JP3909246B2 - PTFE resin laminate manufacturing method and PTFE resin laminate - Google Patents

PTFE resin laminate manufacturing method and PTFE resin laminate Download PDF

Info

Publication number
JP3909246B2
JP3909246B2 JP2002013176A JP2002013176A JP3909246B2 JP 3909246 B2 JP3909246 B2 JP 3909246B2 JP 2002013176 A JP2002013176 A JP 2002013176A JP 2002013176 A JP2002013176 A JP 2002013176A JP 3909246 B2 JP3909246 B2 JP 3909246B2
Authority
JP
Japan
Prior art keywords
ptfe resin
resin laminate
ptfe
laminate
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002013176A
Other languages
Japanese (ja)
Other versions
JP2003211616A (en
Inventor
隆 大矢部
統夫 片山
隆 古比谷
清一 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Risho Kogyo Co Ltd
Original Assignee
Risho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Risho Kogyo Co Ltd filed Critical Risho Kogyo Co Ltd
Priority to JP2002013176A priority Critical patent/JP3909246B2/en
Publication of JP2003211616A publication Critical patent/JP2003211616A/en
Application granted granted Critical
Publication of JP3909246B2 publication Critical patent/JP3909246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、弾性率が高く、熱膨張率の低い、高周波機器等に使用して好適なPTFE樹脂積層板を製造する方法に関するものである。
【0002】
【従来の技術】
フッ素樹脂は高分子化合物の中でも非常に特異的な性質をもった工業用高分子材料であり、様々な応用製品が市場に提供されている。
【0003】
特に、フッ素樹脂需要の7割を占める代表的なPTFE(ポリテトラフルオロエチレン)樹脂は融点327℃、誘電率2.1(1MHz)など、他のエンジニアプラスチックにはない特質を備えている。その具体的な特質としては、耐熱性、耐薬品性、耐溶剤性、耐湿性、低誘電特性、絶縁性、耐摩耗性、滑性、非粘着性、撥水性、耐候性、純度などに優れていることが挙げられる。
【0004】
これらの特質を生かした各種PTFE樹脂製品は、多岐にわたり、フィルム、シート、積層板、金属箔付き積層板、パイプ等のフッ素樹脂部品が多くの産業分野で使用されており、これに変わるような材料は他に見当たらない。
【0005】
特に、高周波機器に使用される積層板の分野においては、誘電特性の点で優れた銅張りPTFE樹脂積層板が主として用いられており、今後高度情報通信社会においてその需要は拡大するものと期待されている。
【0006】
しかしながら、フッ素樹脂は本質的に可撓性高分子鎖から成り、弾性率が低いという欠点を有している。このため、例えば薄い積層板はコシがなく、たわみ、反りが発生するなど、加工工程での取扱いを困難にしている。
【0007】
また、カシメが効かず特殊な工具・部品を使用してカシメを行う必要があるなど、製造工程が複雑になって、加工上の問題点が多い。
【0008】
他方、熱可塑性であるためにフッ素樹脂自身の熱膨張率が大きいという問題もあり、スルーホール信頼性が低く、熱履歴がかかる用途には使用できない。
【0009】
これらの問題に対してはいくつかの対策が公開されており、例えば無機フィラーなどの充填材の添加によってコンパウンド化し、補強する方法もとられているが、ドリル加工性や誘電特性の低下、不純物増加等の影響のほか、コストも上昇して十分な実用性能が得られない。
【0010】
また、フッ素樹脂そのものの弾性率を向上させるために、PTFE樹脂を無酸素下327℃直上の高温で電子線を照射することによりPTFE分子間を共有結合で架橋し、強度や弾性率を高める方法も報告されているが、無酸素高温条件は通常の積層板製造工程においては不利になる。
【0011】
したがって、高周波機器等に使用されるPTFE樹脂積層板は、一般に弾性率が低く、熱膨張率が高いという欠点を有している。
【0012】
【発明が解決しようとする課題】
そこで、この発明は、低誘電率、低誘電正接等の優れた電気特性を維持しつつ、加工性やスルーホール信頼性を向上させた、弾性率が高く、熱膨張率の低い、高周波機器等の用途に好適に使用することができるPTFE樹脂積層板を製造する方法を提供しようとするものである。
【0013】
【課題を解決するための手段】
前記課題を解決するために様々な検討を行った結果、この発明は、複数枚のPTFE樹脂プリプレグを積層して加熱・加圧して得られる積層板に、放射線を照射し、次いでアニーリング処理することによって、PTFE樹脂積層板の弾性率を増大させるとともに熱膨張率を低減させ、加工工程での取扱い性やドリル加工性及びスルーホール信頼性を改善することができることを見出したのである。
【0014】
即ち、非晶領域のPTFE分子鎖は、アニーリングによって熱運動が活発化し、近傍に結晶化領域があると一部は二次結晶化する。また、適量の電子線または、γ線等の照射により一部切断された非晶領域のPTFE分子鎖は運動しやすくなるため、近傍に結晶化領域があれば室温でも二次結晶化することができる。
【0015】
このように、アニーリングと放射線照射の併用により結晶と非晶の界面領域におけるPTFE分子の熱再結晶化を促進することができる。
【0016】
二次結晶化が進行することによりPTFE樹脂の結晶化度が高まり、全体として分子間力は増大する。その結果、外部応力や熱に対する分子運動が抑制され、弾性率の増大と熱膨張率の低減につながるものと考えられる。
【0017】
【発明の実施の形態】
以下、この発明の実施形態を説明する。
この発明で使用するPTFE樹脂プリプレグには、通常の方法で製造されたガラス繊維からなるガラス基材が用いられている。ガラス繊維としては、限定するものではないが、電気特性、加工性、コストを考慮すればEガラスの使用が好ましい。価格の点は別にして、その他にも絶縁用途で使用されるものとしてはQ、D、T、NEなどのガラス繊維を用いれば、より一層の誘電特性の向上が可能である。
【0018】
このようなガラス繊維を織布、または不織布の形態として用いる。織布には平織り、綾織、繻子織り、などがある。
【0019】
PTFE樹脂は、通常ディスパージョンと呼ばれる分散液として供給され、これにロール状に巻かれた前記ガラス布基材を連続的に繰り出して含浸させ、続く乾燥、焼成工程でガラス布基材にPTFE樹脂が固定される。この含浸工程は必要に応じて複数回繰り返すことにより均一でムラのないPTFE樹脂プリプレグを得ることができる。
【0020】
次に得られたPTFE樹脂プリプレグを所定のサイズにカットし必要に応じて1枚もしくは複数枚重ねあわせた後、これらの積層体を一般的には真空で300℃程度の温度で所定圧力下に、所定時間プレスしPTFE樹脂積層板を得る。プリント配線板用の場合は銅箔をPTFE樹脂プリプレグの外層に重ね合わせた後、同様に加熱加圧して銅張り積層板を得る。
【0021】
これらの工程において積層板の厚さは特に限定されるものではなく、また銅箔は片面のみ使用しても、あるいは使用しなくてもよい。
【0022】
また、プレスは前述のバッチ方式が一般的であるが、連続的にロールを用いた銅箔をラミネートする方法であったとしても何ら支障はない。
【0023】
さらに得られた銅張積層板の表面を所定の回路パターンにエッチングし、穴開け加工等を施した後、再びPTFE樹脂プリプレグと共に所定回数プレスして得られる多層板であっても一向に問題はない。
【0024】
この発明では、以上の方法で製造されたPTFE樹脂積層板に対し常温・常圧で所定線量の放射線を照射する。放射線はα線、β線、γ線、電子線、X線などを用いることができるが、α線、β線は透視力が弱く効率が劣るため、望ましくはγ線、電子線を用いる。この発明ではγ線を用いたが、放射線源を必要とせず線量のコントロールが比較的容易な電子線を使用する方が商業的にさらに好ましい。
【0025】
γ線照射量として吸収線量1〜500kGyの範囲を利用できるが、効率の点では10kGy以上が適当であり、また100kGyを越えるとPTFE樹脂の物性が低下することから10〜100kGyが好ましい。
【0026】
積層板単独でも複数枚を重ねあわせても照射可能であり、適宜最適条件を選択することができる。
【0027】
また、PTFE樹脂積層板にアニーリング処理することもこの発明の特徴である。
具体的にはPTFE樹脂積層板を空気中・常圧の条件下で一般に使用される加熱炉に入れてアニーリングする。
温度及び時間の組合せは特に限定されるものではないが、効率を考慮すれば250〜320℃で1〜5時間が好ましい。
【0028】
放射線照射とアニーリングは併用することにより目的とする効果を得ることができる。
【0029】
以上のように、PTFE樹脂積層板の製造に通常用いられる装置に、この発明の目的である弾性率増加及び熱膨張率低減の改質工程を併用することによって、改質PTFE樹脂積層板を容易に製造することができる。
【0030】
【実施例】
以下にこの発明の実施例を具体的に説明するが、この発明はこれに限定されるものではない。
【0031】
実施例
PTFE樹脂ディスパージョン(ポリフロン:ダイキン製)を0.05mm厚さの平織りガラス布(WE−05:日東紡製)に含浸、乾燥、焼成することを数回繰り返して、プリプレグを作成した。このプリプレグシートを所定寸法にカットしたものを19枚重ねた積層体を真空下で300℃程度の温度で加熱・加圧して1.6mm厚のPTFE樹脂積層板を得た。この積層板に50kGyに相当するγ線量を照射し、300℃×2時間のアニーリング処理を行った。
【0032】
比較例1
PTFE樹脂ディスパージョン(ポリフロン:ダイキン製)を0.05mm厚さの平織りガラス布(WE−05:日東紡製)に含浸、乾燥、焼成することを数回繰り返して、プリプレグを作成した。このプリプレグシートを所定寸法にカットしたものを19枚重ねた積層体を真空下で300℃程度の温度で加熱・加圧して1.6mm厚のPTFE樹脂積層板を得た。
【0033】
比較例2
50kGyに相当するγ線量を照射した以外は比較例1と同様に行った。
【0034】
比較例3
300℃×2時間のアニーリング処理を行うこと以外は比較例1と同様に行った。
実施例と比較例で得た試料について、曲げ弾性率及び熱膨張率を測定した。結果を表1に示す。
【0035】
【表1】

Figure 0003909246
【0036】
試験方法
曲げ弾性率:JIS規格K69115.17(熱硬化性プラスチック一般試験方法)に準拠して行った。
熱膨張率:リガク製TMA試験記を用いて、30℃〜260℃間厚さ方向の膨張を測定し、原厚に対する変化率で示した。
【0037】
【発明の効果】
以上のように、この発明によると、PTFE樹脂積層板に放射線を照射し、これをアニーリングすることによって曲げ弾性率を増大させるとともに熱膨張率を低減させることが可能となり、これにより従来高周波機器用に用いられているPTFE樹脂積層板の問題点である加工工程中の取扱い性やドリル加工性、さらにスルーホール信頼性を改善することが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a PTFE resin laminate suitable for use in high-frequency equipment or the like having a high elastic modulus and a low coefficient of thermal expansion.
[0002]
[Prior art]
A fluororesin is an industrial polymer material having very specific properties among polymer compounds, and various applied products are provided on the market.
[0003]
In particular, typical PTFE (polytetrafluoroethylene) resin, which accounts for 70% of the fluororesin demand, has characteristics that are not found in other engineering plastics, such as a melting point of 327 ° C. and a dielectric constant of 2.1 (1 MHz). Its specific characteristics are excellent in heat resistance, chemical resistance, solvent resistance, moisture resistance, low dielectric properties, insulation, abrasion resistance, slipperiness, non-adhesiveness, water repellency, weather resistance, purity, etc. It is mentioned.
[0004]
Various PTFE resin products that take advantage of these characteristics are diverse, and fluororesin parts such as films, sheets, laminates, laminates with metal foil, and pipes are used in many industrial fields. There are no other materials.
[0005]
In particular, in the field of laminates used in high-frequency equipment, copper-clad PTFE resin laminates that are superior in terms of dielectric properties are mainly used, and the demand is expected to expand in the advanced information and communications society in the future. ing.
[0006]
However, the fluororesin consists essentially of a flexible polymer chain and has the disadvantage that its elastic modulus is low. For this reason, for example, a thin laminated plate is not stiff, and it is difficult to handle in a processing step, such as bending and warping.
[0007]
In addition, the manufacturing process becomes complicated and there are many problems in processing, such as caulking does not work and it is necessary to perform caulking using special tools and parts.
[0008]
On the other hand, since it is thermoplastic, there is also a problem that the thermal expansion coefficient of the fluororesin itself is large, the through-hole reliability is low, and it cannot be used for applications where heat history is applied.
[0009]
Several countermeasures for these problems have been made public, for example, a method of compounding and reinforcing by adding a filler such as an inorganic filler is used. In addition to the increase, the cost is increased and sufficient practical performance cannot be obtained.
[0010]
Further, in order to improve the elastic modulus of the fluororesin itself, the PTFE resin is irradiated with an electron beam at a high temperature just above 327 ° C. in an oxygen-free manner to crosslink PTFE molecules covalently, thereby increasing the strength and elastic modulus However, the oxygen-free high temperature condition is disadvantageous in the normal laminate manufacturing process.
[0011]
Therefore, PTFE resin laminates used for high-frequency devices and the like generally have the disadvantages of low elastic modulus and high thermal expansion coefficient.
[0012]
[Problems to be solved by the invention]
Therefore, the present invention maintains high electrical properties such as low dielectric constant and low dielectric loss tangent, and improves workability and through-hole reliability, has high elastic modulus, low thermal expansion coefficient, high frequency equipment, etc. It is an object of the present invention to provide a method for producing a PTFE resin laminate that can be suitably used for the above applications.
[0013]
[Means for Solving the Problems]
As a result of various studies to solve the above-mentioned problems, the present invention irradiates a laminated board obtained by laminating a plurality of PTFE resin prepregs and heating and pressurizing them, followed by annealing treatment. Thus, it has been found that the elastic modulus of the PTFE resin laminate can be increased and the coefficient of thermal expansion can be reduced to improve the handleability, drilling workability and through-hole reliability in the working process.
[0014]
That is, the PTFE molecular chain in the amorphous region is activated in thermal motion by annealing, and a part thereof is secondarily crystallized if there is a crystallization region in the vicinity. In addition, since the PTFE molecular chain in the amorphous region partially cut by irradiation with an appropriate amount of electron beam or γ-ray becomes easy to move, secondary crystallization can be performed even at room temperature if there is a crystallization region in the vicinity. it can.
[0015]
Thus, the thermal recrystallization of PTFE molecules in the crystal / amorphous interface region can be promoted by the combined use of annealing and radiation irradiation.
[0016]
As the secondary crystallization proceeds, the degree of crystallinity of the PTFE resin increases, and the intermolecular force as a whole increases. As a result, it is considered that molecular motion against external stress and heat is suppressed, leading to an increase in elastic modulus and a decrease in thermal expansion coefficient.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
In the PTFE resin prepreg used in the present invention, a glass substrate made of glass fibers produced by a usual method is used. Although it does not limit as glass fiber, use of E glass is preferable if an electrical property, workability, and cost are considered. Aside from the price point, if glass fibers such as Q, D, T, NE, etc. are used for other insulating purposes, further improvement in dielectric properties can be achieved.
[0018]
Such glass fiber is used in the form of a woven fabric or a non-woven fabric. Woven fabrics include plain weave, twill weave, and satin weave.
[0019]
PTFE resin is usually supplied as a dispersion called dispersion, and the glass cloth base material wound in a roll shape is continuously drawn out and impregnated therein, followed by drying and baking processes. Is fixed. By repeating this impregnation step a plurality of times as necessary, a uniform and non-uniform PTFE resin prepreg can be obtained.
[0020]
Next, the obtained PTFE resin prepreg is cut into a predetermined size and, if necessary, one or a plurality of the prepregs are stacked, and these laminates are generally subjected to a vacuum at a temperature of about 300 ° C. under a predetermined pressure. And pressing for a predetermined time to obtain a PTFE resin laminate. In the case of a printed wiring board, a copper foil is laminated on the outer layer of the PTFE resin prepreg, and then heated and pressed in the same manner to obtain a copper-clad laminate.
[0021]
In these steps, the thickness of the laminate is not particularly limited, and the copper foil may be used only on one side or may not be used.
[0022]
Moreover, although the above-mentioned batch system is common as a press, even if it is a method of laminating a copper foil using a roll continuously, there is no problem.
[0023]
Furthermore, even if it is a multilayer board obtained by etching the surface of the obtained copper-clad laminate into a predetermined circuit pattern, performing drilling, etc. and then pressing again with a PTFE resin prepreg, there is no problem. .
[0024]
In this invention, the PTFE resin laminate produced by the above method is irradiated with a predetermined dose of radiation at normal temperature and pressure. As the radiation, α rays, β rays, γ rays, electron rays, X rays, and the like can be used. However, α rays and β rays have low visibility and are inefficient, so γ rays and electron beams are preferably used. Although gamma rays are used in this invention, it is more commercially preferred to use an electron beam that does not require a radiation source and whose dose control is relatively easy.
[0025]
A range of absorbed dose of 1 to 500 kGy can be used as the amount of γ-ray irradiation, but 10 kGy or more is appropriate in terms of efficiency, and if it exceeds 100 kGy, the physical properties of the PTFE resin are reduced, and 10 to 100 kGy is preferable.
[0026]
Irradiation can be performed by laminating alone or by laminating a plurality of sheets, and optimum conditions can be selected as appropriate.
[0027]
It is also a feature of the present invention that the PTFE resin laminate is annealed.
Specifically, the PTFE resin laminate is annealed in a heating furnace generally used in air and at normal pressure.
The combination of temperature and time is not particularly limited, but considering efficiency, it is preferably 1 to 5 hours at 250 to 320 ° C.
[0028]
By combining radiation irradiation and annealing, the intended effect can be obtained.
[0029]
As described above, the modified PTFE resin laminate can be easily obtained by using the apparatus normally used for the production of the PTFE resin laminate together with the modification step for increasing the elastic modulus and reducing the thermal expansion coefficient, which is the object of the present invention. Can be manufactured.
[0030]
【Example】
Examples of the present invention will be specifically described below, but the present invention is not limited thereto.
[0031]
Example A prepreg was prepared by impregnating, drying, and firing a PTFE resin dispersion (polyflon: manufactured by Daikin) in a 0.05 mm thick plain woven glass cloth (WE-05: manufactured by Nittobo) several times. A laminate in which 19 sheets of this prepreg sheet cut to a predetermined size were stacked and heated and pressurized at a temperature of about 300 ° C. under vacuum to obtain a 1.6 mm thick PTFE resin laminate. The laminated plate was irradiated with a γ dose corresponding to 50 kGy and subjected to an annealing treatment at 300 ° C. for 2 hours.
[0032]
Comparative Example 1
A prepreg was prepared by repeatedly impregnating a PTFE resin dispersion (polyflon: manufactured by Daikin) into a 0.05 mm-thick plain woven glass cloth (WE-05: manufactured by Nittobo) several times. A laminate in which 19 sheets of this prepreg sheet cut to a predetermined size were stacked and heated and pressurized at a temperature of about 300 ° C. under vacuum to obtain a 1.6 mm thick PTFE resin laminate.
[0033]
Comparative Example 2
It carried out like the comparative example 1 except having irradiated the gamma dose equivalent to 50 kGy.
[0034]
Comparative Example 3
The same procedure as in Comparative Example 1 was performed except that an annealing treatment at 300 ° C. × 2 hours was performed.
About the sample obtained by the Example and the comparative example, the bending elastic modulus and the thermal expansion coefficient were measured. The results are shown in Table 1.
[0035]
[Table 1]
Figure 0003909246
[0036]
Test method Flexural modulus: Measured according to JIS standard K69115.17 (General test method for thermosetting plastics).
Thermal expansion coefficient: Using Rigaku's TMA test report, the expansion in the thickness direction was measured between 30 ° C. and 260 ° C., and indicated by the rate of change relative to the original thickness.
[0037]
【The invention's effect】
As described above, according to the present invention, it is possible to increase the flexural modulus and reduce the coefficient of thermal expansion by irradiating the PTFE resin laminated plate with radiation and annealing it. It is possible to improve the handleability and drilling workability during the machining process, which is a problem of the PTFE resin laminate used in the manufacturing process, and the through-hole reliability.

Claims (4)

複数枚のPTFE樹脂プリプレグを積層して加熱・加圧して得られる積層板に放射線を照射し、次いでアニーリング処理するPTFE樹脂積層板の製造方法。A method for producing a PTFE resin laminate, comprising irradiating a laminate obtained by laminating a plurality of PTFE resin prepregs and heating and pressurizing them, followed by annealing treatment. 複数枚のPTFE樹脂プリプレグの外層に銅箔を積層する請求項1記載のPTFE樹脂積層板の製造方法。The method for producing a PTFE resin laminate according to claim 1, wherein a copper foil is laminated on the outer layer of the plurality of PTFE resin prepregs. 前記放射線として、γ線を使用する請求項1又は2に記載のPTFE樹脂積層板の製造方法。The method for producing a PTFE resin laminate according to claim 1, wherein γ rays are used as the radiation. 請求項1〜3の製造方法によって得られるPTFE樹脂積層板。The PTFE resin laminated board obtained by the manufacturing method of Claims 1-3.
JP2002013176A 2002-01-22 2002-01-22 PTFE resin laminate manufacturing method and PTFE resin laminate Expired - Lifetime JP3909246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002013176A JP3909246B2 (en) 2002-01-22 2002-01-22 PTFE resin laminate manufacturing method and PTFE resin laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002013176A JP3909246B2 (en) 2002-01-22 2002-01-22 PTFE resin laminate manufacturing method and PTFE resin laminate

Publications (2)

Publication Number Publication Date
JP2003211616A JP2003211616A (en) 2003-07-29
JP3909246B2 true JP3909246B2 (en) 2007-04-25

Family

ID=27650199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002013176A Expired - Lifetime JP3909246B2 (en) 2002-01-22 2002-01-22 PTFE resin laminate manufacturing method and PTFE resin laminate

Country Status (1)

Country Link
JP (1) JP3909246B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000030995A1 (en) * 2020-12-16 2022-06-16 Guarniflon S P A COMPOSITE MATERIAL, METHOD OF PREPARATION, AND USES

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244056A (en) * 2011-05-23 2012-12-10 Sumitomo Electric Fine Polymer Inc Method for manufacturing fluororesin substrate
KR101883677B1 (en) * 2011-05-23 2018-07-31 스미토모덴코파인폴리머 가부시키가이샤 High-frequency circuit substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000030995A1 (en) * 2020-12-16 2022-06-16 Guarniflon S P A COMPOSITE MATERIAL, METHOD OF PREPARATION, AND USES

Also Published As

Publication number Publication date
JP2003211616A (en) 2003-07-29

Similar Documents

Publication Publication Date Title
KR100722626B1 (en) Laminate for printed circuit board and preparing method thereof
KR101339537B1 (en) Fluoropolymer-glass fabric for circuit substrates
KR102635625B1 (en) Metal clad laminate and its manufacturing method
US8637151B2 (en) Interlayer dielectric film with carrier material and multilayer printed circuit board therewith
KR102141432B1 (en) Resin composition, prepreg, and laminate
JP3909246B2 (en) PTFE resin laminate manufacturing method and PTFE resin laminate
US5435877A (en) Process for the production of copper-clad laminate
JP3934510B2 (en) PTFE resin laminate manufacturing method and PTFE resin laminate
US6599619B1 (en) Microwave transparent thermosetting resin compositions, electrical laminates obtained therefrom, and process of producing these
US5639544A (en) Resin-impregnated fabric sheet
JP3806200B2 (en) Prepreg and laminate
JPH0732544A (en) Coppered laminate with paper base and its manufacture
JPS642136B2 (en)
JP2002348754A (en) Glass cloth, prepreg, laminated sheet, and printed wiring board
WO2019208402A1 (en) Layered plate, printed circuit board, multilayer printed circuit board, layered body, and layered plate production method
JP4238484B2 (en) Laminate production method
JP2002160317A (en) Method for manufacturing metal foil-clad laminate and metal foil-clad laminate
JP2021180257A (en) Method of manufacturing resin sheet and method of manufacturing metal-clad laminate
JPH05309782A (en) Production of copper clad laminated sheet
WO2000047655A1 (en) Microwave-transparent thermosetting resin compositions, electrical laminates obtained therefrom, and process of producing these
JPH03155936A (en) Manufacture of laminated sheet
JPH03126547A (en) Manufacture of laminated board
JP2004130593A (en) Method for manufacturing laminated sheet
JP2004106274A (en) Copper-clad laminated plate and its production method
JP2004237537A (en) Method for producing composite sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Ref document number: 3909246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term