JP3908913B2 - Vehicle battery pure resistance measuring method and apparatus - Google Patents

Vehicle battery pure resistance measuring method and apparatus Download PDF

Info

Publication number
JP3908913B2
JP3908913B2 JP2001048637A JP2001048637A JP3908913B2 JP 3908913 B2 JP3908913 B2 JP 3908913B2 JP 2001048637 A JP2001048637 A JP 2001048637A JP 2001048637 A JP2001048637 A JP 2001048637A JP 3908913 B2 JP3908913 B2 JP 3908913B2
Authority
JP
Japan
Prior art keywords
battery
pure resistance
discharge current
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001048637A
Other languages
Japanese (ja)
Other versions
JP2002249006A (en
Inventor
洋一 荒井
英明 蒲原
倫人 榎本
智博 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2001048637A priority Critical patent/JP3908913B2/en
Publication of JP2002249006A publication Critical patent/JP2002249006A/en
Application granted granted Critical
Publication of JP3908913B2 publication Critical patent/JP3908913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、車両の負荷に電力を供給するため車両に搭載されたバッテリの純抵抗を測定する車両用バッテリ測定方法及び装置に関するものである。
【0002】
【従来の技術】
一般に、バッテリから電流が放電されるとバッテリの端子電圧に降下を生じる。その電圧降下はバッテリの内部インピーダンス(合成抵抗)によるものであるが、バッテリの構造などに基因するIR損(純抵抗、すなわち、オーミック抵抗による電圧降下)と、化学的な反応に基因する分極抵抗成分(活性化分極、濃度分極)による電圧降下に分けることができる。電圧−電流(V−I)特性を求めた場合、IR損による電圧降下は、バッテリの状態が同じであれば変化しないが、分極抵抗成分による電圧降下は電流の大きさと電流の放電している時間によって変化する。よって、分極抵抗成分を含んだV−I特性から、バッテリの様々な状態を推定すると、不正確な推定結果となることがわかるので、分極抵抗成分を分離した純抵抗のみを測定する技術が必要とされる。
【0003】
また、バッテリは放電電流をカバーする充電を行うことによって、その充電容量の範囲内において繰り返し使用できることになっているが、過放電や電解液不足などの不測の事態を招いた場合は勿論のこと、これらの事態を招かなくても、長期間にわたって使用し経年変化が起こると、放電によって負荷に供給できる電力量である放電可能容量が急激に低下するようになる。このため、経年変化によって放電可能容量の低下している状態においては、充電を上回る放電がわずかな期間発生しても、エンジン停止後にスタータモータを起動してエンジンを再始動できなくなる事態を招きかねない。
【0004】
因みに、新品と経年変化の生じているバッテリとを比較した場合、新品に比べて経年変化の生じているバッテリでは、その純抵抗が大きくなることが知られている。そのため、車両の定期点検時などに、バッテリ交換の目安としてバッテリの純抵抗を測定することが考えられている。これは、純抵抗を知ることによって、純抵抗と分極抵抗成分との割合などを考慮し、劣化度を定めることができるからである。また、純抵抗が分かると、バッテリの開回路電圧を推定するためにも利用できる。
【0005】
従来、バッテリの純抵抗を測定するために一般に使用されている測定器では、バッテリが静的な状態にあるとき、すなわち、充放電により電解液に分極などの電圧上昇や電圧降下が生じていない平衡状態にあるときに、バッテリの純抵抗を測定している。(削除します。)
【0006】
その一例として、バッテリに1kHz〜100kHz程度の周波数の交流を印加して充放電を繰り返し、充電及び放電のいずれの分極も蓄積しない状況で、たとえば1μ秒程度の一定時間内に変化する電圧と電流の関係から純抵抗を求める方法がある。これは、図10に示すように、放電を止めた後、電圧が急激に回復し、その後に緩やかに回復する現象を捉え、一定時間Δt内の急激な電圧の回復が純抵抗Rによる成分のみにより生じ、その後の緩やかな変化は純抵抗を除く分極を含むその他の要素による成分(キャパシタンスおよびインダクタンス成分)により生じているとみなし、1kHz〜100kHz程度の周波数の交流の各印加サイクルの短い時間内における電圧と電流の変化を捉えて純抵抗を測定しようとするものである。
【0007】
【発明が解決しようとする課題】
しかしながら、車両に搭載したバッテリを対象として用いる場合には、静的な状態は限られた場合にしか存在せず、車両が使用状態にあるときには適用することができない。
【0008】
また、上述した例の場合、短時間内に電圧Vおよび電流Iのデータを収集する必要から、非常に周期の短いサンプリングを行ってA/D変換を行うことを一定時間Δt内に行わなければならず、単独で使用する測定器として実現できるものの、車両に搭載して使用することは非常に難しい。しかも、求めるΔV/ΔIが精度のよいものとなるためには、ΔV、ΔIの各々が大きな値を示さなければならないが、車両では限られた場合にしかこのようなものは測定できない。さらに、車両動作中に任意の交流をバッテリに印加することができない。したがって、上述した例の方法は、車両使用中のバッテリの純抵抗を測定するために適用できないという現実がある。
【0009】
よって、本発明は上述した状況に鑑み、車両使用中でもバッテリの純抵抗を測定できる車両用バッテリ純抵抗測定方法及び装置を提供することを課題としている。
【0010】
【課題を解決するための手段】
前記目的を達成する請求項1乃至請求項3記載の本発明は、車両用バッテリ純抵抗測定方法に関するものであり、請求項4乃至請求項6記載の本発明は、車両用バッテリ純抵抗測定装置に関するものである。
【0011】
上記課題を解決するためなされた請求項1記載の発明は、車両の負荷に電力を供給するため車両に搭載されたバッテリの純抵抗を測定する車両用バッテリ純抵抗測定方法において、前記負荷に所定値を越えて単調増大し最大値から所定値以下に単調減少する放電電流が流れたときの前記バッテリの端子電圧と放電電流とを周期的に測定してこれら端子電圧と放電電流との相関を示す前記増大する放電電流に対する電圧−電流特性の第1の近似二次曲線式と前記減少する放電電流に対する電圧−電流特性の第2の近似二次曲線式とを求めると共に、該求めた2つの近似二次曲線式をそれぞれ微分して前記増大する放電電流及び前記減少する放電電流に対して前記バッテリが呈する合成抵抗の変化を示す2つの直線式を求め、該求めた2つの直線式の前記最大値に対応する2つの値の間に前記バッテリの呈する合成抵抗中の純抵抗があるとして純抵抗を測定することを特徴とする車両用バッテリ純抵抗測定方法に存する。
【0012】
上述した請求項1記載の手順によれば、車両の負荷にバッテリから電力が供給され、車両の負荷に所定値を越えて単調増大し最大値から所定値以下に単調減少する放電電流が流れたときのバッテリの端子電圧と放電電流とを周期的に測定してこれら端子電圧と放電電流との相関を示す増大する放電電流に対する電圧−電流特性の第1の近似曲線式と減少する放電電流に対する電圧−電流特性の第2の近似曲線式とを求める。
【0013】
次に、求めた2つの近似二次曲線式をそれぞれ微分して前記増大する放電電流及び前記減少する放電電流に対して前記バッテリが呈する合成抵抗の変化を示す2つの直線式を求める。
【0014】
その後、求めた2つの直線式の最大値に対応する2つの値の間にバッテリの呈する合成抵抗中の純抵抗の値があるとして純抵抗を測定している。このように測定した抵抗値は他の方法で実測した抵抗とも良く一致し、このことは、他の方法で実測した抵抗のみによる電圧−電流特性の傾きが、最大値の点を境に、一方の増大する放電電流に対する電圧−電流特性の最大値における接線の傾きよりも小さく、他方の減少する放電電流に対する電圧−電流特性の最大値における接線の傾きが大きくなることからも理解できる。したがって、車両の通常の使用状態で負荷に電力を供給したときのバッテリの端子電圧と放電電流とを測定し、この測定の結果得られるデータを処理するだけで、バッテリの純抵抗を測定することができる。
【0015】
請求項2記載の発明は、請求項1記載の車両用バッテリ純抵抗測定方法において、前記2つの値の中間点の値を前記純抵抗として測定することを特徴とする車両用バッテリ純抵抗測定方法に存する。
【0016】
上述した請求項2記載の手順によれば、2つの値の中間点の値を純抵抗として測定しているので、例えば、2つの値を加算して求めた値に1/2を乗する簡単な演算によって純抵抗を測定することができる。
【0017】
請求項3記載の発明は、請求項1または2記載の車両用バッテリ純抵抗測定方法において、前記第1の近似曲線式と前記第2の近似曲線式とを求めるに当たって、周期的に測定した前記バッテリの端子電圧と放電電流とを最新の所定時間分収集して格納、記憶しておくことを特徴とする車両用バッテリ純抵抗測定方法に存する。
【0018】
上述した請求項3記載の手順によれば、第1の近似曲線式と第2の近似曲線式とを求めるに当たって、周期的に測定した前記バッテリの端子電圧と放電電流とを最新の所定時間分収集して格納、記憶しているので、この記憶した実データを用いて、第1の近似曲線式と第2の近似曲線式とを求めるに必要な放電電流が流れたことを確認してから、記憶してある実データを用いて第1の近似曲線式と第2の近似曲線式とを求めることができる。
【0019】
上記課題を解決するためなされた請求項4記載の発明は、図1の基本構成図に示す如く、車両の負荷に電力を供給するため車両に搭載されたバッテリの純抵抗を測定する車両用バッテリ純抵抗測定装置において、前記負荷に所定値を越えて単調増大し最大値から所定値以下に単調減少する放電電流が流れたときの前記バッテリの端子電圧と放電電流とを周期的に測定する電圧・電流測定手段23a−1と、該電圧・電流測定手段によって測定した端子電圧と放電電流との相関を示す前記増大する放電電流に対する電圧−電流特性の第1の近似曲線式と前記減少する放電電流に対する電圧−電流特性の第2の近似曲線式とを求める近似曲線式算出手段23a−2と、該近似曲線式算出手段により求めた前記2つの近似二次曲線式をそれぞれ微分して前記増大する放電電流及び前記減少する放電電流に対して前記バッテリが呈する合成抵抗の変化を示す2つの直線式を求め、該求めた2つの直線式の前記最大値に対応する2つの値を求める演算手段23a−3と、該演算手段によって求めた前記2つの値の間に前記バッテリの呈する合成抵抗中の純抵抗があるとして純抵抗を測定することを特徴とする車両用バッテリ純抵抗測定装置に存する。
【0020】
上述した請求項4記載の構成によれば、バッテリから車両の負荷に電力を供給して負荷に所定値を越えて単調増大し最大値から所定値以下に単調減少する放電電流が流れたときのバッテリの端子電圧と放電電流とを電圧・電流測定手段23a−1が周期的に測定する。電圧・電流測定手段によって測定した端子電圧と放電電流との相関を示す増大する放電電流に対する電圧−電流特性の第1の近似曲線式と減少する放電電流に対する電圧−電流特性の第2の近似曲線式とを近似曲線式算出手段23a−2が求める。
【0021】
バッテリの純抵抗として測定するに当たって、演算手段23a−3が、まず、近似曲線式算出手段により求めた前記2つの近似二次曲線式をそれぞれ微分して前記増大する放電電流及び前記減少する放電電流に対して前記バッテリが呈する合成抵抗の変化を示す2つの直線式を求める。次に、求めた2つの直線式の放電電流の最大値に対応する2つの値を求める。そして、求めた2つの値を加算して求めた値に1/2を乗じて純抵抗を測定する。このように測定した抵抗値は他の方法で実測した抵抗とも良く一致し、このことは、他の方法で実測した抵抗のみによる電圧−電流特性の傾きが、最大値の点を境に、一方の増大する放電電流に対する電圧−電流特性の最大値における接線の傾きよりも小さく、他方の減少する放電電流に対する電圧−電流特性の最大値における接線の傾きが大きくなることからも理解できる。したがって、車両の通常の使用状態で負荷に電力を供給したときのバッテリの端子電圧と放電電流とを測定し、この測定の結果得られるデータを処理するだけで、バッテリの純抵抗を測定することができる。
【0022】
請求項5記載の発明は、請求項4記載の車両用バッテリ純抵抗測定装置において、前記2つの値の中間点の値を前記純抵抗として測定することを特徴とする車両用バッテリ純抵抗測定装置に存する。
【0023】
上述した請求項5記載の構成によれば、2つの値の中間点の値を前記純抵抗として測定しているので、例えば、2つの値を加算して求めた値に1/2を乗する簡単な演算によって純抵抗を測定することができる。
【0024】
請求項6記載の発明は、請求項4又は5記載の車両用バッテリ純抵抗測定装置において、前記近似曲線式算出手段は、前記第1の近似曲線式と前記第2の近似曲線式を求めるために、前記電圧・電流測定手段により周期的に測定した前記バッテリの端子電圧と放電電流とを、最新の所定時間分収集して格納、記憶する記憶手段23bを有することを特徴とする車両用バッテリ純抵抗測定装置に存する。
【0025】
上述した請求項6記載の構成によれば、記憶手段23bが、第1の近似曲線式と第2の近似曲線式を求めるために、電圧・電流測定手段により周期的に測定したバッテリの端子電圧と放電電流とを、最新の所定時間分収集して格納、記憶しているので、この記憶した実データを用いて、第1の近似曲線式と第2の近似曲線式とを求めるに必要な放電電流が流れたことを確認してから、記憶してある実データを用いて第1の近似曲線式と前記第2の近似曲線式とを求めることができる。
【0026】
【発明の実施の形態】
以下、本発明による車両用バッテリ純抵抗測定方法を、本発明による車両用バッテリ純抵抗測定装置と共に、図面を参照して説明するが、その前に、バッテリそのものの特性について検討する。
【0027】
因みに、12V車、42V車、EV車、HEV車には、スタータモータ、モータジェネレータ、走行用モータなどの大電流を必要とする負荷を搭載されており、これらの負荷に電力を供給するバッテリの電圧−電流(V−I)特性の例は、図3及び図4に示すようになる。
【0028】
従来、V−I特性は図3に示すように、1次式V=aI+bで近似する方式が一般に行われてきたが、図5に示す分極抵抗成分の非直線形の特性の影響により、1次式では高い相関を有する式を得ることは難しいことがわかった。そこで、本発明では、図4に示すように、V=aI2 +bI+cなる2次式の近似曲線式を最小二乗法によって得ることによって、高い相関を有する近似式を用いるようにする。
【0029】
上述したような大電流を必要とする負荷を駆動したとき、1回の放電によって、所定値を越えて単調増大し100Aの最大値から所定値以下に単調減少する放電電流が流れる。このときのバッテリの端子電圧と放電電流とを周期的に測定してこれら端子電圧と放電電流との相関を示す実データに基づいて、図6のグラフ中に示すように、放電が開始され増加方向に向かう増大する放電電流に対するV−I特性の第1の近似曲線式M1と、電流が最大に達しその後減少方向に向かう減少する放電電流に対するV−I特性の第2の近似曲線式M2の2つの式が得られる。なお、図6中に記載の式は実データによって得られた具体的な近似曲線式の一例である。これらの2つの近似曲線式M1と近似曲線式M2との違いを以下分析する。
【0030】
一方の近似曲線式M1の場合、放電開始時点での分極抵抗成分を基準にすると、放電が開始し電流が増加すると、分極抵抗成分は徐々に増加していく。その後、電流が最大値になったところで、分極抵抗成分がピークに達し、電流の減少に伴って分極が解消していくはずである。しかし、実際には、電流の減少に比例して分極抵抗成分は解消するのではなく反応が遅れて現れるため、近似曲線式M2の場合、増加方向と同じV−I特性を示さず、増加方向よりも大きな電圧降下を発生させることになり、電流の増加と減少時にそれぞれ対応する2つの二次の近似曲線式M1及びM2が得られることになる。
【0031】
上述したV−I特性の2つの二次の近似曲線式M1及びM2を用いて、バッテリの純抵抗Rを測定する方法を、図7及び図8を参照して、以下具体的に説明する。
【0032】
ところで、2つの二次の近似曲線式M1及びM2で表される2つの近似曲線によれば、任意の放電電流の値に対する端子電圧の値はその電流値におけるバッテリの合成抵抗の値によって決定される。また、近似曲線上の任意の点における放電電流の単位変化ΔI当たりの端子電圧の変化ΔVは、その点における近似曲線式M1及びM2の変化率、すなわち、その点におけるバッテリの合成抵抗の値によって決定され、近似曲線式M1及びM2の接線の傾きによって表される。一般に、二次曲線の任意の点の接線は、曲線を表す二次曲線式を微分して得た一次式によって表され、接線の傾きは、求めた一次式に代入される任意の点の合成抵抗の値を反映した値となっている。
【0033】
具体的には、バッテリの合成抵抗Rは、常時一定値を保っている純抵抗成分と放電電流の大きさと放電時間によって変化する分極抵抗成分とから成っているが、純抵抗成分は接線の傾きを決定する要素の一部ではあるが、接線の傾きを変化させる要素としては働かず、接線の傾きを変化させているのは専ら単位電流変化当たりの分極(電圧降下)の変化、すなわち分極抵抗成分である。ところで、バッテリの任意の点の電流値に対応する合成抵抗の値は、2つの二次の近似曲線式M1及びM2をそれぞれ微分(ΔV1/ΔI、ΔV2/ΔI)して得た2つの一次の直線式に任意の点の電流値を代入することによって、2つ求められる。すなわち、バッテリは、増大する放電電流による分極の変化と、減少する放電電流による分極の変化とが異なるため、電流が増大する放電時と減少する放電時で異なる合成抵抗値を呈する。
【0034】
更に具体的には、近似曲線式M1及びM2を、それぞれ、V1=a1I2 +b1I+c1及びV2=a2I2 +b2I+c2とすると、これらの近似曲線式M1及びM2を微分してΔV1/ΔI=2a1I+b1=R1及びΔV2/ΔI=2a2I+b2=R2なる一次式が得られる。そして、任意の点における合成抵抗R1及びR2は、上述のように、求めた一次の直線式に任意の点の電流値を代入することによって求められる。
【0035】
実データに基づいて得られた図6中に記載の具体的な2つの近似曲線式M1=0.00003I2 −0.01979I+12.03243とM2=0.00004I2 −0.01830I+11.72026の場合、これらを微分することによって、M1′=0.00006I−0.01979=R1(I)とM2′=0.00008I−0.018301=R2(I)なる2つの一次式が得られる。この電流に対して変化する抵抗を表す2つの電流−抵抗特性直線をグラフで表すと、図7に示すようになる。図7に示す2つの直線は、電流に対するバッテリの合成抵抗の変化を示すものであり、合成抵抗中の純抵抗成分は電流に対して常に一定値を保っているので、合成抵抗の変化の全ては、単位電流の変化に対する合成抵抗中の分極抵抗成分、すなわちの単位電流変化当たりの分極(電圧降下)の変化量によるものであることが理解できる。
【0036】
2つの二次の近似曲線式M1及びM2とこれらを微分して得た2つの一次式を参照して更に検討すると、式M1及びM2にて表される近似曲線が交わる放電電流の最大値Ip(=100A)における点は特異点である。この点での実データは同一の値であるにもかかわらず、この点における接線の傾き、すなわち、2つの一次式R1(I)及びR2(I)中の一次の項Iに100(A)を代入して得た2つの値R1(100)及びR2(100)に違いがある。これは一方が電流が増大する放電時の近似曲線式、他方が電流が減少する放電時の近似曲線式によるものであり、分極の発生の仕方が異なっているから当然のことであり、図8に示すような傾斜の異なる2つの接線が得られる。この違いを生じさせている原因の全ては特異点を境に放電電流が増加から減少に切り替わり、分極の変化の仕方に変化が生じた結果であり、これらの2点間に電流によって変化しない一定の純抵抗の値が存在することが想像される。このことは、各種のバッテリについて実測した純抵抗による電圧−電流特性の傾きが、2つの近似曲線について得られる特異点における接線の2つの傾きの中間の値を示すという経験とも一致している。
【0037】
図7のグラフ中に示した純抵抗の点Rと合成抵抗の変化との関係についてさらに分析すると、増大する放電電流に対するV−I特性の第1の近似曲線式M1を微分して得た直線式M1′は、放電電流が最大値に向かって増大するに従って、単位電流増当たりの分極(電圧降下)の変化量が徐々に低下し、単位電流変化当たりの電圧変化を決定する分極抵抗成分が徐々に小さくなることによって、合成抵抗が徐々に小さくなっている。しかし、特異点に至った後も、分極を増加し電圧降下を増大させようとするバッテリ内の動作は停止しないため、特異点での見かけ上の合成抵抗の値は、純抵抗の値よりも大きなもととなっている。よって、増大する放電電流に対するV−I特性の第1の近似曲線式M1を微分して得た直線式M1′の最大値での値、すなわち合成抵抗の値は純抵抗の値よりも大きな値となる。
【0038】
上述のような分極を増加し電圧降下を増大させようとするバッテリ内の動作は放電電流が減少に切り替わってもしばらく継続する。このため、放電電流が減少して純抵抗による電圧降下の減少があっても、分極による電圧降下分の増加があるため、見かけ上、純抵抗のみによる電圧増加よりも小さな電圧変化しか生じない。合成抵抗としては、純抵抗よりも小さい値を呈することになる。しかし、放電電流の減少が続き、ある電流値になると、分極の増加が停止し、減少に転じるようになり、分極による電圧降下に変化が生じなくなったとき、合成抵抗の値、すなわち接線の傾きは純抵抗のみの値と等しくなる。
【0039】
さらに放電電流の減少が進み、ある値以下に低下した後は、分極の解消の速度が徐々に速まって電流の減少に対する電圧変化が純抵抗によるよりも大きなり、結果として、合成抵抗の値が電流が減少するに従って増大するようになる。
【0040】
以上のことから明らかなように、特異点である放電電流の最大値の点での増大する放電電流に対するV−I特性の接線の傾きは純抵抗のみの傾きよりも大きく、減少する放電電流に対するV−I特性の接線の傾きは純抵抗のみの傾きよりも小さくなる。このことからバッテリの純抵抗は、特異点における傾きの大きさを示す2点の値の間に存在することがわかる。したがって、純抵抗は2つの二次の近似曲線式M1及びM2を微分して求めた2つの一次式に放電電流の最大値を代入して求めた2つの値の間に存在する値として測定することができる。具体的には、2つの値R1及びR2の中間点の値を、2つの点の値R1(Ip)及びR2(Ip)を加算して2で割って求めることによって、純抵抗Rとして測定できる。
【0041】
そこで、車両用バッテリ純抵抗測定方法を図7乃至図9を参照して先ず説明する。車両の負荷に電力を供給するため車両に搭載された、例えばスタータモータ、モータジェネレータ、走行用モータなどの大電流を必要とする負荷が動作されると、バッテリからは所定値を越えて単調増大し最大値から所定値以下に単調減少する放電電流が流れる。このときのバッテリの端子電圧と放電電流とを、例えば1msの周期にてサンプリングすることで、周期的に測定することによって、バッテリの端子電圧と放電電流との組が多数得られる。
【0042】
このようにして得られたバッテリの端子電圧と放電電流との組の最新のものを、所定時間分、例えばRAMなどの書換可能な記憶手段としてのメモリに格納、記憶して収集する。メモリに格納、記憶して収集した端子電圧と放電電流との組を用いて、最小二乗法により、端子電圧と放電電流との相関を示す増大する放電電流に対する電圧−電流特性の例えばV1(I)=a1I2 +b1+c1なる2次式で表される第1の近似曲線式M1と、減少する放電電流に対する電圧−電流特性の例えばV2(I)=a2I2 +b2I+c2なる2次式で表される第2の近似曲線式M2とを求める。
【0043】
次に、第1の近似曲線式M1によって表される電圧−電流特性曲線上と、第2の近似曲線式M2によって表される電圧−電流特性曲線上の任意の点における接線を求めるため、第1の近似曲線式M1と第2の近似曲線式M2とをそれぞれ微分して一次の直線式M1′及びM2′をそれぞれ求める。この一次の直線式に任意の点の電流値を代入することによって、その任意の点における近似曲線式の接線の傾き、すなわち、第1の近似曲線式M1と第2の近似曲線式M2によって表される電圧−電流特性曲線上の任意の点におけるバッテリの合成抵抗を求めることができる。特に、2つの電圧−電流特性曲線上の放電電流の最大値の点の接線の傾きを求めるため、第1の近似曲線式M1及び第2の近似曲線式M2をそれぞれ微分して求めた一次の直線式M1′=R1及びM2′=R2に最大値の値、例えば100Aを代入する。その後、上述のようにして求めた2つの近似曲線式M1及びM2の最大値における2つの接線の傾きを加算して2で割る演算を行うことによって、2つの接線の傾きの間の中間値を、電流によって変化しないバッテリの合成抵抗中の純抵抗Rとして測定することができる。
【0044】
上述したようなことを可能にして本発明の車両用バッテリ純抵抗測定方法を実施する装置の具体的な実施の形態を、図面に戻って以下説明する。
【0045】
図2は本発明の車両用バッテリ純抵抗測定方法を適用した本発明の一実施形態に係る車両用バッテリ純抵抗測定装置の概略構成を一部ブロックにて示す説明図であり、図中符号1で示す本実施形態の車両用バッテリ純抵抗測定装置は、エンジン3に加えてモータジェネレータ5を有するハイブリッド車両に搭載されている。
【0046】
そして、このハイブリッド車両は、通常時はエンジン3の出力のみをドライブシャフト7からディファレンシャルケース9を介して車輪11に伝達して走行させ、高負荷時には、バッテリ13からの電力によりモータジェネレータ5をモータとして機能させて、エンジン3の出力に加えてモータジェネレータ5の出力をドライブシャフト7から車輪11に伝達し、アシスト走行を行わせるように構成されている。
【0047】
また、このハイブリッド車両は、減速時や制動時にモータジェネレータ5をジェネレータ(発電機)として機能させ、運動エネルギを電気エネルギに変換してバッテリ13を充電させるように構成されている。
【0048】
なお、モータジェネレータ5はさらに、図示しないスタータスイッチのオンに伴うエンジン3の始動時に、エンジン3のフライホイールを強制的に回転させるセルモータとして用いられるが、その場合にモータジェネレータ5には、短時間に大きな電流が流される。スタータスイッチのオンによりモータジェネレータ5によってエンジン3が始動されると、イグニッションキー(図示せず。)の操作解除に伴って、スタータスイッチがオフになってイグニッションスイッチやアクセサリスイッチのオン状態に移行し、これに伴ってバッテリ13から流れる放電電流は、定常電流に移行する。
【0049】
話を構成の説明に戻すと、本実施形態の車両用バッテリ純抵抗測定装置1は、アシスト走行用のモータやセルモータとして機能するモータジェネレータ5等、電装品に対するバッテリ13の放電電流Iや、ジェネレータとして機能するモータジェネレータ5からのバッテリ13に対する充電電流を検出する電流センサ15と、バッテリ13に並列接続した無限大抵抗を有し、バッテリ13の端子電圧Vを検出する電圧センサ17とを備えている。
【0050】
また、本実施形態の車両用バッテリ純抵抗測定装置1は、上述した電流センサ15及び電圧センサ17の出力がインタフェース回路(以下、「I/F」と略記する。)21におけるA/D変換後に取り込まれるマイクロコンピュータ(以下、「マイコン」と略記する。)23をさらに備えている。
【0051】
そして、前記マイコン23は、CPU23a、RAM23b、及び、ROM23cを有しており、このうち、CPU23aには、RAM23b及びROM23cの他、前記I/F21が接続されており、また、上述した図示しないスタータスイッチ、イグニッションスイッチやアクセサリスイッチ、モータジェネレータ5以外の電装品(負荷)のスイッチ等が、さらに接続されている。
【0052】
前記RAM23bは、各種データ記憶用のデータエリア及び各種処理作業に用いるワークエリアを有しており、前記ROM23cには、CPU23aに各種処理動作を行わせるための制御プログラムが格納されている。
【0053】
なお、上述した電流センサ15及び電圧センサ17の出力である電流値及び電圧値は、短い周期で高速にサンプリングされてI/F21を介して、マイコン23のCPU23aに取り込まれ、取り込まれた電流値及び電圧値は前記RAM23bのデータエリア(記憶手段に相当する)に所定期間前のものから最新のものまでの分、格納、記憶される。この記憶された実データは、バッテリの電圧−電流特性の2次の近似曲線式を求めるために利用される。
【0054】
次に、前記ROM23cに格納された制御プログラムに従いCPU23aが行う処理を、図9を参照して説明する。
【0055】
バッテリ13からの給電を受けてマイコン23が起動しプログラムがスタートすると、CPU23aは、まず初期設定を実行する(ステップS1)。
【0056】
ステップS1の初期設定が済んだならば、次に、CPU23aは、電流センサ15の検出したバッテリ13の放電電流Iと電圧センサ17の検出したバッテリ13の端子電圧VとのA/D変換値を対にしてI/F21を介して読み込み、読み込んだ実データの最新のものを、所定時間分、RAM23bのデータエリアに格納、記憶して収集する実データ収集処理を実行する(ステップS2)。このステップS2における実データ収集処理は常に継続的に行われる。
【0057】
続いて、ステップS2において収集された放電電流Iと端子電圧Vとの最新の所定時間分の実データは分析され、最小二乗法を適用して、電圧−電流特性の2次の近似曲線式を求めるのに適当なものであるかどうかが判定される。すなわち、バッテリから所定値を越えて単調増大し最大値から所定値以下に単調減少する放電電流が流れているかどうかを分析する分析処理を行う(ステップS3)。
【0058】
ステップS3における分析の結果、電圧−電流特性の2次の近似曲線式を求めるのに適当なものが収集されているとき(ステップS4のY)、増大する放電電流に対する電圧−電流特性のV1(I)=a1I2 +b1+C1なる2次式で表される第1の近似曲線式M1と、減少する放電電流に対する電圧−電流特性の例えばV2(I)=a2I2 +b2I+C2なる2次式で表される第2の近似曲線式M2とを求める近似曲線式算出処理を実行する(ステップS5)。
【0059】
ステップS5の近似曲線式算出処理によって、2つの近似曲線式M1及びM2が求まった後、次に、バッテリの純抵抗を求めるための演算処理を実行する(ステップS6)。ステップS6における演算処理では、増大する放電電流に対する電圧−電流特性のV1(I)=a1I2 +b1+c1なる2次式で表される第1の近似曲線式M1と、減少する放電電流に対する電圧−電流特性の例えばV2(I)=a2I2 +b2I+c2なる2次式で表される第2の近似曲線式M2とをそれぞれ微分して2つの一次の直線式を求める。
【0060】
ステップS6における演算処理では、さらに、求めた2つの一次の直線式近に最大値を代入して最大値における2つの接線の傾きを求める。そして、ステップS6において求めた2つの接線の傾きを加算平均し、この値をバッテリの純抵抗として測定し、この測定した純抵抗は種々の目的で使用するため、RAM23bのデータエリアに格納されて記憶される(ステップS7)。ステップS7の測定処理が終了したら、次にステップS4の判定がYとなって、ステップS5の近似曲線式算出処理、ステップS6の演算処理を実行する機会がくるまで、ステップS2の収集処理とステップS3の分析処理とを繰り返し実行する。
【0061】
また、本実施形態の車両用バッテリ純抵抗測定装置1ではフローチャートにおけるステップS2が請求項中の電圧・電流測定手段に対する処理となっており、ステップS5が請求項中の近似曲線算出手段に対応する処理となっており、ステップS6が請求項中の演算手段に対応する処理となっている。
【0062】
次に、上述のように構成された本実施形態の車両用バッテリ純抵抗測定装置1の動作(作用)について説明する。
【0063】
まず、ハイブリッド車両のモータジェネレータ5以外の電装品(負荷)が作動したり、モータジェネレータ5がモータとして機能するように作動していて、それに伴いバッテリ13が放電を行っている状態では、負荷に所定値を越えて単調増大し最大値から所定値以下に単調減少する放電電流が流れたときのバッテリの端子電圧と放電電流とが周期的に測定される。
【0064】
また、本実施形態の車両用バッテリ純抵抗測定装置1では、周期的に測定された最新のものが、所定時間分、RAM23bのデータエリアに格納、記憶して収集され、収集された放電電流Iと端子電圧Vとの最新の所定時間分の実データは分析され、最小二乗法を適用して、電圧−電流特性の2次の近似曲線式を求めるのに適当なものであるかどうかが判定される。すなわち、バッテリから所定値を越えて単調増大し最大値から所定値以下に単調減少する放電電流が流れているかどうかが分析される。
【0065】
このため、電圧−電流特性の2次の近似曲線式を求めるのに適当なものが収集されるまで、近似曲線式算出処理が行われることがなく、近似曲線式算出処理も、過去に収集した所定時間分の実データを用いて行わればよいので、端子電圧と放電電流との周期的な測定に同期して処理を行わなくてもよく、早い処理速度が求められない。
【0066】
【発明の効果】
以上説明したように、請求項1又は4記載の発明によれば、車両の通常の使用状態で負荷に電力を供給したときのバッテリの端子電圧と放電電流とを測定し、この測定の結果得られるデータを処理して、増大する放電電流に対する電圧−電流特性の第1の近似曲線式と減少する放電電流に対する電圧−電流特性の第2の近似曲線式とを求め、求めた2つの直線式の最大値に対応する2つの値の間にバッテリの呈する合成抵抗中の純抵抗があるとして純抵抗を測定しているので、バッテリを通常状態で使用している際、すなわち、車両使用中でもバッテリの純抵抗を測定できる車両用バッテリ純抵抗測定方法及び装置を提供することができる。
【0067】
上述した請求項2又は5記載の発明によれば、純抵抗を測定するために2点間の傾斜を求めるための少なくとも一方が実データに基づくものとなり、実際から大きく外れた点を使用することをなくすることができるので、純抵抗の測定精度を安定したもに保つことのできる車両用バッテリ純抵抗測定方法及び装置を提供することができる。
【0068】
上述した請求項3又は6記載の発明によれば、記憶した実データを用いて、第1の近似曲線式と第2の近似曲線式とを求めるに必要な放電電流が流れたことを確認してから、記憶してある実データを用いて第1の近似曲線式と第2の近似曲線式とを求めることができるので、無駄な処理を省くとともに、リアルタイムな高速処理を行うことなく純抵抗を測定することのできる車両用バッテリ純抵抗測定方法及び装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の車両用バッテリ純抵抗測定装置の基本構成を示すブロック図である。
【図2】本発明の車両用バッテリ純抵抗測定方法を適用した本発明の一実施形態に係る車両用バッテリ純抵抗測定装置の概略構成を一部ブロックにて示す説明図である。
【図3】1次近似式で表したV−I特性の一例を示すグラフである。
【図4】2次近似式で表したV−I特性の一例を示すグラフである。
【図5】電流に対する分極の変化の一例を示すグラフである。
【図6】1回の放電によって得られる2つの2次の近似曲線式で表される近似特性曲線の一例を示すグラフである。
【図7】図6に示した2つの近似特性曲線上の任意の点における接線の傾きを示すグラフである。
【図8】図6の2つの近似特性曲線に対して曲線上の放電電流が最大値となる点における接線を書き込んだグラフである。
【図9】図2中のマイコンが純抵抗測定のため予め定めたプログラムに従って行う処理を示すフローチャートである。
【図10】従来のバッテリの純抵抗の測定の仕方を説明するためのグラフである。
【符号の説明】
23a−1 電圧・電流測定手段(CPU)
23a−2 近似曲線式算出手段(CPU)
23a−3 演算手段(CPU)
23b 記憶手段(RAM)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle battery measuring method and apparatus for measuring a pure resistance of a battery mounted on a vehicle in order to supply electric power to a vehicle load.
[0002]
[Prior art]
Generally, when current is discharged from a battery, a drop occurs in the terminal voltage of the battery. The voltage drop is due to the internal impedance (synthetic resistance) of the battery, but IR loss (pure resistance, ie, voltage drop due to ohmic resistance) due to the structure of the battery and polarization resistance due to chemical reaction. It can be divided into voltage drops due to components (activation polarization, concentration polarization). When the voltage-current (V-I) characteristics are obtained, the voltage drop due to IR loss does not change if the battery state is the same, but the voltage drop due to the polarization resistance component is a current magnitude and a current discharge. Varies with time. Therefore, since it is understood that estimating various states of the battery from the VI characteristics including the polarization resistance component results in an inaccurate estimation result, a technique for measuring only the pure resistance separated from the polarization resistance component is necessary. It is said.
[0003]
In addition, the battery can be used repeatedly within the range of its charge capacity by charging the battery to cover the discharge current, but of course in the event of unforeseen circumstances such as overdischarge or insufficient electrolyte. Even if these situations do not occur, the dischargeable capacity, which is the amount of power that can be supplied to the load by discharge, rapidly decreases when used over a long period of time and changes over time. For this reason, in a state where the dischargeable capacity is reduced due to secular change, even if a discharge exceeding the charging occurs for a short period of time, it may cause a situation that the engine cannot be restarted by starting the starter motor after the engine stops. Absent.
[0004]
Incidentally, it is known that when a new product is compared with a battery that has changed over time, the net resistance of the battery that has changed over time compared to a new product is increased. Therefore, it is considered to measure the pure resistance of the battery as a guide for battery replacement at the time of periodic inspection of the vehicle. This is because by knowing the pure resistance, the degree of deterioration can be determined in consideration of the ratio between the pure resistance and the polarization resistance component. If the pure resistance is known, it can also be used to estimate the open circuit voltage of the battery.
[0005]
Conventionally, in a measuring instrument generally used for measuring the pure resistance of a battery, when the battery is in a static state, that is, there is no voltage rise or voltage drop such as polarization in the electrolyte due to charging and discharging. When in equilibrium, the battery's pure resistance is measured. (Delete.)
[0006]
As an example, a voltage and current that change within a certain period of time, for example, about 1 μs, in a state in which alternating current having a frequency of about 1 kHz to 100 kHz is applied to the battery to repeatedly charge and discharge, and neither polarization of charge nor discharge accumulates. There is a method for obtaining the pure resistance from the relationship. As shown in FIG. 10, the phenomenon is that the voltage recovers rapidly after the discharge is stopped, and then recovers slowly, and then the rapid voltage recovery within a certain time Δt is only the component due to the pure resistance R. The subsequent gradual change is considered to be caused by components (capacitance and inductance components) including other elements including polarization other than pure resistance, and within a short time of each application cycle of alternating current with a frequency of about 1 kHz to 100 kHz. It is intended to measure pure resistance by capturing changes in voltage and current.
[0007]
[Problems to be solved by the invention]
However, when a battery mounted on a vehicle is used as a target, the static state exists only in a limited case and cannot be applied when the vehicle is in use.
[0008]
In the case of the above-described example, since data of voltage V and current I need to be collected within a short time, it is necessary to perform sampling with a very short period and perform A / D conversion within a certain time Δt. However, although it can be realized as a measuring instrument used alone, it is very difficult to use it mounted on a vehicle. Moreover, in order for ΔV / ΔI to be obtained to be accurate, each of ΔV and ΔI must show a large value, but such a thing can be measured only in a limited case in a vehicle. Furthermore, any alternating current cannot be applied to the battery during vehicle operation. Therefore, there is a reality that the method of the above-described example cannot be applied to measure the pure resistance of the battery during use of the vehicle.
[0009]
Therefore, in view of the situation described above, the present invention has an object to provide a vehicle battery pure resistance measuring method and apparatus capable of measuring the pure resistance of a battery even when the vehicle is in use.
[0010]
[Means for Solving the Problems]
The present invention according to claims 1 to 3 that achieves the above object relates to a vehicle battery pure resistance measuring method, and the present invention according to claims 4 to 6 relates to a vehicle battery pure resistance measuring apparatus. It is about.
[0011]
In order to solve the above-mentioned problem, the invention according to claim 1 is a vehicle battery pure resistance measuring method for measuring a pure resistance of a battery mounted on a vehicle for supplying electric power to the vehicle load. The terminal voltage and discharge current of the battery are periodically measured when a discharge current that monotonously exceeds the value and monotonously decreases from the maximum value to a predetermined value or less flows, and the correlation between the terminal voltage and the discharge current is determined. A first approximate quadratic curve expression of the voltage-current characteristic for the increasing discharge current and a second approximate quadratic curve expression of the voltage-current characteristic for the decreasing discharge current are obtained, and the two obtained Differentiating approximate quadratic curve equations to obtain two linear equations indicating changes in the combined resistance exhibited by the battery with respect to the increasing discharge current and the decreasing discharge current, and the two obtained straight lines Lies of the vehicle battery pure resistance measuring method and measuring the net resistance as there is a pure resistance in the combined resistance exhibited by the battery between two values corresponding to the maximum value.
[0012]
According to the above-described procedure of claim 1, electric power is supplied to the vehicle load from the battery, and a discharge current that monotonously increases beyond a predetermined value and monotonously decreases from the maximum value to a predetermined value or less flows to the vehicle load. A first approximate curve equation of voltage-current characteristics for an increasing discharge current and a decreasing discharge current for periodically measuring the terminal voltage and discharge current of the battery and indicating a correlation between the terminal voltage and the discharge current A second approximate curve formula of voltage-current characteristics is obtained.
[0013]
Next, the two approximate quadratic curve equations obtained are differentiated to obtain two linear equations indicating changes in the combined resistance exhibited by the battery with respect to the increasing discharge current and the decreasing discharge current.
[0014]
Thereafter, the pure resistance is measured by assuming that there is a value of the pure resistance in the combined resistance exhibited by the battery between the two values corresponding to the maximum values of the two obtained linear expressions. The resistance value measured in this way agrees well with the resistance measured by another method, which means that the slope of the voltage-current characteristic due to only the resistance measured by the other method is limited to the maximum value. It can also be understood from the fact that the slope of the tangent at the maximum value of the voltage-current characteristic for the decreasing discharge current is smaller than the slope of the tangent at the maximum value of the voltage-current characteristic for the increasing discharge current. Therefore, measuring the battery terminal voltage and discharge current when power is supplied to the load in the normal use state of the vehicle, and processing the data obtained as a result of this measurement, the pure resistance of the battery is measured Can do.
[0015]
According to a second aspect of the present invention, in the vehicle battery pure resistance measuring method according to the first aspect, a value of an intermediate point between the two values is measured as the pure resistance. Exist.
[0016]
According to the above-described procedure according to the second aspect, since the value at the midpoint between the two values is measured as a pure resistance, for example, the value obtained by adding the two values is simply multiplied by ½. Pure resistance can be measured by simple calculation.
[0017]
According to a third aspect of the present invention, in the vehicle battery pure resistance measuring method according to the first or second aspect, the first and second approximate curve equations are periodically measured to obtain the first approximate curve equation and the second approximate curve equation. The battery terminal resistance and the discharge current are collected for the latest predetermined time, stored, and stored.
[0018]
According to the above-described procedure according to the third aspect, when the first approximate curve equation and the second approximate curve equation are obtained, the terminal voltage and the discharge current of the battery measured periodically are obtained for the latest predetermined time. Since it is collected, stored, and stored, it is confirmed that the discharge current necessary for obtaining the first approximate curve equation and the second approximate curve equation has flowed using the stored actual data. The first approximate curve equation and the second approximate curve equation can be obtained using the stored actual data.
[0019]
In order to solve the above-mentioned problem, the invention according to claim 4 is a vehicle battery for measuring a pure resistance of a battery mounted on a vehicle for supplying electric power to a vehicle load as shown in a basic configuration diagram of FIG. In the pure resistance measuring device, a voltage that periodically measures the terminal voltage and the discharge current of the battery when a discharge current that monotonously increases beyond a predetermined value and monotonously decreases from a maximum value to a predetermined value or less flows to the load. Current measuring means 23a-1, a first approximate curve expression of voltage-current characteristics with respect to the increasing discharge current showing the correlation between the terminal voltage measured by the voltage / current measuring means and the discharge current, and the decreasing discharge Approximate curve equation calculating means 23a-2 for obtaining a second approximate curve equation of voltage-current characteristics with respect to current, and differentiating the two approximate quadratic curve equations obtained by the approximate curve equation calculator, respectively. Two linear expressions indicating changes in the combined resistance exhibited by the battery with respect to the increasing discharge current and the decreasing discharge current are obtained, and two values corresponding to the maximum values of the two obtained linear expressions are obtained. Pure battery resistance measurement for vehicles, characterized in that pure resistance is measured assuming that there is a pure resistance in the combined resistance exhibited by the battery between the obtained computing means 23a-3 and the two values obtained by the computing means Exists in the device.
[0020]
According to the configuration of the above-described fourth aspect, when electric power is supplied from the battery to the load of the vehicle and the discharge current that monotonously increases beyond the predetermined value and monotonously decreases from the maximum value to the predetermined value flows to the load. The voltage / current measuring means 23a-1 periodically measures the terminal voltage and discharge current of the battery. A first approximate curve formula of voltage-current characteristics for increasing discharge current and a second approximate curve of voltage-current characteristics for decreasing discharge current showing a correlation between the terminal voltage measured by the voltage / current measuring means and the discharge current The approximate curve equation calculating means 23a-2 obtains the equation.
[0021]
In measuring as the pure resistance of the battery, the calculating means 23a-3 first differentiates the two approximate quadratic curve expressions obtained by the approximate curve expression calculating means, respectively, to increase and decrease the discharge current. , Two linear expressions indicating the change in the combined resistance exhibited by the battery are obtained. Next, two values corresponding to the maximum values of the calculated two linear discharge currents are obtained. Then, the pure resistance is measured by multiplying the value obtained by adding the two obtained values by 1/2. The resistance value measured in this way agrees well with the resistance measured by another method, which means that the slope of the voltage-current characteristic due to only the resistance measured by the other method is limited to the maximum value. It can also be understood from the fact that the slope of the tangent at the maximum value of the voltage-current characteristic for the decreasing discharge current is smaller than the slope of the tangent at the maximum value of the voltage-current characteristic for the increasing discharge current. Therefore, measuring the battery terminal voltage and discharge current when power is supplied to the load in the normal use state of the vehicle, and processing the data obtained as a result of this measurement, the pure resistance of the battery is measured Can do.
[0022]
According to a fifth aspect of the present invention, in the vehicular battery pure resistance measuring apparatus according to the fourth aspect, a vehicular battery pure resistance measuring apparatus is characterized in that a value at an intermediate point between the two values is measured as the pure resistance. Exist.
[0023]
According to the configuration of the fifth aspect described above, since the value of the midpoint between two values is measured as the pure resistance, for example, the value obtained by adding the two values is multiplied by ½. Pure resistance can be measured by simple calculation.
[0024]
According to a sixth aspect of the present invention, in the vehicle battery pure resistance measuring device according to the fourth or fifth aspect, the approximate curve equation calculating means obtains the first approximate curve equation and the second approximate curve equation. And a storage means 23b for collecting, storing and storing the terminal voltage and discharge current of the battery periodically measured by the voltage / current measurement means for the latest predetermined time. It exists in a pure resistance measuring device.
[0025]
According to the configuration of the sixth aspect described above, the battery terminal voltage measured periodically by the voltage / current measuring unit by the storage unit 23b in order to obtain the first approximate curve equation and the second approximate curve equation. And the discharge current are collected, stored and stored for the latest predetermined time, and are necessary to obtain the first approximate curve equation and the second approximate curve equation using the stored actual data. After confirming that the discharge current has flowed, the first approximate curve equation and the second approximate curve equation can be obtained using the stored actual data.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a vehicle battery pure resistance measuring method according to the present invention will be described together with a vehicle battery pure resistance measuring apparatus according to the present invention with reference to the drawings. Before that, characteristics of the battery itself will be examined.
[0027]
Incidentally, 12V, 42V, EV, and HEV vehicles are equipped with loads that require a large current, such as starter motors, motor generators, and traveling motors, and batteries that supply electric power to these loads are installed. Examples of voltage-current (V-I) characteristics are as shown in FIGS.
[0028]
Conventionally, as shown in FIG. 3, the VI characteristic is generally approximated by a linear expression V = aI + b. However, due to the influence of the nonlinear characteristic of the polarization resistance component shown in FIG. It was found that it is difficult to obtain an equation having a high correlation with the following equation. Therefore, in the present invention, as shown in FIG. 4, V = aI 2 An approximate expression having a high correlation is used by obtaining an approximate curve expression of a quadratic expression of + bI + c by the least square method.
[0029]
When a load that requires a large current as described above is driven, a discharge current that monotonously increases beyond a predetermined value and monotonously decreases from a maximum value of 100 A to a predetermined value or less by one discharge flows. At this time, the battery terminal voltage and the discharge current are periodically measured, and based on the actual data indicating the correlation between the terminal voltage and the discharge current, as shown in the graph of FIG. The first approximate curve formula M1 of the VI characteristic for the increasing discharge current in the direction and the second approximate curve formula M2 of the VI characteristic for the decreasing discharge current in the decreasing direction after the current reaches the maximum. Two equations are obtained. Note that the equations described in FIG. 6 are examples of specific approximate curve equations obtained from actual data. The difference between these two approximate curve formulas M1 and M2 will be analyzed below.
[0030]
In the case of one approximate curve equation M1, the polarization resistance component gradually increases as the discharge starts and the current increases with reference to the polarization resistance component at the start of discharge. Thereafter, when the current reaches the maximum value, the polarization resistance component reaches a peak, and the polarization should be eliminated as the current decreases. However, in reality, the polarization resistance component does not disappear in proportion to the decrease in the current, but the response appears with a delay, so the approximate curve equation M2 does not show the same VI characteristic as the increasing direction, and the increasing direction. A larger voltage drop is generated, and two quadratic approximate curve equations M1 and M2 corresponding to the increase and decrease of the current respectively are obtained.
[0031]
A method of measuring the pure resistance R of the battery using the above-described two quadratic approximate curve equations M1 and M2 of the VI characteristic will be specifically described below with reference to FIGS.
[0032]
By the way, according to the two approximate curves represented by the two quadratic approximate curve equations M1 and M2, the value of the terminal voltage with respect to an arbitrary discharge current value is determined by the value of the combined resistance of the battery at the current value. The Further, the change ΔV of the terminal voltage per unit change ΔI of the discharge current at an arbitrary point on the approximate curve depends on the rate of change of the approximate curve equations M1 and M2 at that point, that is, the value of the combined resistance of the battery at that point. And is represented by the slope of the tangent of approximate curve equations M1 and M2. In general, the tangent of an arbitrary point of a quadratic curve is represented by a linear expression obtained by differentiating a quadratic curve expression representing the curve, and the slope of the tangent is a composition of an arbitrary point that is substituted into the obtained linear expression. The value reflects the resistance value.
[0033]
Specifically, the combined resistance R of the battery is composed of a pure resistance component that always maintains a constant value and a polarization resistance component that varies depending on the magnitude of the discharge current and the discharge time. Is not part of the element that changes the slope of the tangent, but it changes the polarization (voltage drop) per unit current change, that is, the polarization resistance. It is an ingredient. By the way, the value of the combined resistance corresponding to the current value at an arbitrary point of the battery is obtained by differentiating two first-order approximate curve equations M1 and M2 (ΔV1 / ΔI, ΔV2 / ΔI), respectively. Two values are obtained by substituting the current value at an arbitrary point into the linear equation. That is, since the change in the polarization due to the increasing discharge current is different from the change in the polarization due to the decreasing discharge current, the battery exhibits different combined resistance values when the current increases and decreases.
[0034]
More specifically, the approximate curve equations M1 and M2 are expressed as V1 = a1I, respectively. 2 + B1I + c1 and V2 = a2I 2 Assuming + b2I + c2, these approximate curve formulas M1 and M2 are differentiated to obtain a linear expression of ΔV1 / ΔI = 2a1I + b1 = R1 and ΔV2 / ΔI = 2a2I + b2 = R2. Then, the combined resistances R1 and R2 at an arbitrary point can be obtained by substituting the current value at an arbitrary point into the obtained linear linear equation as described above.
[0035]
Two specific approximate curve formulas M1 = 0.00003I described in FIG. 6 obtained based on actual data 2 −0.01979I + 12.03243 and M2 = 0.00004I 2 In the case of −0.01830I + 11.772026, by differentiating them, two of M1 ′ = 0.00006I−0.01979 = R1 (I) and M2 ′ = 0.00008I−0.018301 = R2 (I) A linear equation is obtained. Two current-resistance characteristic lines representing resistances that change with respect to this current are shown in a graph as shown in FIG. The two straight lines shown in FIG. 7 indicate changes in the combined resistance of the battery with respect to the current. Since the pure resistance component in the combined resistance always maintains a constant value with respect to the current, all the changes in the combined resistance are shown. It can be understood that this is due to the amount of change in polarization (voltage drop) per unit current change, that is, the polarization resistance component in the combined resistance with respect to the change in unit current.
[0036]
Further examination with reference to the two quadratic approximate curve equations M1 and M2 and the two linear equations obtained by differentiating them, the maximum value Ip of the discharge current at which the approximate curves represented by the equations M1 and M2 intersect. The point at (= 100A) is a singular point. Despite the fact that the actual data at this point is the same value, the slope of the tangent at this point, ie, 100 (A) in the first order term I in the two linear expressions R1 (I) and R2 (I). There is a difference between two values R1 (100) and R2 (100) obtained by substituting. This is due to the fact that one of them is based on the approximate curve equation at the time of discharge in which the current increases, and the other is based on the approximate curve equation at the time of discharge in which the current decreases, and it is natural that the manner of occurrence of polarization differs. Two tangents having different inclinations are obtained as shown in FIG. All of the causes that cause this difference are the result of the change in the way the polarization changes due to the change in the discharge current from the increase to the decrease at the singular point, and a constant that does not change with the current between these two points. It is imagined that there exists a value of pure resistance. This is consistent with the experience that the slope of the voltage-current characteristic due to the pure resistance measured for various batteries shows an intermediate value between the two slopes of the tangent at the singular points obtained for the two approximate curves.
[0037]
When the relationship between the pure resistance point R and the change in the combined resistance shown in the graph of FIG. 7 is further analyzed, a straight line obtained by differentiating the first approximate curve formula M1 of the VI characteristic with respect to the increasing discharge current. As the discharge current increases toward the maximum value, the amount of change in polarization (voltage drop) per unit current increase gradually decreases, and the polarization resistance component that determines the voltage change per unit current change By gradually decreasing, the combined resistance gradually decreases. However, even after reaching the singular point, the operation in the battery that increases the polarization and increases the voltage drop does not stop, so the apparent combined resistance value at the singular point is higher than the pure resistance value. It is a big source. Therefore, the maximum value of the linear equation M1 ′ obtained by differentiating the first approximate curve equation M1 of the VI characteristic with respect to the increasing discharge current, that is, the value of the combined resistance is larger than the value of the pure resistance. It becomes.
[0038]
The operation in the battery that increases the polarization and increases the voltage drop as described above continues for a while even when the discharge current is switched to decrease. For this reason, even if there is a decrease in the voltage drop due to the pure resistance due to a decrease in the discharge current, there is an increase in the voltage drop due to the polarization. As the combined resistance, a value smaller than the pure resistance is exhibited. However, when the discharge current continues to decrease and reaches a certain current value, the increase in polarization stops and begins to decrease, and when the voltage drop due to polarization no longer changes, the value of the combined resistance, that is, the slope of the tangent line Is equal to the value of pure resistance only.
[0039]
When the discharge current further decreases and drops below a certain value, the rate of depolarization gradually increases, and the voltage change with respect to the current decrease is larger than that due to the pure resistance. Increases as the current decreases.
[0040]
As is apparent from the above, the slope of the tangential line of the VI characteristic with respect to the increasing discharge current at the point of the maximum value of the discharge current which is a singular point is larger than the slope of the pure resistance alone, The slope of the tangent line of the VI characteristic is smaller than the slope of pure resistance alone. From this, it can be seen that the pure resistance of the battery exists between two values indicating the magnitude of the slope at the singular point. Therefore, the pure resistance is measured as a value existing between the two values obtained by substituting the maximum value of the discharge current into the two primary equations obtained by differentiating the two quadratic approximate curve equations M1 and M2. be able to. Specifically, the value of the midpoint between the two values R1 and R2 can be measured as the pure resistance R by finding the sum of the values R1 (Ip) and R2 (Ip) of the two points and dividing by 2. .
[0041]
Accordingly, a vehicle battery pure resistance measuring method will first be described with reference to FIGS. When a load that requires a large current, such as a starter motor, motor generator, or traveling motor, is installed in the vehicle to supply power to the vehicle load, the battery monotonously increases beyond a predetermined value. However, a discharge current that monotonously decreases from the maximum value to a predetermined value or less flows. By sampling the terminal voltage and discharge current of the battery at this time, for example, at a period of 1 ms, many pairs of the terminal voltage and discharge current of the battery are obtained by periodically measuring.
[0042]
The latest set of battery terminal voltage and discharge current obtained in this manner is stored, stored and collected in a memory as a rewritable storage means such as a RAM for a predetermined time. For example, V1 (I) of the voltage-current characteristic with respect to the increasing discharge current indicating the correlation between the terminal voltage and the discharge current by the least square method using the set of the terminal voltage and the discharge current stored, stored and collected in the memory. ) = A1I 2 The first approximate curve equation M1 expressed by a quadratic equation of + b1 + c1 and the voltage-current characteristic with respect to the decreasing discharge current, for example, V2 (I) = a2I 2 A second approximate curve equation M2 represented by a quadratic equation + b2I + c2 is obtained.
[0043]
Next, in order to obtain a tangent at any point on the voltage-current characteristic curve represented by the first approximate curve equation M1 and on the voltage-current characteristic curve represented by the second approximate curve equation M2, The first approximate curve formula M1 and the second approximate curve formula M2 are differentiated to obtain primary linear formulas M1 'and M2', respectively. By substituting the current value at an arbitrary point into this linear equation, the slope of the tangent of the approximate curve equation at the arbitrary point, that is, the first approximate curve equation M1 and the second approximate curve equation M2 is used. The combined resistance of the battery at any point on the voltage-current characteristic curve can be obtained. In particular, in order to obtain the slope of the tangent of the point of the maximum value of the discharge current on the two voltage-current characteristic curves, the first approximation curve equation M1 and the first approximation curve equation M2 obtained by differentiating each are obtained. A maximum value, for example, 100 A is substituted into the linear equations M1 ′ = R1 and M2 ′ = R2. Thereafter, by adding the slopes of the two tangents at the maximum values of the two approximate curve equations M1 and M2 obtained as described above and dividing the result by 2, the intermediate value between the slopes of the two tangents is obtained. It can be measured as the pure resistance R in the combined resistance of the battery that does not change with current.
[0044]
A specific embodiment of the apparatus that enables the above-described method for measuring the net resistance of a vehicle battery according to the present invention will be described below with reference to the drawings.
[0045]
FIG. 2 is an explanatory diagram partially showing a schematic configuration of a vehicle battery pure resistance measuring apparatus according to an embodiment of the present invention to which the vehicle battery pure resistance measuring method of the present invention is applied. The vehicle battery pure resistance measuring device of this embodiment shown in FIG. 1 is mounted on a hybrid vehicle having a motor generator 5 in addition to the engine 3.
[0046]
In this hybrid vehicle, normally, only the output of the engine 3 is transmitted from the drive shaft 7 to the wheels 11 through the differential case 9 and travels. When the load is high, the motor generator 5 is driven by the electric power from the battery 13. In addition to the output of the engine 3, the output of the motor generator 5 is transmitted from the drive shaft 7 to the wheels 11 to perform assist traveling.
[0047]
In addition, this hybrid vehicle is configured to cause the motor generator 5 to function as a generator (generator) during deceleration or braking and to convert the kinetic energy into electric energy to charge the battery 13.
[0048]
The motor generator 5 is further used as a cell motor that forcibly rotates the flywheel of the engine 3 when the engine 3 is started when a starter switch (not shown) is turned on. A large current is passed through. When the engine 3 is started by the motor generator 5 by turning on the starter switch, the starter switch is turned off and the ignition switch and the accessory switch are turned on with the release of the operation of an ignition key (not shown). Accordingly, the discharge current flowing from the battery 13 shifts to a steady current.
[0049]
Returning to the description of the configuration, the vehicular battery pure resistance measuring apparatus 1 according to the present embodiment is configured such that the discharge current I of the battery 13 with respect to the electrical components such as the motor generator 5 functioning as an assist running motor or a cell motor, and the generator A current sensor 15 for detecting a charging current for the battery 13 from the motor generator 5, and a voltage sensor 17 having an infinite resistance connected in parallel to the battery 13 and detecting the terminal voltage V of the battery 13. Yes.
[0050]
Further, in the vehicle battery pure resistance measuring apparatus 1 of the present embodiment, the outputs of the current sensor 15 and the voltage sensor 17 described above are after A / D conversion in the interface circuit (hereinafter abbreviated as “I / F”) 21. A microcomputer (hereinafter abbreviated as “microcomputer”) 23 is further provided.
[0051]
The microcomputer 23 includes a CPU 23a, a RAM 23b, and a ROM 23c. Among these, the CPU 23a is connected to the I / F 21 in addition to the RAM 23b and the ROM 23c. A switch, an ignition switch, an accessory switch, a switch of an electrical component (load) other than the motor generator 5 are further connected.
[0052]
The RAM 23b has a data area for storing various data and a work area used for various processing operations, and the ROM 23c stores a control program for causing the CPU 23a to perform various processing operations.
[0053]
Note that the current values and voltage values that are the outputs of the current sensor 15 and the voltage sensor 17 described above are sampled at high speed in a short cycle, and are taken into the CPU 23a of the microcomputer 23 via the I / F 21. The voltage value is stored and stored in the data area of the RAM 23b (corresponding to the storage means) from the previous one to the latest one. The stored actual data is used to obtain a quadratic approximate curve expression of the voltage-current characteristic of the battery.
[0054]
Next, processing performed by the CPU 23a according to the control program stored in the ROM 23c will be described with reference to FIG.
[0055]
When the microcomputer 23 is activated to receive power from the battery 13 and the program is started, the CPU 23a first performs initial setting (step S1).
[0056]
When the initial setting in step S1 is completed, the CPU 23a then calculates an A / D conversion value between the discharge current I of the battery 13 detected by the current sensor 15 and the terminal voltage V of the battery 13 detected by the voltage sensor 17. A real data collection process is executed in which the latest actual data read is stored in the data area of the RAM 23b for a predetermined time, and is stored and collected via the I / F 21 (step S2). The actual data collection process in step S2 is always performed continuously.
[0057]
Subsequently, the actual data for the latest predetermined time of the discharge current I and the terminal voltage V collected in step S2 is analyzed, and a second-order approximate curve equation of voltage-current characteristics is obtained by applying the least square method. It is determined whether it is appropriate for the request. That is, an analysis process is performed to analyze whether or not a discharge current that monotonously increases beyond a predetermined value and monotonously decreases from a maximum value to a predetermined value or less flows from the battery (step S3).
[0058]
As a result of the analysis in step S3, when appropriate ones for obtaining a quadratic approximate curve expression of the voltage-current characteristic are collected (Y in step S4), V1 of the voltage-current characteristic with respect to the increasing discharge current ( I) = a1I 2 A first approximate curve formula M1 expressed by a quadratic formula of + b1 + C1 and a voltage-current characteristic with respect to a decreasing discharge current, for example, V2 (I) = a2I 2 An approximate curve equation calculation process for obtaining a second approximate curve equation M2 represented by a quadratic equation of + b2I + C2 is executed (step S5).
[0059]
After the two approximate curve formulas M1 and M2 are obtained by the approximate curve formula calculation processing in step S5, next, calculation processing for obtaining the pure resistance of the battery is executed (step S6). In the calculation process in step S6, V1 (I) = a1I of the voltage-current characteristic with respect to the increasing discharge current. 2 The first approximate curve equation M1 expressed by a quadratic equation of + b1 + c1 and the voltage-current characteristic with respect to the decreasing discharge current, for example, V2 (I) = a2I 2 Two first-order linear equations are obtained by differentiating each of the second approximate curve equations M2 expressed by the quadratic equation + b2I + c2.
[0060]
In the calculation processing in step S6, the maximum value is substituted in the vicinity of the two obtained linear linear expressions to obtain the slopes of the two tangent lines at the maximum value. Then, the slopes of the two tangents obtained in step S6 are added and averaged, and this value is measured as the pure resistance of the battery. The measured pure resistance is stored in the data area of the RAM 23b for use for various purposes. Stored (step S7). When the measurement process in step S7 is completed, the determination in step S4 becomes Y, and the collection process and the step in step S2 are performed until an opportunity to execute the approximate curve equation calculation process in step S5 and the calculation process in step S6 comes. The analysis process of S3 is repeatedly executed.
[0061]
Further, in the vehicle battery pure resistance measuring apparatus 1 of the present embodiment, step S2 in the flowchart is processing for the voltage / current measuring means in the claims, and step S5 corresponds to the approximate curve calculating means in the claims. Step S6 is processing corresponding to the calculation means in the claims.
[0062]
Next, the operation (action) of the vehicle battery pure resistance measuring apparatus 1 of the present embodiment configured as described above will be described.
[0063]
First, when an electrical component (load) other than the motor generator 5 of the hybrid vehicle is operated, or the motor generator 5 is operating so as to function as a motor, and the battery 13 is discharged accordingly, the load is applied. The battery terminal voltage and the discharge current are periodically measured when a discharge current that monotonously exceeds a predetermined value and monotonously decreases from the maximum value to a predetermined value or less flows.
[0064]
Further, in the vehicle battery pure resistance measuring apparatus 1 of the present embodiment, the latest measured periodically is stored, stored and collected in the data area of the RAM 23b for a predetermined time, and the collected discharge current I is collected. The actual data for the latest predetermined time between the terminal voltage V and the terminal voltage V are analyzed, and it is determined whether or not the data is appropriate for obtaining a quadratic approximate curve expression of the voltage-current characteristic by applying the least square method. Is done. That is, it is analyzed whether or not a discharge current that monotonously increases beyond a predetermined value and monotonously decreases from a maximum value to a predetermined value or less flows from the battery.
[0065]
For this reason, the approximate curve formula calculation process is not performed until an appropriate curve equation for obtaining the quadratic approximate curve formula of the voltage-current characteristic is collected, and the approximate curve formula calculation process is also collected in the past. Since it suffices to use actual data for a predetermined time, processing does not have to be performed in synchronization with periodic measurement of the terminal voltage and the discharge current, and a high processing speed is not required.
[0066]
【The invention's effect】
As described above, according to the invention described in claim 1 or 4, the battery terminal voltage and the discharge current when power is supplied to the load in the normal use state of the vehicle are measured, and the result of this measurement is obtained. The first approximated curve equation of the voltage-current characteristic for the increasing discharge current and the second approximated curve equation of the voltage-current characteristic for the decreasing discharge current are processed, and the obtained two linear expressions Since the pure resistance is measured on the assumption that there is a pure resistance in the combined resistance exhibited by the battery between two values corresponding to the maximum value of the battery, the battery is being used in a normal state, that is, even when the vehicle is being used. It is possible to provide a vehicle battery pure resistance measuring method and apparatus capable of measuring the pure resistance of the vehicle.
[0067]
According to the invention described in claim 2 or 5 described above, at least one of obtaining the slope between the two points is based on the actual data in order to measure the pure resistance, and a point greatly deviating from the actual is used. Therefore, it is possible to provide a vehicle battery pure resistance measurement method and apparatus that can keep the measurement accuracy of the pure resistance stable.
[0068]
According to the invention described in claim 3 or 6 described above, it is confirmed that the discharge current necessary for obtaining the first approximate curve equation and the second approximate curve equation flows using the stored actual data. Since the first approximate curve equation and the second approximate curve equation can be obtained by using the stored actual data, it is possible to eliminate wasteful processing and perform pure resistance without performing real-time high-speed processing. It is possible to provide a vehicle battery pure resistance measuring method and apparatus capable of measuring the above.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a basic configuration of a vehicle battery pure resistance measuring apparatus according to the present invention.
FIG. 2 is an explanatory diagram partially showing a schematic configuration of a vehicle battery pure resistance measuring apparatus according to an embodiment of the present invention to which the vehicle battery pure resistance measuring method of the present invention is applied.
FIG. 3 is a graph showing an example of a VI characteristic represented by a first-order approximation expression.
FIG. 4 is a graph showing an example of a VI characteristic represented by a quadratic approximate expression.
FIG. 5 is a graph showing an example of change in polarization with respect to current.
FIG. 6 is a graph showing an example of an approximate characteristic curve represented by two quadratic approximate curve formulas obtained by one discharge.
7 is a graph showing the slope of a tangent at an arbitrary point on the two approximate characteristic curves shown in FIG.
8 is a graph in which tangent lines at points where discharge currents on the curves become maximum values are written on the two approximate characteristic curves shown in FIG.
FIG. 9 is a flowchart showing processing performed by the microcomputer in FIG. 2 according to a predetermined program for pure resistance measurement.
FIG. 10 is a graph for explaining a method of measuring a pure resistance of a conventional battery.
[Explanation of symbols]
23a-1 Voltage / current measuring means (CPU)
23a-2 Approximate curve formula calculation means (CPU)
23a-3 Calculation means (CPU)
23b Storage means (RAM)

Claims (6)

車両の負荷に電力を供給するため車両に搭載されたバッテリの純抵抗を測定する車両用バッテリ純抵抗測定方法において、
前記負荷に所定値を越えて単調増大し最大値から所定値以下に単調減少する放電電流が流れたときの前記バッテリの端子電圧と放電電流とを周期的に測定してこれら端子電圧と放電電流との相関を示す前記増大する放電電流に対する電圧−電流特性の第1の近似二次曲線式と前記減少する放電電流に対する電圧−電流特性の第2の近似二次曲線式とを求めると共に、該求めた2つの近似二次曲線式をそれぞれ微分して前記増大する放電電流及び前記減少する放電電流に対して前記バッテリが呈する合成抵抗の変化を示す2つの直線式を求め、
該求めた2つの直線式の前記最大値に対応する2つの値の間に前記バッテリの呈する合成抵抗中の純抵抗があるとして純抵抗を測定する
ことを特徴とする車両用バッテリ純抵抗測定方法。
In a vehicle battery pure resistance measuring method for measuring a pure resistance of a battery mounted on a vehicle to supply electric power to a vehicle load,
The terminal voltage and discharge current of the battery are periodically measured when a discharge current that monotonously increases beyond a predetermined value and monotonically decreases from a maximum value to a predetermined value or less flows to the load. A first approximate quadratic equation of the voltage-current characteristic with respect to the increasing discharge current and a second approximate quadratic equation of the voltage-current characteristic with respect to the decreasing discharge current, The two approximate quadratic curve equations obtained are differentiated to obtain two linear equations indicating changes in the combined resistance exhibited by the battery with respect to the increasing discharge current and the decreasing discharge current,
A pure resistance measurement method for a vehicle battery, wherein a pure resistance is measured by assuming that there is a pure resistance in a combined resistance exhibited by the battery between two values corresponding to the maximum value of the two obtained linear equations. .
請求項1記載の車両用バッテリ純抵抗測定方法において、
前記2つの値の中間点の値を前記純抵抗として測定する
ことを特徴とする車両用バッテリ純抵抗測定方法。
In the vehicle battery pure resistance measuring method according to claim 1,
A vehicle battery pure resistance measuring method, wherein a value at an intermediate point between the two values is measured as the pure resistance.
請求項1又は2記載の車両用バッテリ純抵抗測定方法において、
前記第1の近似曲線式と前記第2の近似曲線式とを求めるに当たって、周期的に測定した前記バッテリの端子電圧と放電電流とを最新の所定時間分収集して格納、記憶しておく
ことを特徴とする車両用バッテリ純抵抗測定方法。
In the vehicle battery pure resistance measuring method according to claim 1 or 2,
In obtaining the first approximate curve equation and the second approximate curve equation, the terminal voltage and discharge current of the battery measured periodically are collected, stored and stored for the latest predetermined time. A vehicle battery pure resistance measuring method characterized by the above.
車両の負荷に電力を供給するため車両に搭載されたバッテリの純抵抗を測定する車両用バッテリ純抵抗測定装置において、
前記負荷に所定値を越えて単調増大し最大値から所定値以下に単調減少する放電電流が流れたときの前記バッテリの端子電圧と放電電流とを周期的に測定する電圧・電流測定手段と、
該電圧・電流測定手段によって測定した端子電圧と放電電流との相関を示す前記増大する放電電流に対する電圧−電流特性の第1の近似曲線式と前記減少する放電電流に対する電圧−電流特性の第2の近似曲線式とを求める近似曲線式算出手段と、
該近似曲線式算出手段により求めた前記2つの近似二次曲線式をそれぞれ微分して前記増大する放電電流及び前記減少する放電電流に対して前記バッテリが呈する合成抵抗の変化を示す2つの直線式を求め、該求めた2つの直線式の前記最大値に対応する2つの値を求める演算手段と、
該演算手段によって求めた前記2つの値の間に前記バッテリの呈する合成抵抗中の純抵抗があるとして純抵抗を測定する
ことを特徴とする車両用バッテリ純抵抗測定装置。
In a vehicle battery pure resistance measuring device for measuring a pure resistance of a battery mounted on a vehicle in order to supply electric power to a vehicle load,
Voltage / current measuring means for periodically measuring the terminal voltage and discharge current of the battery when a discharge current that monotonously increases beyond the predetermined value and monotonically decreases from the maximum value to a predetermined value or less flows to the load;
A first approximate curve expression of the voltage-current characteristic for the increasing discharge current and a second of the voltage-current characteristic for the decreasing discharge current showing the correlation between the terminal voltage measured by the voltage / current measuring means and the discharge current. An approximate curve formula calculating means for obtaining an approximate curve formula of
Two linear equations showing the change of the combined resistance exhibited by the battery with respect to the increasing discharge current and the decreasing discharge current by differentiating the two approximate quadratic equations obtained by the approximate curve equation calculating means, respectively. Computing means for obtaining two values corresponding to the maximum value of the two obtained linear equations;
A pure battery resistance measuring apparatus for a vehicle, wherein the pure resistance is measured by assuming that there is a pure resistance in the combined resistance exhibited by the battery between the two values obtained by the calculating means.
請求項4記載の車両用バッテリ純抵抗測定装置において、
前記2つの値の中間点の値を前記純抵抗として測定する
ことを特徴とする車両用バッテリ純抵抗測定装置。
The vehicle battery pure resistance measuring device according to claim 4,
A vehicle battery pure resistance measuring apparatus that measures a value at an intermediate point between the two values as the pure resistance.
請求項4又は5記載の車両用バッテリ純抵抗測定装置において、
前記近似曲線式算出手段は、前記第1の近似曲線式と前記第2の近似曲線式を求めるために、前記電圧・電流測定手段により周期的に測定した前記バッテリの端子電圧と放電電流とを、最新の所定時間分収集して格納、記憶する記憶手段を有する
ことを特徴とする車両用バッテリ純抵抗測定装置。
In the vehicle battery pure resistance measuring device according to claim 4 or 5,
The approximate curve equation calculating means obtains the terminal voltage and discharge current of the battery periodically measured by the voltage / current measuring means to obtain the first approximate curve equation and the second approximate curve equation. A vehicle battery pure resistance measuring apparatus comprising storage means for collecting, storing and storing the latest predetermined time.
JP2001048637A 2001-02-23 2001-02-23 Vehicle battery pure resistance measuring method and apparatus Expired - Fee Related JP3908913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001048637A JP3908913B2 (en) 2001-02-23 2001-02-23 Vehicle battery pure resistance measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001048637A JP3908913B2 (en) 2001-02-23 2001-02-23 Vehicle battery pure resistance measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2002249006A JP2002249006A (en) 2002-09-03
JP3908913B2 true JP3908913B2 (en) 2007-04-25

Family

ID=18909871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001048637A Expired - Fee Related JP3908913B2 (en) 2001-02-23 2001-02-23 Vehicle battery pure resistance measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP3908913B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147987A (en) * 2003-11-19 2005-06-09 Yazaki Corp Method and device for inferring saturated polarization, and method for inferring dischargeable capacity
JP5496612B2 (en) * 2009-11-11 2014-05-21 三洋電機株式会社 Battery chargeable / dischargeable current calculation method, power supply device, and vehicle equipped with the same
CN111999667B (en) * 2020-08-21 2023-05-30 惠州亿纬锂能股份有限公司 Evaluation method of internal resistance of battery

Also Published As

Publication number Publication date
JP2002249006A (en) 2002-09-03

Similar Documents

Publication Publication Date Title
US7456612B2 (en) Method for estimating polarization voltage of secondary cell, method and device for estimating remaining capacity of secondary cell, battery pack system, and vehicle
US20070096743A1 (en) Method and apparatus for judging deterioration of battery
JP2004045375A (en) Battery state monitoring device, saturation polarization detection method and dischargeable capacity detection method
US20020053910A1 (en) Method and apparatus for measuring pure resistance of in-vehicle battery
JP3986992B2 (en) Battery dischargeable capacity estimation method and apparatus
JP6729312B2 (en) Battery evaluation method and battery evaluation apparatus
JP2004354050A (en) Charging state estimation method and open circuit voltage estimation method of battery, and deterioration degree calculation device and method
US20060197503A1 (en) Battery state monitoring device and its method, and dischargeable capacity detecting method
JP3930777B2 (en) Battery degradation degree calculation method and apparatus
US6788068B2 (en) Method and device for measuring pure resistance of on-vehicle battery by periodically measuring a discharge current and terminal voltage while a rush current flows into a constant load
JP3817141B2 (en) Deterioration degree determination method and apparatus for vehicle battery
JP3908913B2 (en) Vehicle battery pure resistance measuring method and apparatus
WO2004088342A1 (en) Battery status monitoring apparatus and method
WO2005050234A1 (en) Saturation polarization estimation method and device, and discharge-enabled capacitance estimation method
JP2002303658A (en) Method and apparatus for calculating correction coefficient for charged capacity state in battery
JP2002168929A (en) Method and device for measuring genuine resistance of battery for vehicle
JP2002250757A (en) Method and apparatus for estimation of open circuit voltage of battery for vehicle
JP4383020B2 (en) In-vehicle battery pure resistance measuring method and apparatus
JP3986991B2 (en) Dischargeable capacity detection method
JP2002303646A (en) Method and apparatus for measuring pure resistance of on-vehicle battery
JP3869666B2 (en) Vehicle battery charge state measuring method and apparatus
JP3825660B2 (en) Method and apparatus for calculating open circuit voltage of in-vehicle battery, method and apparatus for detecting charge capacity state of in-vehicle battery
JP2004301784A (en) Dischargeable capacity estimating method and device for battery
KR20070020322A (en) Method and apparatus for judging deterioration of battery
JP4017936B2 (en) Battery pure resistance measuring method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3908913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees