、ツウナインからスリーナインの純度のものを使用する。また、バナジウムと反応する元素である窒素及び炭素の供給源であるガスは、前者は窒素ガス(N2)、後者としてメタン(CH4)、エタン、エチレン、アセチレン等の炭化水素ガスを使用可能である。炭化水素ガスとしては、未反応性ガスが装置や基材表面を汚染するため、煤の発生し難い、メタンが望ましい。そして、それらの純度は、それぞれ、スリーナインからシックスナインとする。
【0041】
そして、AIP法による成膜条件は、表1の通りとする。
【0042】
【表1】

Figure 0003909658
【0043】
上記条件項目の着眼点について以下にそれぞれ説明する。
【0044】
▲1▼真空度:
真空度が高すぎる(絶対圧が低い)と、反応ガス量が少ない状態となり、成膜速度が遅くなり生産性が低下し、また、成膜された被膜が、金属成分過多の組成になってしまったり、粒子が粗くて空隙の多いもの(結晶核の生成が遅くなるためと推定される。)になりやすい。
【0045】
逆に真空度が低すぎる(絶対圧が高い)と、反応ガス量が過剰となり、反応に使用されずに充分に活性化されていないガスが、成長被膜面で吸着インヒビタ(抑制剤)として作用するおそれがある。
【0046】
特に、金型に本発明を適用して耐摩耗性の向上を期待する場合、表面膜(VC膜)は、膜硬度とともに滑り性も要求され、そのような場合には、潤滑剤として作用するC(カーボン)膜中に含有させることが望ましい。しかし、C含有率が過剰になると膜硬度が低下して、やはり耐摩耗性が低下する。そのようなバランスが採れる真空度は、約25〜35mtorr(33.3〜46.6Pa)、望ましくは約30mtorr(39.9Pa)、メタンガス量で、約400〜600mL/min、望ましくは約500mL/minとする。
【0047】
▲2▼アーク電流:
電流値が低すぎると成膜速度が遅くなり、逆に高過ぎると、装置の安全性の見地から望ましくない。
【0048】
▲3▼バイアス電圧:
一般的に、バイアス電圧が高いほど成膜速度が遅くなるため、生産性を考慮して適当な範囲で設定する。供給ガスが窒素(N2)の場合、バイアス電圧の窒化物成膜結晶にほとんど影響はなく50〜400V、望ましくは、50〜200Vの範囲で適宜設定できる。CH4等の炭化水素の場合、バイアス電圧が低いと、VCの結晶性が低くなって、炭化物成膜の耐摩耗性が得難くなる。このため、窒素と同様、50〜400Vの範囲でも可能であるが、生産性と結晶性とのバランスから、約100〜200Vが望ましく、さらに望ましくは約150Vとする。
【0049】
▲4▼基板温度:
温度が高いほど成膜速度が速くて望ましいが、省エネルギー及び基材の耐熱性の見地から、基材が鋼の場合、焼き戻しによる寸法歪が発生しない温度以下、通常350〜550℃、望ましくは400〜500℃とする。なお、基材がセラミックスの如く、熱歪が発生しない場合は、イオンプレーティングの最高温度550℃前後で行ってもよい。
【0050】
また、各層間に層間結合層を形成する場合におけるガス流量及び着膜時間の一例を表2に示す。表2において、Xはバナジウム充填量および膜厚により異なるが、例えば、充填量800gで合計膜厚3〜10μmの場合、X=300〜1000秒とする。
【0051】
【表2】
Figure 0003909658
【0052】
表2の各層間結合層のガス量及び圧力は、瞬時にその量及び圧力になるわけでなく、通常、着膜時間の中間時間、例えば40〜50秒後にその圧力に連続的に上昇して、その後設定値を維持するものである。その点は、VCN膜、VC膜でも同様である。
【0053】
なお、上記では、バナジウム系被膜として、VN膜/VCN膜/VC膜の複合被膜を例にとって説明したが、VN膜、VCN膜及びVC膜の各単層膜でも、さらには、VN膜/VCN膜、VCN膜/VC膜、VN膜/VC膜の各複合膜についても同様にして成膜できる。鋼を基材とし、複合膜とする場合は、原則的には硬度の低い方を基材側とし、各層間には、層間結合層を形成するようにすることが望ましい。
【0054】
したがって、本発明の成膜方法は、一番硬度の低いVN膜でも硬度はHV2000であり、HV3000以上の硬度のバナジウム系被膜を容易に鋼等の基材上に密着性良好に成膜できる。
【0055】
また、本発明のバナジウム系被膜の成膜方法は、金属塑性加工用金型ばかりでなく、耐摩耗性が要求されるあらゆる無機製品、例えば、シリンダライナー、バルブリフター、スプロケット、ギヤ、プーリー、車軸等の輸送機関関連部材、機械部品、治具等に適用できるものである。
【0056】
【試験例】
次に、本発明の効果を確認するために実施例1・2・3および比較例1・2について行った試験例を説明する。
【0057】
なお、イオンプレーティング装置は、神戸製鋼社製「AIP4024型」を用い、Vは純度スリーナインのもの800gを充填し、N2は純度ファイブナイン、CH4は純度スリーナインのものをそれぞれ使用した。
【0058】
実施例1:表2において、X=600sとしてバナジウム系被膜を基材である金型のプレス面に合計膜厚約6μmのバナジウム系被膜(VN膜/VCN膜/VC膜)を成膜した。また、基材は冷間ダイス鋼(SKD11:HV650、HRC58.0靱性評価と同じ)製のプレス加工用金型(図3:150mmφ×70mmt)とした。
【0059】
実施例2:実施例1において、設定圧力を20mtorr(26.6Pa)としたものである。他の条件は、実施例1と同じ。
【0060】
実施例3:実施例1において、X=3000sとして膜厚約6μmの単層VC膜を成膜した。他の条件は、実施例1と同じ。
【0061】
比較例1・2は、下記に準じて、熱CVD法及びTRD法に基づいて、膜厚それぞれ約6μmの単層VC膜及び単層TiC膜を、実施例1と同じ基材(SKD11製プレス成形用金型)上に成膜(成膜温度:約1000℃)した。
【0062】
そして、上記で得た各実施例及び比較例の金型について、下記項目の試験を行った。
【0063】
(1)耐久性評価試験
実施例1及び比較例1について、ワーク材(SUS、3mmt)を用いて、不良品が発生するまでの型寿命(摩耗による成形不良)の成形個数を評価した。
【0064】
実施例1の型寿命は6万個であったのに対し、比較例1は約4万個であった。
【0065】
なお、このとき型の寸法歪を測定したが、実施例1は最大でも±40μmであったのに対し、比較例は平均数100μmであった。
【0066】
(2)摩擦係数評価/結果
実施例1・2について、JIS K 7125に準じて、動摩擦係数を測定した。結果は、実施例1:0.197、実施例2:0.287で、メタンガス量が多い方が、動摩擦係数が低いことが分かる。
【0067】
(3)膜靱性評価/結果
実施例「スクラッチテスター」(スイス、CSEM社製商品名)を用いて、下記方法/条件で評価した。
【0068】
方法…ダイヤモンド圧子(120°円錐形)を被膜に押し付けながら(スクラッチしながら)、連続的に荷重を0〜100Nまで増大させていき、被膜にチッピングや剥離等の破壊現象発生させる。通常は、破壊現象発生時を、臨界荷重値として評価するが、膜靱性はチッピング開始荷重で評価することが信頼性があるため、チッピング開始荷重で評価した。ここで「チッピング」とは、被膜の欠け(欠落)のことである。スクラッチテストを行った場合、圧子荷重の増加に伴い、被膜はスクラッチ(掻き傷)→チッピング→剥離の順で破壊されることが多い。
【0069】
条件…圧子移動距離:10mm、同移動速度:10mm/min、同加重速度:1.67N/s
結果は、実施例1:60N、実施例2:45N、比較例2:30Nであり、本発明の各実施例、特に複合被膜の実施例1は、靱性(耐チッピング性)が格段に高いことが分かる。
【図面の簡単な説明】
【図1】本発明におけるバナジウム系複合被膜の一例を示すモデル図
【図2】本発明に使用するイオンプレーティング装置の一例を示す概略モデル図
【図3】試験例に使用する基材であるダイス鋼製金型のモデル斜視図
【符号の説明】
12 基材
14 VN膜
16 VCN膜
18 VC膜
20 第一層間結合層
22 第二層間結合層[0001]
【Technical field】
The present invention relates to a method for forming a vanadium- based film on the surface of an inorganic substrate. In particular, the present invention relates to a method for forming a film suitable for a metal plastic working mold such as forging or press molding.
[0002]
[Background]
Conventionally, a die for press molding or the like is generally made of steel, so that it is necessary to perform a hard coating treatment in order to maintain durability such as wear resistance.
[0003]
One of the hard coating processes is a vanadium carbide (VC) film process. As a method for forming a VC film, a thermal reactive deposition and diffusion method (TRD method) has been mainly used (Japanese Patent Laid-Open Nos. 49-11837, 54-7610, and 56-18670). (See publications).
[0004]
However, in the case of the TRD method, it is necessary to set the bath temperature to 800 to 1200 ° C. (see the above publication), which is not desirable from the viewpoint of working environment, energy saving, productivity, and the like. That is, the working environment became high temperature, energy for maintaining the bath temperature was required, and it took time to cool the product after coating.
[0005]
Further, in the case of a mold whose base material (base material) is steel, the temperature is much higher than the tempering temperature of steel (usually 550 to 650 ° C .: “Semiconductor / Metal Material Glossary of Terms”, Industrial Research Committee, 1999). The base material is exposed to. For this reason, it is unsuitable in the case of a steel product that requires high dimensional accuracy such as a metal plastic working mold.
[0006]
DISCLOSURE OF THE INVENTION
In view of the above, the present invention provides a vanadium-based coating film having practical adhesion and toughness with the same hardness as that obtained by the thermal reaction precipitation diffusion method (molten salt diffusion method) even at a film formation temperature lower than the tempering temperature of steel. It is an object (problem) to provide a method for forming a vanadium-based film capable of forming a film .
[0007]
In order to solve the above problems, in the process of earnestly developing, the vanadium-based coating with low hardness has hitherto been applied to the surface of steel materials by ion plating, which has been considered to give practical adhesion and toughness. In the case of reactive film formation, the inventors have found that the above problem can be solved by adjusting and maintaining the injection gas amount / gas ratio corresponding to the film type , and have come up with a method for forming a vanadium-based film having the following configuration.
[0008]
In a method of reactively forming a vanadium- based film on the surface of an inorganic substrate by ion plating,
The vanadium-based coating is a composite coating composed of a VN film, a VCN film, and a VC film sequentially arranged from the substrate side,
Each layer of the vanadium-based coating is formed by reaction by using vanadium as an evaporation source and adjusting and maintaining the injection gas amount and gas ratio corresponding to the film type using nitrogen gas and / or hydrocarbon gas as the injection gas. It is characterized by.
[0009]
As described above, by adjusting the gas injection amount or the gas ratio, the film-forming composition is changed from a composition having good adhesion to the inorganic substrate (normally low hardness) to a good abrasion resistance (normally high hardness). ) It can be changed stepwise or continuously to the composition. The upper limit of the ion plating film forming temperature (substrate temperature) is usually 550 ° C.
[0011]
The hardness increases in the order of VN: HV2000, VCN: HV2500, and VC: HV3500, and the film-forming composition is changed from a composition having good adhesion to an inorganic substrate (normally low hardness) to wear resistance. good (usually high hardness) do not and stepwise to the composition can be continuously changed.
[0012]
Furthermore, it is desirable to carry out the reactive film formation of the interlayer bonding layers having the respective gradient compositions by changing the injection gas amount / gas ratio stepwise or continuously during the transition between the reactive film formation processes of the respective layers. This is because the drop (gap) of composition change between the respective layers is reduced, and delamination is less likely to occur when subjected to thermal shock or mechanical shock.
[0013]
Furthermore, when a steel material is used as the inorganic base material, it is desirable to adjust the substrate temperature during film formation to 400 to 500 ° C.
[0014]
As described above, the tempering temperature of the tough steel material is usually about 550 to 650 ° C. Therefore, when temperature variation is taken into consideration, 500 ° C. or less is desirable. It becomes difficult to get sex.
[0015]
The vanadium-based film-treated inorganic product obtained by reactively forming a vanadium-based film by the ion plating has the following configuration.
[0016]
In inorganic products with vanadium-based coatings on the surface of inorganic substrates,
The vanadium-based coating is a composite coating composed of a VN film, a VCN film, and a VC film sequentially arranged from the substrate side .
[0017]
Furthermore, it is desirable to interpose an interlayer coupling layer having a gradient composition between the layers of the composite coating.
[0018]
The outermost layer hardness of the composite coating is preferably Vickers hardness: HV3000 or more from the standpoint of wear resistance, and the hardness is determined by the ratio of thickness: VN film / VCN film / VC film = 0.5 / 0. It becomes easy to obtain by setting it as 5/9-3/3/4 and making it the total film thickness of 2-50 micrometers.
[0019]
In addition, the effect of the present invention can be achieved by applying a tough metal material as the inorganic base material, and being applied to a metal plastic working mold that is easily exposed to mechanical shock and thermal shock as a product and requires dimensional accuracy. Becomes even more prominent.
[0020]
JP-A-9-71856 describes a technique for forming a vanadium-based film (VC + 40% Ni) by the AIP method. However, as in the present invention, the hardness is high (HV2000 or higher, preferably HV3000 or higher). Vanadium coating is not planned.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments. In this specification, the chemical formulas VN, VCN, and VC mean vanadium nitride (cubic), vanadium carbonitride (same), and vanadium carbide (same), respectively.
[0022]
“HV” means Vickers hardness measured according to JIS Z 2244.
[0023]
FIG. 1 is a partial cross-sectional view of a vanadium-based film-treated inorganic product according to an embodiment of the present invention. Basically, a VN film 14 is disposed on the surface of a steel substrate 12 in this order from the substrate 12 side. , An inorganic product provided with a composite coating (vanadium coating) composed of the VCN film 16 and the VC film 18.
[0024]
In the above, when the VN film 14, the VCN film 16, and the VC film 18 are arranged in this order from the base material 12 side, the hardness increases in that order as described above, and the base material, particularly a steel base material (usually HV 600 to 900). And the hardness difference can be reduced. Therefore, even if the surface hardness is high, it becomes easy to ensure adhesion with the substrate. As described above, the VC film 18 is HV3500, and it is easy to ensure the surface hardness that is a factor ( parameter ) for ensuring wear resistance. If further improvement in wear resistance is required, it is desirable to reduce the friction coefficient (dynamic friction coefficient: JIS K 7125), which is another factor of wear resistance. The dynamic friction coefficient (μ) is 0.3 or less, preferably 0.2 or less. As will be described later, the friction coefficient can be easily obtained by increasing the amount of hydrocarbon (carbon source).
[0025]
In the present embodiment, although not indispensable, first and second interlayer coupling layers having a gradient composition are further provided between the layers of the composite coating, that is, between the VN film 14 / VCN film 16 and between the VCN film 16 / VC film 18. 20 and 22 are interposed.
[0026]
The presence of these interlayer bonding layers 20 and 22 further reduces the hardness difference between the respective layers, and as a result, delamination due to mechanical shock or thermal shock hardly occurs, and as a result, the toughness of the vanadium-based coating increases. That is, durability is increased.
[0027]
More specifically, the film thickness ratio of each film layer is set such that VN film 14 / VCN film 16 / VC film 18 = 0.5 / 0.5 / 9 to 3/3/4, preferably 1/1 / The thickness is 8 to 2.5 / 2.5 / 5, most preferably about 2/2/6, and the total film thickness is 2 to 50 μm, preferably 3 to 10 μm, and most preferably about 6 μm.
[0028]
If the film thickness ratio of the VC film to the VN film or the VCN film is too large, especially when the film thickness of the VC film exceeds 10 μm, the compressive stress of the film increases. Delamination with the VCN film is likely to occur. Moreover, since the film toughness is lowered, cracks are likely to occur in the VC film due to impact during forging.
[0029]
On the contrary, if the film thickness ratio of the VC film to the VN film or the VCN film is too small, the hardness of the entire film becomes HV3300 or less, and it becomes difficult to obtain wear resistance.
[0030]
Further, if the total film thickness of the composite coating is too small, it is difficult to obtain the required surface hardness (abrasion resistance), and conversely if it is too large, delamination of the vanadium-based coating from the substrate tends to occur. Further, since the film toughness is lowered, cracks are likely to occur in the coating film due to impact during pressing and forging.
[0031]
The layer thickness (film thickness) of the interlayer coupling layers 20 and 22 is much thinner than the VN film, VCN film, and VC film that are constituent layers of the vanadium-based coating. It is desirable that the layer is as thin as possible as long as it has an effect of interlayer coupling. Usually, it is 0.5 / 10 to 3/10, preferably 1/10 to 2/10, most preferably VN film and VCN film. About 1.5 / 10. The reason for the setting is estimated as follows.
[0032]
In order to suppress peeling due to the hardness difference between the substrate and the coating, it is considered sufficient to have a three-layer structure. Further, even if there is no interlayer bonding layer, the hardness difference between the coating layers is within HV1000, and therefore it is considered that a thickness greater than the above setting is not necessary for the purpose of use.
[0033]
Here , tough steel is used because metal products (inorganic products) such as metal plastic molds that are susceptible to mechanical and thermal shocks are planned, such as metal plastic molds. is there.
[0034]
As the steel material, Fe-based alloys (tough steel materials) such as high-speed steel, die steel, powdered high-speed steel, and semi-high-speed steel can be suitably used. As a base material, if it has heat resistance of 550 degreeC or more, it will not be restricted to a Fe base alloy, Ti base alloy, a copper base alloy, a cermet, ceramics etc. can be used. However, since the dimensional distortion due to tempering does not occur except for the Fe-based alloy, particularly tough steel, it is not possible to enjoy all the effects of the present invention.
[0035]
Specific examples of the Fe-based alloy include high-speed steel such as SKH51, SKH55, and SKH57, cold and hot die steel such as SKD11 and SKD61, and powder high-speed steel such as HAP10 and HAP40 (manufactured by Hitachi Metals, Ltd.). ), YXR3, YXR7, YXR33 and other semi-high speed steel (manufactured by the same company).
[0036]
Next, the manufacturing method of the inorganic product of the above embodiment, that is, the film forming method of the vanadium film will be described.
[0037]
In this embodiment, an ion plating apparatus as shown in FIG. 2, usually an arc ion plating (AIP) apparatus, is used. The AIP method uses vanadium as an evaporation source, nitrogen gas and / or hydrocarbon gas as an injection gas, and adjusts and maintains the injection gas amount and gas ratio according to the film type and film thickness, thereby providing a VN film, a VCN film, This is because it is easy to reactively form a VC film on a substrate with high purity. Naturally, other types of ion plating methods such as a multi-cathode thermionic irradiation method, a high-frequency excitation method, a holo-cathode discharge method, a cluster method, and an activated reaction deposition method are also possible.
[0038]
In the ion plating apparatus, an evaporation source holding part (pot part) 25 for holding vanadium metal and a workpiece (base material) 28 connected to a bias voltage source 26 are placed in a chamber 24. It has. Furthermore, the chamber 24 includes an exhaust port 32 connected to an exhaust pump that maintains the inside of the chamber at a predetermined degree of vacuum, and a reaction gas introduction port 34 for introducing a reaction gas (nitrogen and / or methane). A heater 36 that maintains the interior at a predetermined temperature and also maintains the substrate (substrate) 28 at a predetermined temperature is provided.
[0039]
An example of reactive film formation by the AIP method will be described.
[0040]
The vanadium (V) used as the evaporation source is usually one having a purity of tunaine to threeine. In addition, the gas that is the source of nitrogen and carbon, which are elements that react with vanadium, can use nitrogen gas (N 2 ) for the former and hydrocarbon gases such as methane (CH 4 ), ethane, ethylene, acetylene for the latter It is. As the hydrocarbon gas, methane is preferable because it does not easily generate soot because unreactive gas contaminates the surface of the apparatus and the base material. And the purity of each is made from three nine to six nine.
[0041]
The film formation conditions by the AIP method are as shown in Table 1.
[0042]
[Table 1]
Figure 0003909658
[0043]
The focus points of the above condition items will be described below.
[0044]
(1) Degree of vacuum:
If the degree of vacuum is too high (the absolute pressure is low), the amount of reaction gas will be small, the film forming speed will be slowed and the productivity will be reduced, and the formed film will have a composition with excessive metal components. It tends to become rough, or the particles are coarse and have many voids (it is estimated that the generation of crystal nuclei is delayed).
[0045]
On the other hand, if the degree of vacuum is too low (the absolute pressure is high), the amount of reaction gas becomes excessive, and the gas that is not fully activated without being used in the reaction acts as an adsorption inhibitor (inhibitor) on the growth film surface. There is a risk.
[0046]
In particular, when application of the present invention to a mold is expected to improve wear resistance, the surface film (VC film) is required to have slipperiness as well as film hardness. In such a case, it acts as a lubricant. It is desirable to contain C (carbon) in the film. However, when the C content is excessive, the film hardness is lowered and the wear resistance is also lowered. The degree of vacuum that can achieve such a balance is about 25 to 35 mtorr (33.3 to 46.6 Pa), preferably about 30 mtorr (39.9 Pa), and the amount of methane gas is about 400 to 600 mL / min, preferably about 500 mL / min.
[0047]
(2) Arc current:
If the current value is too low, the deposition rate is slow, and conversely if too high, it is not desirable from the viewpoint of the safety of the apparatus.
[0048]
(3) Bias voltage:
In general, the higher the bias voltage, the slower the film formation speed. Therefore, it is set within an appropriate range in consideration of productivity. When the supply gas is nitrogen (N 2 ), there is almost no influence on the nitride film crystal of the bias voltage, and the voltage can be appropriately set within the range of 50 to 400V, preferably 50 to 200V. In the case of a hydrocarbon such as CH 4 , if the bias voltage is low, the crystallinity of VC becomes low and it becomes difficult to obtain the wear resistance of the carbide film. For this reason, it is possible in the range of 50 to 400 V as in the case of nitrogen, but is preferably about 100 to 200 V, more preferably about 150 V, from the balance between productivity and crystallinity.
[0049]
(4) Substrate temperature:
The higher the temperature, the faster the film formation rate is desirable, but from the viewpoint of energy saving and heat resistance of the base material, when the base material is steel, the temperature is not higher than the temperature at which dimensional distortion due to tempering does not occur, usually 350 to 550 ° C, preferably Set to 400 to 500 ° C. In the case where thermal distortion does not occur as in the case of ceramics, it may be carried out at a maximum ion plating temperature of around 550 ° C.
[0050]
Table 2 shows an example of the gas flow rate and deposition time when an interlayer coupling layer is formed between the layers. In Table 2, X varies depending on the vanadium filling amount and the film thickness. For example, when the filling amount is 800 g and the total film thickness is 3 to 10 μm, X = 300 to 1000 seconds.
[0051]
[Table 2]
Figure 0003909658
[0052]
The amount and pressure of the gas in each interlayer bonding layer in Table 2 do not instantaneously become the amount and pressure, but usually increase continuously to the pressure after an intermediate time of film formation, for example, 40 to 50 seconds. Thereafter, the set value is maintained. The same applies to the VCN film and the VC film.
[0053]
In the above description, the VN film / VCN film / VC film composite film has been described as an example of the vanadium-based film. However, the VN film, the VCN film, and the VC film may each be a single layer film. Films, VCN film / VC film, and VN film / VC film composite films can be formed in the same manner. When steel is used as a base material and a composite film is used, in principle, it is desirable that the lower hardness is the base material side, and an interlayer coupling layer is formed between each layer.
[0054]
Therefore, in the film forming method of the present invention, even a VN film having the lowest hardness has a hardness of HV2000, and a vanadium-based film having a hardness of HV3000 or higher can be easily formed on a substrate such as steel with good adhesion.
[0055]
In addition, the vanadium-based coating film forming method of the present invention is not limited to a metal plastic working mold, but also any inorganic product that requires wear resistance, such as a cylinder liner, a valve lifter, a sprocket, a gear, a pulley, an axle. It can be applied to transportation-related members such as, machine parts, jigs and the like.
[0056]
[Test example]
Next, test examples conducted for Examples 1, 2, and 3 and Comparative Examples 1 and 2 in order to confirm the effect of the present invention will be described.
[0057]
As the ion plating apparatus, “AIP4024 type” manufactured by Kobe Steel, Ltd. was used. V was filled with 800 g of pure three nine, N 2 was pure five nine, and CH 4 was pure three nine.
[0058]
Example 1 In Table 2, a vanadium-based film (VN film / VCN film / VC film) having a total film thickness of about 6 μm was formed on the press surface of a mold having a vanadium-based film as a base material with X = 600 s. The base material was a die for press working (FIG. 3: 150 mmφ × 70 mmt) made of cold die steel (SKD11: HV650, same as HRC58.0 toughness evaluation).
[0059]
Example 2: In Example 1, the set pressure was 20 mtorr (26.6 Pa). Other conditions are the same as in Example 1.
[0060]
Example 3 In Example 1, a single-layer VC film having a thickness of about 6 μm was formed with X = 3000 s. Other conditions are the same as in Example 1.
[0061]
In Comparative Examples 1 and 2, a single-layer VC film and a single-layer TiC film each having a film thickness of about 6 μm are formed on the same base material as in Example 1 (press made by SKD11), based on the thermal CVD method and the TRD method. Film formation (film formation temperature: about 1000 ° C.) was performed on the molding die.
[0062]
And the test of the following item was done about the metal mold | die of each Example and comparative example obtained above.
[0063]
(1) Durability Evaluation Test With respect to Example 1 and Comparative Example 1, the number of moldings of a mold life (molding failure due to wear) until a defective product was generated was evaluated using a work material (SUS, 3 mmt).
[0064]
The mold life of Example 1 was 60,000, whereas Comparative Example 1 was about 40,000.
[0065]
At this time, the dimensional distortion of the mold was measured. In Example 1, the maximum was ± 40 μm, while the comparative example had an average number of 100 μm.
[0066]
(2) Friction coefficient evaluation / results For Examples 1 and 2, the dynamic friction coefficient was measured according to JIS K 7125. The results are Example 1: 0.197 and Example 2: 0.287, and it can be seen that the larger the amount of methane gas, the lower the dynamic friction coefficient.
[0067]
(3) Evaluation of film toughness / result Using the example “scratch tester” (trade name, manufactured by CSEM, Switzerland), evaluation was carried out according to the following methods / conditions.
[0068]
While pressing method ... diamond indenter (120 ° conical) in the coating (scratch while), will continuously increase the load to 0~100N, make generates a breakdown phenomenon of chipping and peeling the film. Normally, the occurrence of a fracture phenomenon is evaluated as a critical load value. However, since film toughness is reliable to be evaluated with a chipping start load, it was evaluated with a chipping start load. Here, “chipping” means chipping (missing) of the film. When the scratch test is performed, the coating is often broken in the order of scratch (scratching) → chipping → peeling with an increase in indenter load.
[0069]
Conditions: Indenter travel distance: 10 mm, same travel speed: 10 mm / min, same load speed: 1.67 N / s
The results are Example 1: 60N, Example 2: 45N, and Comparative Example 2: 30N, and each of the examples of the present invention, particularly Example 1 of the composite coating, has extremely high toughness (chipping resistance). I understand.
[Brief description of the drawings]
FIG. 1 is a model diagram showing an example of a vanadium-based composite coating in the present invention. FIG. 2 is a schematic model diagram showing an example of an ion plating apparatus used in the present invention. FIG. 3 is a base material used in a test example. Model perspective view of die steel mold [Explanation of symbols]
12 Substrate 14 VN film 16 VCN film 18 VC film 20 First interlayer coupling layer 22 Second interlayer coupling layer

Claims (12)

バナジウム系被膜をイオンプレーティングにより無機基材の表面に反応成膜させる方法において、
前記バナジウム系被膜が、基材側から順に配されたVN膜、VCN膜及びVC膜からなる複合被膜であって、
バナジウムを蒸発源とし、注入ガスを窒素ガス及び/又は炭化水素ガスとして注入ガス量・ガス比を膜種に対応させて調節維持することにより、前記バナジウム系被膜の各層をそれぞれ反応成膜させることを特徴とするバナジウム系被膜の成膜方法。
In a method of reactively forming a vanadium- based film on the surface of an inorganic substrate by ion plating ,
The vanadium-based coating is a composite coating composed of a VN film, a VCN film, and a VC film sequentially arranged from the substrate side,
Each layer of the vanadium-based coating is formed by reaction by using vanadium as an evaporation source and adjusting and maintaining the injection gas amount and gas ratio corresponding to the film type using nitrogen gas and / or hydrocarbon gas as the injection gas. A method for forming a vanadium-based film characterized by the above.
前記各層の反応成膜工程間の移行に際して、注入ガス量・ガス比を段階的又は連続的に変化させて各傾斜組成の層間結合層を反応成膜させることを特徴とする請求項1記載のバナジウム系被膜の成膜方法。In the transition between the reaction film forming process of the layers, the injection gas amount and gas ratio stepwise or continuously changing the characterized by reacting deposited interlayer coupling layer of the gradient composition in the claim 1, wherein A method for forming a vanadium-based film. 前記無機基材として鋼材を使用するとともに、成膜時の基板温度を400〜500℃に調節して行うことを特徴とする請求項1又は2記載のバナジウム系被膜の成膜方法。The method for forming a vanadium-based film according to claim 1 or 2, wherein a steel material is used as the inorganic base material, and the substrate temperature during film formation is adjusted to 400 to 500 ° C. バナジウム系被膜を無機基材の表面に備えた無機製品において、
前記バナジウム系被膜が、基材側から順に配されたVN膜、VCN膜及びVC膜からなる複合被膜であることを特徴とするバナジウム系被膜処理無機製品。
In inorganic products with vanadium-based coatings on the surface of inorganic substrates,
The vanadium-based coating- treated inorganic product , wherein the vanadium-based coating is a composite coating composed of a VN film, a VCN film, and a VC film sequentially arranged from the substrate side .
前記複合被膜の各層間に、さらに、傾斜組成の層間結合層が介在していることを特徴とする請求項4記載のバナジウム系被膜処理無機製品。5. The vanadium-based film-treated inorganic product according to claim 4, wherein an interlayer bonding layer having a gradient composition is further interposed between the layers of the composite film. 前記複合被膜の最外層硬度がビッカース硬度:HV3000以上であることを特徴とする請求項4又は5記載のバナジウム系被膜処理無機製品。6. The vanadium-based coated inorganic product according to claim 4 or 5, wherein the outermost layer hardness of the composite coating is Vickers hardness: HV3000 or more. 前記複合被膜において、膜厚比が、VN膜/VCN膜/VC膜=0.5/0.5/9〜3/3/4であり、合計膜厚2〜50μmであることを特徴とする請求項6記載のバナジウム系被膜処理無機製品。In the composite coating, the film thickness ratio is VN film / VCN film / VC film = 0.5 / 0.5 / 9 to 3/3/4, and the total film thickness is 2 to 50 μm. The inorganic product treated with vanadium film according to claim 6 . 前記無機基材が鋼材であることを特徴とする請求項6記載のバナジウム系被膜処理無機製品。The vanadium-based film-treated inorganic product according to claim 6, wherein the inorganic base material is a steel material. 前記無機基材が鋼材であることを特徴とする請求項7記載のバナジウム系被膜処理無機製品。The vanadium-based film- treated inorganic product according to claim 7, wherein the inorganic base material is a steel material. 適用製品が金属塑性加工用金型であることを特徴とする請求項8又は9記載のバナジウム系被膜処理無機製品。10. The vanadium-based film-treated inorganic product according to claim 8 or 9, wherein the applied product is a metal plastic working mold. 前記VC膜が炭素粒子(カーボン粒子)を含有することを特徴とする請求項7、8又は9記載のバナジウム系被膜処理無機製品。The vanadium-based coated inorganic product according to claim 7, 8 or 9, wherein the VC film contains carbon particles (carbon particles). 前記VC膜が炭素粒子(カーボン粒子)を含有することを特徴とする請求項10記載のバナジウム系被膜処理無機製品。The vanadium-based coated inorganic product according to claim 10, wherein the VC film contains carbon particles (carbon particles).
JP2001182363A 2001-06-15 2001-06-15 Vanadium-based coating film forming method and vanadium-based coating-treated inorganic product Expired - Lifetime JP3909658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001182363A JP3909658B2 (en) 2001-06-15 2001-06-15 Vanadium-based coating film forming method and vanadium-based coating-treated inorganic product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001182363A JP3909658B2 (en) 2001-06-15 2001-06-15 Vanadium-based coating film forming method and vanadium-based coating-treated inorganic product

Publications (2)

Publication Number Publication Date
JP2002371352A JP2002371352A (en) 2002-12-26
JP3909658B2 true JP3909658B2 (en) 2007-04-25

Family

ID=19022482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001182363A Expired - Lifetime JP3909658B2 (en) 2001-06-15 2001-06-15 Vanadium-based coating film forming method and vanadium-based coating-treated inorganic product

Country Status (1)

Country Link
JP (1) JP3909658B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513058B2 (en) * 2004-08-10 2010-07-28 日立金属株式会社 Casting parts
JP4557660B2 (en) * 2004-09-30 2010-10-06 株式会社東芝 Vanadium sputtering target and film forming method
JP4771223B2 (en) * 2006-09-27 2011-09-14 日立金属株式会社 Durable hard material coated mold for plastic working
EP1918421B1 (en) 2006-09-27 2017-03-15 Hitachi Metals, Ltd. Hard-material-coated member excellent in durability
KR20090063217A (en) 2006-12-25 2009-06-17 히타치 긴조쿠 가부시키가이샤 Hard coating film excellent in lubrication characteristics, process for formation thereof, and tool for the plastic working of metal
JP2009068047A (en) 2007-09-11 2009-04-02 Kobe Steel Ltd Hard coating film, material coated with hard coating film and die for cold plastic working
WO2009104273A1 (en) * 2008-02-22 2009-08-27 ユケン工業株式会社 Iron base alloy product with composite coating
JP5193153B2 (en) 2009-10-02 2013-05-08 株式会社神戸製鋼所 Hard coating, mold for plastic working, plastic working method, and target for hard coating
JP5392662B2 (en) * 2012-06-12 2014-01-22 株式会社不二越 Iron-based alloy punch tool coated with vanadium-containing coating
EP3372706A4 (en) * 2015-11-05 2019-07-03 Fujita Giken Co., Ltd. Coating member, surface coated mold, and film formation method
JP6478331B2 (en) * 2016-04-28 2019-03-06 日本コーテイングセンター株式会社 Hard vanadium composite coating tool
US11014814B2 (en) 2016-07-27 2021-05-25 Dowa Thermotech Co., Ltd. Vanadium nitride film, and member coated with vanadium nitride film and method for manufacturing the same
JP6928549B2 (en) 2016-12-28 2021-09-01 Dowaサーモテック株式会社 Vanadium nitride film, vanadium nitride film coating member and its manufacturing method
JP6963932B2 (en) * 2017-08-14 2021-11-10 Dowaサーモテック株式会社 Vanadium Nitride Silica Nitride Film, Vanadium Nitride Silica Nitride Membrane Coating Member and Its Manufacturing Method
WO2020261394A1 (en) * 2019-06-25 2020-12-30 日鉄テクノロジー株式会社 Method for estimating wear amount of wear member of charpy impact tester, method for estimating life of wear member, method for estimating required characteristics of wear member, and wear member of charpy impact tester

Also Published As

Publication number Publication date
JP2002371352A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
JP3909658B2 (en) Vanadium-based coating film forming method and vanadium-based coating-treated inorganic product
CN105624618B (en) TiAlSiZrN base composite coatings, the gradient ultra-fine cemented carbide cutter with the composite coating and preparation method thereof
US6599400B2 (en) Method for the manufacture of coatings and an article
US8017226B2 (en) Hard film-coated member and jig for molding
CN105603387B (en) Boron nitride system composite coating, the gradient ultra-fine cemented carbide cutter with the composite coating and preparation method thereof
JP5424103B2 (en) Covering mold for plastic working
Silva et al. Performance of carbide tools coated with DLC in the drilling of SAE 323 aluminum alloy
CN103084600A (en) Superhard TiN-TiSiN-CN multilayer alternate composite gradient coating carbide blade and preparation method thereof
JP2012097303A (en) Hard coating formed member and method for forming hard coating
CN111676449A (en) Cutter with multi-gradient coating and preparation method
CN111270202B (en) Component structure double-gradient functional coating for cutting tool and preparation method thereof
JPH07173608A (en) Wear resistant coated member
CN107034465A (en) Coating systems and the painting method for manufacturing coating systems
JP4827204B2 (en) Coated mold for plastic working and manufacturing method thereof
JP2012144766A (en) Coated member
CN106029940B (en) Hard coating film, method for forming same, and die for hot forming of steel sheet
JP2009034811A (en) Cemented carbide insert for parting, grooving and threading
WO2009104273A1 (en) Iron base alloy product with composite coating
CN107177825B (en) ZrNbC/ZrNbCN laminated coating cutter and its preparation process
CN105671496A (en) MoN/TiBN nano-composite laminated coating tool and manufacturing method thereof
JP4097074B2 (en) Method for forming chromium nitride film
JP3179645B2 (en) Wear resistant coating
Bisht et al. Nitrides ceramic coatings for tribological applications: A journey from binary to high-entropy compositions
CN112805109A (en) Cutting tool and method for manufacturing same
JP4138630B2 (en) Abrasion resistant hard coating

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R150 Certificate of patent or registration of utility model

Ref document number: 3909658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160202

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term