JP2002249006A - Method and device for measuring battery pure resistance for vehicle - Google Patents

Method and device for measuring battery pure resistance for vehicle

Info

Publication number
JP2002249006A
JP2002249006A JP2001048637A JP2001048637A JP2002249006A JP 2002249006 A JP2002249006 A JP 2002249006A JP 2001048637 A JP2001048637 A JP 2001048637A JP 2001048637 A JP2001048637 A JP 2001048637A JP 2002249006 A JP2002249006 A JP 2002249006A
Authority
JP
Japan
Prior art keywords
battery
current
discharge current
pure resistance
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001048637A
Other languages
Japanese (ja)
Other versions
JP3908913B2 (en
Inventor
Yoichi Arai
洋一 荒井
Hideaki Kanbara
英明 蒲原
Michihito Enomoto
倫人 榎本
Tomohiro Kawaguchi
智博 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2001048637A priority Critical patent/JP3908913B2/en
Publication of JP2002249006A publication Critical patent/JP2002249006A/en
Application granted granted Critical
Publication of JP3908913B2 publication Critical patent/JP3908913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for measuring battery pure resistance for a vehicle capable of measuring pure resistance of a battery even during a use of a vehicle. SOLUTION: A terminal voltage and a discharge current when a discharge current flows from a battery are periodically measured by a voltage.current measuring means 23a-1, and a first approximate curve formula for voltage- current characteristics to an increasing discharge current and a second approximate curve formula for a voltage-current characteristics to a decreasing discharge current are determined by an approximate curve formula calculating means 23a-2. A computing means 23a-3 determines two linear formulas indicating a change of synthetic resistance presented by the battery to the increasing discharge current and the decreasing discharge current by respectively differentiating the two approximate secondary curve formulas. Two values corresponding to the maximum values of the determined the discharge currents of the two linear formulas are determined. A value obtained by multiplying a value, obtained by adding the determined two values, by 1/2 is measured as pure resistance of the battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両の負荷に電力
を供給するため車両に搭載されたバッテリの純抵抗を測
定する車両用バッテリ測定方法及び装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the pure resistance of a battery mounted on a vehicle for supplying power to a load of the vehicle.

【0002】[0002]

【従来の技術】一般に、バッテリから電流が放電される
とバッテリの端子電圧に降下を生じる。その電圧降下は
バッテリの内部インピーダンス(合成抵抗)によるもの
であるが、バッテリの構造などに基因するIR損(純抵
抗、すなわち、オーミック抵抗による電圧降下)と、化
学的な反応に基因する分極抵抗成分(活性化分極、濃度
分極)による電圧降下に分けることができる。電圧−電
流(V−I)特性を求めた場合、IR損による電圧降下
は、バッテリの状態が同じであれば変化しないが、分極
抵抗成分による電圧降下は電流の大きさと電流の放電し
ている時間によって変化する。よって、分極抵抗成分を
含んだV−I特性から、バッテリの様々な状態を推定す
ると、不正確な推定結果となることがわかるので、分極
抵抗成分を分離した純抵抗のみを測定する技術が必要と
される。
2. Description of the Related Art Generally, when a current is discharged from a battery, a terminal voltage of the battery drops. The voltage drop is due to the internal impedance (combined resistance) of the battery, but the IR loss (pure resistance, that is, the voltage drop due to ohmic resistance) due to the structure of the battery and the polarization resistance due to the chemical reaction. It can be divided into voltage drops due to components (activation polarization, concentration polarization). When the voltage-current (VI) characteristic is obtained, the voltage drop due to the IR loss does not change if the state of the battery is the same, but the voltage drop due to the polarization resistance component is the magnitude of the current and the current is discharged. It changes with time. Therefore, it can be seen that inferring various states of the battery from the VI characteristics including the polarization resistance component results in an inaccurate estimation result. Therefore, a technique for measuring only the pure resistance separated from the polarization resistance component is necessary. It is said.

【0003】また、バッテリは放電電流をカバーする充
電を行うことによって、その充電容量の範囲内において
繰り返し使用できることになっているが、過放電や電解
液不足などの不測の事態を招いた場合は勿論のこと、こ
れらの事態を招かなくても、長期間にわたって使用し経
年変化が起こると、放電によって負荷に供給できる電力
量である放電可能容量が急激に低下するようになる。こ
のため、経年変化によって放電可能容量の低下している
状態においては、充電を上回る放電がわずかな期間発生
しても、エンジン停止後にスタータモータを起動してエ
ンジンを再始動できなくなる事態を招きかねない。
[0003] In addition, the battery can be used repeatedly within the range of its charge capacity by charging the battery to cover the discharge current. However, if an unexpected situation such as overdischarge or insufficient electrolyte is caused, Of course, even if these situations do not occur, if the battery is used for a long period of time and changes over time, the dischargeable capacity, which is the amount of power that can be supplied to the load by discharging, rapidly decreases. For this reason, in a state where the dischargeable capacity is reduced due to aging, even if a discharge exceeding the charge occurs for a short period of time, the starter motor can be started after the engine is stopped and the engine cannot be restarted. Absent.

【0004】因みに、新品と経年変化の生じているバッ
テリとを比較した場合、新品に比べて経年変化の生じて
いるバッテリでは、その純抵抗が大きくなることが知ら
れている。そのため、車両の定期点検時などに、バッテ
リ交換の目安としてバッテリの純抵抗を測定することが
考えられている。これは、純抵抗を知ることによって、
純抵抗と分極抵抗成分との割合などを考慮し、劣化度を
定めることができるからである。また、純抵抗が分かる
と、バッテリの開回路電圧を推定するためにも利用でき
る。
Incidentally, it is known that when a new battery is compared with a battery that has undergone aging, the battery that has undergone aging has a higher net resistance than a new battery. For this reason, it has been considered to measure the pure resistance of the battery as a guide for battery replacement at the time of periodic inspection of the vehicle or the like. This is by knowing the net resistance
This is because the degree of deterioration can be determined in consideration of the ratio between the pure resistance and the polarization resistance component. Also, knowing the pure resistance can be used to estimate the open circuit voltage of the battery.

【0005】従来、バッテリの純抵抗を測定するために
一般に使用されている測定器では、バッテリが静的な状
態にあるとき、すなわち、充放電により電解液に分極な
どの電圧上昇や電圧降下が生じていない平衡状態にある
ときに、バッテリの純抵抗を測定している。(削除しま
す。)
Conventionally, in a measuring instrument generally used for measuring the pure resistance of a battery, when the battery is in a static state, that is, when the battery is charged or discharged, a voltage rise or a voltage drop such as polarization occurs in the electrolyte. The battery's net resistance is being measured when it is in equilibrium where it has not occurred. (Delete.)

【0006】その一例として、バッテリに1kHz〜1
00kHz程度の周波数の交流を印加して充放電を繰り
返し、充電及び放電のいずれの分極も蓄積しない状況
で、たとえば1μ秒程度の一定時間内に変化する電圧と
電流の関係から純抵抗を求める方法がある。これは、図
10に示すように、放電を止めた後、電圧が急激に回復
し、その後に緩やかに回復する現象を捉え、一定時間Δ
t内の急激な電圧の回復が純抵抗Rによる成分のみによ
り生じ、その後の緩やかな変化は純抵抗を除く分極を含
むその他の要素による成分(キャパシタンスおよびイン
ダクタンス成分)により生じているとみなし、1kHz
〜100kHz程度の周波数の交流の各印加サイクルの
短い時間内における電圧と電流の変化を捉えて純抵抗を
測定しようとするものである。
[0006] As an example, 1 kHz to 1
A method of obtaining a pure resistance from a relationship between a voltage and a current that changes within a certain time of, for example, about 1 μs in a situation where charging and discharging are repeated by applying an alternating current of about 00 kHz and neither polarization of charging nor discharging is accumulated. There is. This is because, as shown in FIG. 10, after the discharge is stopped, the voltage rapidly recovers and then gradually recovers.
It is considered that a sudden voltage recovery within t is caused only by the component due to the pure resistance R, and that a gradual change thereafter is caused by components (capacitance and inductance components) other than the pure resistance, including polarization, other than the pure resistance.
The purpose of the present invention is to measure a change in voltage and current within a short time of each application cycle of an alternating current having a frequency of about 100 kHz to measure a pure resistance.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、車両に
搭載したバッテリを対象として用いる場合には、静的な
状態は限られた場合にしか存在せず、車両が使用状態に
あるときには適用することができない。
However, when a battery mounted on a vehicle is used as a target, a static state exists only in a limited case, and is applicable when the vehicle is in use. Can not.

【0008】また、上述した例の場合、短時間内に電圧
Vおよび電流Iのデータを収集する必要から、非常に周
期の短いサンプリングを行ってA/D変換を行うことを
一定時間Δt内に行わなければならず、単独で使用する
測定器として実現できるものの、車両に搭載して使用す
ることは非常に難しい。しかも、求めるΔV/ΔIが精
度のよいものとなるためには、ΔV、ΔIの各々が大き
な値を示さなければならないが、車両では限られた場合
にしかこのようなものは測定できない。さらに、車両動
作中に任意の交流をバッテリに印加することができな
い。したがって、上述した例の方法は、車両使用中のバ
ッテリの純抵抗を測定するために適用できないという現
実がある。
In the case of the above-mentioned example, since it is necessary to collect data of the voltage V and the current I within a short time, it is necessary to perform A / D conversion by performing sampling with a very short period within a fixed time Δt. Although it must be performed, it can be realized as a measuring device used alone, but it is very difficult to use it mounted on a vehicle. In addition, in order for the required ΔV / ΔI to be accurate, each of ΔV and ΔI must indicate a large value, but such a vehicle can be measured only in limited cases. Furthermore, any alternating current cannot be applied to the battery during vehicle operation. Therefore, there is a reality that the method of the above-described example cannot be applied to measure the pure resistance of the battery while the vehicle is in use.

【0009】よって、本発明は上述した状況に鑑み、車
両使用中でもバッテリの純抵抗を測定できる車両用バッ
テリ純抵抗測定方法及び装置を提供することを課題とし
ている。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method and an apparatus for measuring a battery pure resistance of a vehicle, which can measure the pure resistance of the battery even when the vehicle is in use.

【0010】[0010]

【課題を解決するための手段】前記目的を達成する請求
項1乃至請求項3記載の本発明は、車両用バッテリ純抵
抗測定方法に関するものであり、請求項4乃至請求項6
記載の本発明は、車両用バッテリ純抵抗測定装置に関す
るものである。
In order to achieve the above object, the present invention according to any one of claims 1 to 3 relates to a method of measuring a battery pure resistance for a vehicle, and claims 4 to 6.
The described invention relates to a vehicle battery pure resistance measuring device.

【0011】上記課題を解決するためなされた請求項1
記載の発明は、車両の負荷に電力を供給するため車両に
搭載されたバッテリの純抵抗を測定する車両用バッテリ
純抵抗測定方法において、前記負荷に所定値を越えて単
調増大し最大値から所定値以下に単調減少する放電電流
が流れたときの前記バッテリの端子電圧と放電電流とを
周期的に測定してこれら端子電圧と放電電流との相関を
示す前記増大する放電電流に対する電圧−電流特性の第
1の近似二次曲線式と前記減少する放電電流に対する電
圧−電流特性の第2の近似二次曲線式とを求めると共
に、該求めた2つの近似二次曲線式をそれぞれ微分して
前記増大する放電電流及び前記減少する放電電流に対し
て前記バッテリが呈する合成抵抗の変化を示す2つの直
線式を求め、該求めた2つの直線式の前記最大値に対応
する2つの値の間に前記バッテリの呈する合成抵抗中の
純抵抗があるとして純抵抗を測定することを特徴とする
車両用バッテリ純抵抗測定方法に存する。
[0011] The present invention has been made to solve the above problems.
The invention described in a vehicle battery pure resistance measuring method for measuring the pure resistance of a battery mounted on a vehicle to supply power to a load of the vehicle, wherein the load monotonically increases beyond a predetermined value and is increased from a maximum value to a predetermined value. A voltage-current characteristic for the increasing discharge current, which periodically measures the terminal voltage and the discharge current of the battery when a discharge current that monotonously decreases below the value flows and indicates a correlation between the terminal voltage and the discharge current. And a second approximate quadratic curve equation of the voltage-current characteristic with respect to the decreasing discharge current, and differentiating the two approximate quadratic curve equations, Two linear equations showing the change in the combined resistance exhibited by the battery with respect to the increasing discharge current and the decreasing discharge current are determined, and between two values corresponding to the maximum value of the determined two linear equations. It consists in the vehicle battery pure resistance measuring method and measuring the net resistance as there is a pure resistance in the combined resistance presented by the serial battery.

【0012】上述した請求項1記載の手順によれば、車
両の負荷にバッテリから電力が供給され、車両の負荷に
所定値を越えて単調増大し最大値から所定値以下に単調
減少する放電電流が流れたときのバッテリの端子電圧と
放電電流とを周期的に測定してこれら端子電圧と放電電
流との相関を示す増大する放電電流に対する電圧−電流
特性の第1の近似曲線式と減少する放電電流に対する電
圧−電流特性の第2の近似曲線式とを求める。
According to the first aspect of the present invention, the discharge current is supplied from the battery to the load of the vehicle, and the load of the vehicle monotonically increases beyond a predetermined value and monotonically decreases from the maximum value to a predetermined value or less. Periodically measures the terminal voltage and the discharge current of the battery when the current flows, and decreases the first approximate curve expression of the voltage-current characteristic with respect to the increasing discharge current showing the correlation between the terminal voltage and the discharge current. A second approximate curve expression of the voltage-current characteristic with respect to the discharge current is obtained.

【0013】次に、求めた2つの近似二次曲線式をそれ
ぞれ微分して前記増大する放電電流及び前記減少する放
電電流に対して前記バッテリが呈する合成抵抗の変化を
示す2つの直線式を求める。
Next, the two approximate quadratic curve equations obtained are differentiated to obtain two linear equations indicating the change in the combined resistance exhibited by the battery with respect to the increasing discharge current and the decreasing discharge current. .

【0014】その後、求めた2つの直線式の最大値に対
応する2つの値の間にバッテリの呈する合成抵抗中の純
抵抗の値があるとして純抵抗を測定している。このよう
に測定した抵抗値は他の方法で実測した抵抗とも良く一
致し、このことは、他の方法で実測した抵抗のみによる
電圧−電流特性の傾きが、最大値の点を境に、一方の増
大する放電電流に対する電圧−電流特性の最大値におけ
る接線の傾きよりも小さく、他方の減少する放電電流に
対する電圧−電流特性の最大値における接線の傾きが大
きくなることからも理解できる。したがって、車両の通
常の使用状態で負荷に電力を供給したときのバッテリの
端子電圧と放電電流とを測定し、この測定の結果得られ
るデータを処理するだけで、バッテリの純抵抗を測定す
ることができる。
Thereafter, the pure resistance is measured on the assumption that there is a value of the pure resistance in the combined resistance exhibited by the battery between the two values corresponding to the maximum values of the two obtained linear expressions. The resistance value measured in this way agrees well with the resistance actually measured by another method, which means that the slope of the voltage-current characteristic due to only the resistance actually measured by the other method is different from the one at the point of the maximum value. Can be understood from the fact that the slope of the tangent at the maximum value of the voltage-current characteristic with respect to the increasing discharge current is smaller than the slope of the tangent at the maximum value of the voltage-current characteristic with respect to the decreasing discharge current. Therefore, it is necessary to measure the terminal voltage and the discharge current of the battery when power is supplied to the load in a normal use state of the vehicle, and to process the data obtained as a result of the measurement to measure the pure resistance of the battery. Can be.

【0015】請求項2記載の発明は、請求項1記載の車
両用バッテリ純抵抗測定方法において、前記2つの値の
中間点の値を前記純抵抗として測定することを特徴とす
る車両用バッテリ純抵抗測定方法に存する。
According to a second aspect of the present invention, in the vehicle battery pure resistance measuring method according to the first aspect, a value at an intermediate point between the two values is measured as the pure resistance. It consists in resistance measurement method.

【0016】上述した請求項2記載の手順によれば、2
つの値の中間点の値を純抵抗として測定しているので、
例えば、2つの値を加算して求めた値に1/2を乗する
簡単な演算によって純抵抗を測定することができる。
According to the above-described procedure of claim 2, 2
Since the value at the midpoint between the two values is measured as pure resistance,
For example, the pure resistance can be measured by a simple operation of multiplying the value obtained by adding two values to 乗.

【0017】請求項3記載の発明は、請求項1または2
記載の車両用バッテリ純抵抗測定方法において、前記第
1の近似曲線式と前記第2の近似曲線式とを求めるに当
たって、周期的に測定した前記バッテリの端子電圧と放
電電流とを最新の所定時間分収集して格納、記憶してお
くことを特徴とする車両用バッテリ純抵抗測定方法に存
する。
The third aspect of the present invention is the first or second aspect.
In the method for measuring a battery pure resistance for a vehicle according to the present invention, in obtaining the first approximate curve equation and the second approximate curve equation, the terminal voltage and the discharge current of the battery that are periodically measured are updated for the latest predetermined time. A vehicle battery pure resistance measuring method characterized by collecting, storing and storing minute amounts.

【0018】上述した請求項3記載の手順によれば、第
1の近似曲線式と第2の近似曲線式とを求めるに当たっ
て、周期的に測定した前記バッテリの端子電圧と放電電
流とを最新の所定時間分収集して格納、記憶しているの
で、この記憶した実データを用いて、第1の近似曲線式
と第2の近似曲線式とを求めるに必要な放電電流が流れ
たことを確認してから、記憶してある実データを用いて
第1の近似曲線式と第2の近似曲線式とを求めることが
できる。
According to the above-described procedure, when obtaining the first approximate curve equation and the second approximate curve equation, the terminal voltage and the discharge current of the battery that are periodically measured are updated. Since the data is collected, stored and stored for a predetermined time, it is confirmed that the discharge current necessary for obtaining the first approximate curve equation and the second approximate curve equation has flowed using the stored actual data. After that, the first approximate curve equation and the second approximate curve equation can be obtained using the stored actual data.

【0019】上記課題を解決するためなされた請求項4
記載の発明は、図1の基本構成図に示す如く、車両の負
荷に電力を供給するため車両に搭載されたバッテリの純
抵抗を測定する車両用バッテリ純抵抗測定装置におい
て、前記負荷に所定値を越えて単調増大し最大値から所
定値以下に単調減少する放電電流が流れたときの前記バ
ッテリの端子電圧と放電電流とを周期的に測定する電圧
・電流測定手段23a−1と、該電圧・電流測定手段に
よって測定した端子電圧と放電電流との相関を示す前記
増大する放電電流に対する電圧−電流特性の第1の近似
曲線式と前記減少する放電電流に対する電圧−電流特性
の第2の近似曲線式とを求める近似曲線式算出手段23
a−2と、該近似曲線式算出手段により求めた前記2つ
の近似二次曲線式をそれぞれ微分して前記増大する放電
電流及び前記減少する放電電流に対して前記バッテリが
呈する合成抵抗の変化を示す2つの直線式を求め、該求
めた2つの直線式の前記最大値に対応する2つの値を求
める演算手段23a−3と、該演算手段によって求めた
前記2つの値の間に前記バッテリの呈する合成抵抗中の
純抵抗があるとして純抵抗を測定することを特徴とする
車両用バッテリ純抵抗測定装置に存する。
A fourth aspect of the present invention has been made to solve the above problems.
As shown in the basic configuration diagram of FIG. 1, the described invention is a vehicle battery pure resistance measuring device that measures the pure resistance of a battery mounted on a vehicle to supply power to the vehicle load. Voltage / current measuring means 23a-1 for periodically measuring a terminal voltage and a discharge current of the battery when a discharge current monotonically increases beyond the threshold value and monotonically decreases from a maximum value to a predetermined value or less; A first approximation curve expression of the voltage-current characteristic for the increasing discharge current and a second approximation of the voltage-current characteristic for the decreasing discharge current, showing a correlation between the terminal voltage measured by the current measuring means and the discharge current. Approximate curve expression calculating means 23 for obtaining a curve expression
a-2 and the two approximate quadratic curve equations obtained by the approximate curve equation calculating means, respectively, to differentiate the change in the combined resistance exhibited by the battery with respect to the increasing discharge current and the decreasing discharge current. Calculating means 23a-3 for obtaining two linear expressions shown, calculating two values corresponding to the maximum values of the obtained two linear expressions, and the battery value between the two values obtained by the arithmetic means. The present invention resides in a vehicle battery pure resistance measuring apparatus characterized in that the pure resistance is measured assuming that there is a pure resistance in the combined resistance.

【0020】上述した請求項4記載の構成によれば、バ
ッテリから車両の負荷に電力を供給して負荷に所定値を
越えて単調増大し最大値から所定値以下に単調減少する
放電電流が流れたときのバッテリの端子電圧と放電電流
とを電圧・電流測定手段23a−1が周期的に測定す
る。電圧・電流測定手段によって測定した端子電圧と放
電電流との相関を示す増大する放電電流に対する電圧−
電流特性の第1の近似曲線式と減少する放電電流に対す
る電圧−電流特性の第2の近似曲線式とを近似曲線式算
出手段23a−2が求める。
According to the above configuration, a discharge current flows by supplying power from the battery to the load of the vehicle and monotonically increasing the load beyond a predetermined value and monotonically decreasing from the maximum value to a predetermined value or less. The voltage / current measuring means 23a-1 periodically measures the terminal voltage of the battery and the discharge current when the battery is discharged. The voltage for the increasing discharge current, which indicates the correlation between the terminal voltage measured by the voltage / current measuring means and the discharge current,
The approximate curve equation calculating means 23a-2 calculates a first approximate curve equation of the current characteristic and a second approximate curve equation of the voltage-current characteristic with respect to the decreasing discharge current.

【0021】バッテリの純抵抗として測定するに当たっ
て、演算手段23a−3が、まず、近似曲線式算出手段
により求めた前記2つの近似二次曲線式をそれぞれ微分
して前記増大する放電電流及び前記減少する放電電流に
対して前記バッテリが呈する合成抵抗の変化を示す2つ
の直線式を求める。次に、求めた2つの直線式の放電電
流の最大値に対応する2つの値を求める。そして、求め
た2つの値を加算して求めた値に1/2を乗じて純抵抗
を測定する。このように測定した抵抗値は他の方法で実
測した抵抗とも良く一致し、このことは、他の方法で実
測した抵抗のみによる電圧−電流特性の傾きが、最大値
の点を境に、一方の増大する放電電流に対する電圧−電
流特性の最大値における接線の傾きよりも小さく、他方
の減少する放電電流に対する電圧−電流特性の最大値に
おける接線の傾きが大きくなることからも理解できる。
したがって、車両の通常の使用状態で負荷に電力を供給
したときのバッテリの端子電圧と放電電流とを測定し、
この測定の結果得られるデータを処理するだけで、バッ
テリの純抵抗を測定することができる。
In measuring the pure resistance of the battery, the calculating means 23a-3 first differentiates the two approximate quadratic curve equations obtained by the approximate curve equation calculating means, respectively, to calculate the increasing discharge current and the decreasing Two linear equations showing the change in the combined resistance exhibited by the battery with respect to the discharge current to be applied are obtained. Next, two values corresponding to the maximum values of the obtained two linear discharge currents are obtained. Then, the pure resistance is measured by multiplying the value obtained by adding the two calculated values by 1 /. The resistance value measured in this way agrees well with the resistance actually measured by another method, which means that the slope of the voltage-current characteristic due to only the resistance actually measured by the other method is different from the one at the point of the maximum value. Can be understood from the fact that the slope of the tangent at the maximum value of the voltage-current characteristic with respect to the increasing discharge current is smaller than the slope of the tangent at the maximum value of the voltage-current characteristic with respect to the decreasing discharge current.
Therefore, the terminal voltage and the discharge current of the battery when power is supplied to the load in the normal use state of the vehicle are measured,
The pure resistance of the battery can be measured simply by processing the data obtained as a result of this measurement.

【0022】請求項5記載の発明は、請求項4記載の車
両用バッテリ純抵抗測定装置において、前記2つの値の
中間点の値を前記純抵抗として測定することを特徴とす
る車両用バッテリ純抵抗測定装置に存する。
According to a fifth aspect of the present invention, in the vehicle battery pure resistance measuring device according to the fourth aspect, a value at an intermediate point between the two values is measured as the pure resistance. In the resistance measuring device.

【0023】上述した請求項5記載の構成によれば、2
つの値の中間点の値を前記純抵抗として測定しているの
で、例えば、2つの値を加算して求めた値に1/2を乗
する簡単な演算によって純抵抗を測定することができ
る。
According to the above-described structure of the fifth aspect, 2
Since the value at the midpoint between the two values is measured as the pure resistance, for example, the pure resistance can be measured by a simple operation of multiplying the value obtained by adding the two values to 乗.

【0024】請求項6記載の発明は、請求項4又は5記
載の車両用バッテリ純抵抗測定装置において、前記近似
曲線式算出手段は、前記第1の近似曲線式と前記第2の
近似曲線式を求めるために、前記電圧・電流測定手段に
より周期的に測定した前記バッテリの端子電圧と放電電
流とを、最新の所定時間分収集して格納、記憶する記憶
手段23bを有することを特徴とする車両用バッテリ純
抵抗測定装置に存する。
According to a sixth aspect of the present invention, in the apparatus for measuring the battery pure resistance of the vehicle according to the fourth or fifth aspect, the approximate curve equation calculating means includes the first approximate curve equation and the second approximate curve equation. Storage means 23b for collecting, storing, and storing terminal voltage and discharge current of the battery periodically measured by the voltage / current measurement means for a predetermined period of time in order to obtain In vehicle battery resistance measuring device.

【0025】上述した請求項6記載の構成によれば、記
憶手段23bが、第1の近似曲線式と第2の近似曲線式
を求めるために、電圧・電流測定手段により周期的に測
定したバッテリの端子電圧と放電電流とを、最新の所定
時間分収集して格納、記憶しているので、この記憶した
実データを用いて、第1の近似曲線式と第2の近似曲線
式とを求めるに必要な放電電流が流れたことを確認して
から、記憶してある実データを用いて第1の近似曲線式
と前記第2の近似曲線式とを求めることができる。
According to the configuration of the sixth aspect, the storage means 23b determines the first approximated curve equation and the second approximated curve equation by using the battery periodically measured by the voltage / current measuring means. Are collected, stored and stored for the latest predetermined time, and a first approximate curve equation and a second approximate curve equation are obtained using the stored actual data. After confirming that the necessary discharge current has flowed, the first approximate curve equation and the second approximate curve equation can be obtained using the stored actual data.

【0026】[0026]

【発明の実施の形態】以下、本発明による車両用バッテ
リ純抵抗測定方法を、本発明による車両用バッテリ純抵
抗測定装置と共に、図面を参照して説明するが、その前
に、バッテリそのものの特性について検討する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for measuring a vehicle battery pure resistance according to the present invention will be described with reference to the drawings together with a vehicle battery pure resistance measuring apparatus according to the present invention. To consider.

【0027】因みに、12V車、42V車、EV車、H
EV車には、スタータモータ、モータジェネレータ、走
行用モータなどの大電流を必要とする負荷を搭載されて
おり、これらの負荷に電力を供給するバッテリの電圧−
電流(V−I)特性の例は、図3及び図4に示すように
なる。
By the way, 12V car, 42V car, EV car, H
EV vehicles are equipped with loads requiring a large current, such as a starter motor, a motor generator, and a driving motor.
Examples of the current (VI) characteristics are as shown in FIGS.

【0028】従来、V−I特性は図3に示すように、1
次式V=aI+bで近似する方式が一般に行われてきた
が、図5に示す分極抵抗成分の非直線形の特性の影響に
より、1次式では高い相関を有する式を得ることは難し
いことがわかった。そこで、本発明では、図4に示すよ
うに、V=aI2 +bI+cなる2次式の近似曲線式を
最小二乗法によって得ることによって、高い相関を有す
る近似式を用いるようにする。
Conventionally, the VI characteristic is 1 as shown in FIG.
Although a method of approximating by the following equation V = aI + b has been generally used, it is difficult to obtain an equation having a high correlation with the linear equation due to the influence of the nonlinear characteristic of the polarization resistance component shown in FIG. all right. Therefore, in the present invention, as shown in FIG. 4, an approximation formula having a high correlation is used by obtaining a quadratic approximation curve expression of V = aI 2 + bI + c by the least square method.

【0029】上述したような大電流を必要とする負荷を
駆動したとき、1回の放電によって、所定値を越えて単
調増大し100Aの最大値から所定値以下に単調減少す
る放電電流が流れる。このときのバッテリの端子電圧と
放電電流とを周期的に測定してこれら端子電圧と放電電
流との相関を示す実データに基づいて、図6のグラフ中
に示すように、放電が開始され増加方向に向かう増大す
る放電電流に対するV−I特性の第1の近似曲線式M1
と、電流が最大に達しその後減少方向に向かう減少する
放電電流に対するV−I特性の第2の近似曲線式M2の
2つの式が得られる。なお、図6中に記載の式は実デー
タによって得られた具体的な近似曲線式の一例である。
これらの2つの近似曲線式M1と近似曲線式M2との違
いを以下分析する。
When a load requiring a large current as described above is driven, a discharge current that monotonically increases beyond a predetermined value and monotonically decreases from a maximum value of 100 A to a predetermined value or less flows by one discharge. At this time, the terminal voltage and the discharge current of the battery are periodically measured, and the discharge is started and increased as shown in the graph of FIG. 6 based on the actual data indicating the correlation between the terminal voltage and the discharge current. First approximation curve expression M1 of VI characteristic for increasing discharge current in the direction
Then, two equations of the second approximate curve equation M2 of the VI characteristic with respect to the discharge current that reaches the maximum and then decreases in the decreasing direction are obtained. The equation shown in FIG. 6 is an example of a specific approximate curve equation obtained from actual data.
The difference between these two approximate curve expressions M1 and M2 will be analyzed below.

【0030】一方の近似曲線式M1の場合、放電開始時
点での分極抵抗成分を基準にすると、放電が開始し電流
が増加すると、分極抵抗成分は徐々に増加していく。そ
の後、電流が最大値になったところで、分極抵抗成分が
ピークに達し、電流の減少に伴って分極が解消していく
はずである。しかし、実際には、電流の減少に比例して
分極抵抗成分は解消するのではなく反応が遅れて現れる
ため、近似曲線式M2の場合、増加方向と同じV−I特
性を示さず、増加方向よりも大きな電圧降下を発生させ
ることになり、電流の増加と減少時にそれぞれ対応する
2つの二次の近似曲線式M1及びM2が得られることに
なる。
On the other hand, in the case of the approximate curve formula M1, when the discharge starts and the current increases, the polarization resistance component gradually increases based on the polarization resistance component at the time of starting the discharge. Thereafter, when the current reaches the maximum value, the polarization resistance component reaches a peak, and the polarization should be eliminated as the current decreases. However, in practice, the polarization resistance component does not disappear in proportion to the decrease in the current, but the reaction appears later rather than disappearing. Therefore, in the case of the approximate curve equation M2, the same VI characteristic as the increasing direction is not exhibited. A larger voltage drop is generated, and two quadratic approximate curve expressions M1 and M2 corresponding to the increase and decrease of the current are obtained.

【0031】上述したV−I特性の2つの二次の近似曲
線式M1及びM2を用いて、バッテリの純抵抗Rを測定
する方法を、図7及び図8を参照して、以下具体的に説
明する。
A method of measuring the pure resistance R of the battery using the above-mentioned two quadratic approximate curves M1 and M2 of the VI characteristic will be described in detail with reference to FIGS. explain.

【0032】ところで、2つの二次の近似曲線式M1及
びM2で表される2つの近似曲線によれば、任意の放電
電流の値に対する端子電圧の値はその電流値におけるバ
ッテリの合成抵抗の値によって決定される。また、近似
曲線上の任意の点における放電電流の単位変化ΔI当た
りの端子電圧の変化ΔVは、その点における近似曲線式
M1及びM2の変化率、すなわち、その点におけるバッ
テリの合成抵抗の値によって決定され、近似曲線式M1
及びM2の接線の傾きによって表される。一般に、二次
曲線の任意の点の接線は、曲線を表す二次曲線式を微分
して得た一次式によって表され、接線の傾きは、求めた
一次式に代入される任意の点の合成抵抗の値を反映した
値となっている。
According to the two approximate curves represented by the two quadratic approximate curves M1 and M2, the terminal voltage value for an arbitrary discharge current value is the value of the combined resistance of the battery at that current value. Is determined by Further, the change ΔV of the terminal voltage per unit change ΔI of the discharge current at an arbitrary point on the approximate curve depends on the rate of change of the approximate curve expressions M1 and M2 at that point, that is, the value of the combined resistance of the battery at that point. Determined and approximate curve expression M1
And the slope of the tangent to M2. In general, a tangent to an arbitrary point of a quadratic curve is represented by a linear expression obtained by differentiating a quadratic curve expression representing the curve, and a slope of the tangent is a combination of arbitrary points substituted into the obtained linear expression. The value reflects the value of the resistance.

【0033】具体的には、バッテリの合成抵抗Rは、常
時一定値を保っている純抵抗成分と放電電流の大きさと
放電時間によって変化する分極抵抗成分とから成ってい
るが、純抵抗成分は接線の傾きを決定する要素の一部で
はあるが、接線の傾きを変化させる要素としては働か
ず、接線の傾きを変化させているのは専ら単位電流変化
当たりの分極(電圧降下)の変化、すなわち分極抵抗成
分である。ところで、バッテリの任意の点の電流値に対
応する合成抵抗の値は、2つの二次の近似曲線式M1及
びM2をそれぞれ微分(ΔV1/ΔI、ΔV2/ΔI)
して得た2つの一次の直線式に任意の点の電流値を代入
することによって、2つ求められる。すなわち、バッテ
リは、増大する放電電流による分極の変化と、減少する
放電電流による分極の変化とが異なるため、電流が増大
する放電時と減少する放電時で異なる合成抵抗値を呈す
る。
More specifically, the combined resistance R of the battery is composed of a pure resistance component that keeps a constant value at all times and a polarization resistance component that changes according to the magnitude of the discharge current and the discharge time. Although it is a part of the element that determines the slope of the tangent, it does not work as the element that changes the slope of the tangent, and the slope of the tangent is changed only by the change in polarization (voltage drop) per unit current change, That is, it is a polarization resistance component. By the way, the value of the combined resistance corresponding to the current value at an arbitrary point of the battery is obtained by differentiating the two quadratic approximated curve expressions M1 and M2 (ΔV1 / ΔI, ΔV2 / ΔI).
By substituting the current value at an arbitrary point into the two primary linear equations obtained in this way, two values can be obtained. That is, since the change in polarization due to the increasing discharge current is different from the change in polarization due to the decreasing discharge current, the battery exhibits different combined resistance values when the current increases and when the discharge decreases.

【0034】更に具体的には、近似曲線式M1及びM2
を、それぞれ、V1=a1I2 +b1I+c1及びV2
=a2I2 +b2I+c2とすると、これらの近似曲線
式M1及びM2を微分してΔV1/ΔI=2a1I+b
1=R1及びΔV2/ΔI=2a2I+b2=R2なる
一次式が得られる。そして、任意の点における合成抵抗
R1及びR2は、上述のように、求めた一次の直線式に
任意の点の電流値を代入することによって求められる。
More specifically, approximate curve expressions M1 and M2
The respective, V1 = a1I 2 + b1I + c1 and V2
= A2I 2 + b2I + c2, these approximate curve expressions M1 and M2 are differentiated to obtain ΔV1 / ΔI = 2a1I + b
1 = R1 and ΔV2 / ΔI = 2a2I + b2 = R2. As described above, the combined resistances R1 and R2 at any point are obtained by substituting the current value at any point into the obtained linear equation.

【0035】実データに基づいて得られた図6中に記載
の具体的な2つの近似曲線式M1=0.00003I2
−0.01979I+12.03243とM2=0.0
0004I2 −0.01830I+11.72026の
場合、これらを微分することによって、M1′=0.0
0006I−0.01979=R1(I)とM2′=
0.00008I−0.018301=R2(I)なる
2つの一次式が得られる。この電流に対して変化する抵
抗を表す2つの電流−抵抗特性直線をグラフで表すと、
図7に示すようになる。図7に示す2つの直線は、電流
に対するバッテリの合成抵抗の変化を示すものであり、
合成抵抗中の純抵抗成分は電流に対して常に一定値を保
っているので、合成抵抗の変化の全ては、単位電流の変
化に対する合成抵抗中の分極抵抗成分、すなわちの単位
電流変化当たりの分極(電圧降下)の変化量によるもの
であることが理解できる。
Two specific approximate curve expressions M1 = 0.00003I 2 described in FIG. 6 obtained based on actual data.
−0.0197I + 12.03243 and M2 = 0.0
In the case of 0004I 2 −0.01830I + 1.772026, M1 ′ = 0.0
0006I-0.01979 = R1 (I) and M2 '=
Two first-order expressions are obtained, that is, 0.00008I-0.018301 = R2 (I). If two current-resistance characteristic lines representing the resistance that changes with respect to this current are represented by a graph,
As shown in FIG. The two straight lines shown in FIG. 7 show the change in the combined resistance of the battery with respect to the current,
Since the pure resistance component in the combined resistance always keeps a constant value with respect to the current, all the changes in the combined resistance are the polarization resistance components in the combined resistance with respect to the change in the unit current, that is, the polarization per unit current change. It can be understood that this is due to the amount of change in (voltage drop).

【0036】2つの二次の近似曲線式M1及びM2とこ
れらを微分して得た2つの一次式を参照して更に検討す
ると、式M1及びM2にて表される近似曲線が交わる放
電電流の最大値Ip(=100A)における点は特異点
である。この点での実データは同一の値であるにもかか
わらず、この点における接線の傾き、すなわち、2つの
一次式R1(I)及びR2(I)中の一次の項Iに10
0(A)を代入して得た2つの値R1(100)及びR
2(100)に違いがある。これは一方が電流が増大す
る放電時の近似曲線式、他方が電流が減少する放電時の
近似曲線式によるものであり、分極の発生の仕方が異な
っているから当然のことであり、図8に示すような傾斜
の異なる2つの接線が得られる。この違いを生じさせて
いる原因の全ては特異点を境に放電電流が増加から減少
に切り替わり、分極の変化の仕方に変化が生じた結果で
あり、これらの2点間に電流によって変化しない一定の
純抵抗の値が存在することが想像される。このことは、
各種のバッテリについて実測した純抵抗による電圧−電
流特性の傾きが、2つの近似曲線について得られる特異
点における接線の2つの傾きの中間の値を示すという経
験とも一致している。
Further examination with reference to two quadratic approximation curves M1 and M2 and two linear equations obtained by differentiating them, the discharge current of the intersection between the approximation curves represented by the equations M1 and M2 is obtained. The point at the maximum value Ip (= 100A) is a singular point. Although the actual data at this point has the same value, the slope of the tangent at this point, ie, the primary term I in the two linear equations R1 (I) and R2 (I), is 10
Two values R1 (100) and R1 obtained by substituting 0 (A)
2 (100) is different. This is due to the fact that one is based on the approximate curve equation at the time of discharge when the current increases, and the other is based on the approximate curve equation at the time of discharge where the current decreases. Thus, two tangents having different inclinations are obtained as shown in FIG. All of the causes of this difference are the result of the discharge current switching from an increase to a decrease at a singular point, resulting in a change in the way of changing the polarization. It is imagined that the value of the pure resistance exists. This means
This is consistent with the experience that the slope of the voltage-current characteristic due to the pure resistance actually measured for various types of batteries indicates a value between the two slopes of the tangent lines at the singular points obtained for the two approximate curves.

【0037】図7のグラフ中に示した純抵抗の点Rと合
成抵抗の変化との関係についてさらに分析すると、増大
する放電電流に対するV−I特性の第1の近似曲線式M
1を微分して得た直線式M1′は、放電電流が最大値に
向かって増大するに従って、単位電流増当たりの分極
(電圧降下)の変化量が徐々に低下し、単位電流変化当
たりの電圧変化を決定する分極抵抗成分が徐々に小さく
なることによって、合成抵抗が徐々に小さくなってい
る。しかし、特異点に至った後も、分極を増加し電圧降
下を増大させようとするバッテリ内の動作は停止しない
ため、特異点での見かけ上の合成抵抗の値は、純抵抗の
値よりも大きなもととなっている。よって、増大する放
電電流に対するV−I特性の第1の近似曲線式M1を微
分して得た直線式M1′の最大値での値、すなわち合成
抵抗の値は純抵抗の値よりも大きな値となる。
Further analysis of the relationship between the point R of the pure resistance and the change in the combined resistance shown in the graph of FIG. 7 shows that the first approximate curve expression M of the VI characteristic with respect to the increasing discharge current is obtained.
The linear equation M1 'obtained by differentiating 1 indicates that as the discharge current increases toward the maximum value, the amount of change in polarization (voltage drop) per unit current increase gradually decreases, and the voltage per unit current change As the polarization resistance component that determines the change gradually decreases, the combined resistance gradually decreases. However, even after reaching the singular point, the operation in the battery to increase the polarization and increase the voltage drop does not stop, so the apparent combined resistance value at the singular point is greater than the pure resistance value. It is a big source. Therefore, the value at the maximum value of the linear expression M1 'obtained by differentiating the first approximate curve expression M1 of the VI characteristic with respect to the increasing discharge current, that is, the value of the combined resistance is a value larger than the value of the pure resistance. It becomes.

【0038】上述のような分極を増加し電圧降下を増大
させようとするバッテリ内の動作は放電電流が減少に切
り替わってもしばらく継続する。このため、放電電流が
減少して純抵抗による電圧降下の減少があっても、分極
による電圧降下分の増加があるため、見かけ上、純抵抗
のみによる電圧増加よりも小さな電圧変化しか生じな
い。合成抵抗としては、純抵抗よりも小さい値を呈する
ことになる。しかし、放電電流の減少が続き、ある電流
値になると、分極の増加が停止し、減少に転じるように
なり、分極による電圧降下に変化が生じなくなったと
き、合成抵抗の値、すなわち接線の傾きは純抵抗のみの
値と等しくなる。
The operation in the battery for increasing the polarization and increasing the voltage drop as described above continues for a while even if the discharge current is switched to the decrease. For this reason, even if the discharge current decreases and the voltage drop due to the pure resistance decreases, there is an increase in the voltage drop due to the polarization, so that apparently only a smaller voltage change occurs than the voltage increase due to the pure resistance alone. As the combined resistance, the resistance is smaller than the pure resistance. However, when the discharge current continues to decrease and reaches a certain current value, the polarization stops increasing and starts to decrease.When the voltage drop due to the polarization does not change, the value of the combined resistance, that is, the slope of the tangent, Is equal to the value of pure resistance only.

【0039】さらに放電電流の減少が進み、ある値以下
に低下した後は、分極の解消の速度が徐々に速まって電
流の減少に対する電圧変化が純抵抗によるよりも大きな
り、結果として、合成抵抗の値が電流が減少するに従っ
て増大するようになる。
After the discharge current further decreases and drops below a certain value, the speed of the polarization elimination gradually increases, and the voltage change with respect to the decrease in the current becomes larger than that of the pure resistance. The resistance value increases as the current decreases.

【0040】以上のことから明らかなように、特異点で
ある放電電流の最大値の点での増大する放電電流に対す
るV−I特性の接線の傾きは純抵抗のみの傾きよりも大
きく、減少する放電電流に対するV−I特性の接線の傾
きは純抵抗のみの傾きよりも小さくなる。このことから
バッテリの純抵抗は、特異点における傾きの大きさを示
す2点の値の間に存在することがわかる。したがって、
純抵抗は2つの二次の近似曲線式M1及びM2を微分し
て求めた2つの一次式に放電電流の最大値を代入して求
めた2つの値の間に存在する値として測定することがで
きる。具体的には、2つの値R1及びR2の中間点の値
を、2つの点の値R1(Ip)及びR2(Ip)を加算
して2で割って求めることによって、純抵抗Rとして測
定できる。
As is apparent from the above, the slope of the tangent line of the VI characteristic with respect to the increasing discharge current at the point of the maximum value of the discharge current, which is a singular point, is larger than the slope of the pure resistance alone and decreases. The slope of the tangent to the VI characteristic with respect to the discharge current is smaller than the slope of the pure resistance alone. This indicates that the pure resistance of the battery exists between two values indicating the magnitude of the slope at the singular point. Therefore,
The pure resistance can be measured as a value existing between the two values obtained by substituting the maximum value of the discharge current into two linear expressions obtained by differentiating the two quadratic approximation curve expressions M1 and M2. it can. Specifically, the value of the intermediate point between the two values R1 and R2 is obtained by adding the values R1 (Ip) and R2 (Ip) of the two points and dividing by 2 to obtain a pure resistance R. .

【0041】そこで、車両用バッテリ純抵抗測定方法を
図7乃至図9を参照して先ず説明する。車両の負荷に電
力を供給するため車両に搭載された、例えばスタータモ
ータ、モータジェネレータ、走行用モータなどの大電流
を必要とする負荷が動作されると、バッテリからは所定
値を越えて単調増大し最大値から所定値以下に単調減少
する放電電流が流れる。このときのバッテリの端子電圧
と放電電流とを、例えば1msの周期にてサンプリング
することで、周期的に測定することによって、バッテリ
の端子電圧と放電電流との組が多数得られる。
The method of measuring the vehicle battery pure resistance will be described first with reference to FIGS. When a load that requires a large current, such as a starter motor, a motor generator, or a traction motor, mounted on the vehicle to supply power to the vehicle load is operated, the battery exceeds a predetermined value and monotonically increases. Then, a discharge current that monotonously decreases from the maximum value to a predetermined value or less flows. At this time, the battery terminal voltage and the discharge current are sampled at a cycle of, for example, 1 ms, and are periodically measured, whereby a large number of sets of the battery terminal voltage and the discharge current are obtained.

【0042】このようにして得られたバッテリの端子電
圧と放電電流との組の最新のものを、所定時間分、例え
ばRAMなどの書換可能な記憶手段としてのメモリに格
納、記憶して収集する。メモリに格納、記憶して収集し
た端子電圧と放電電流との組を用いて、最小二乗法によ
り、端子電圧と放電電流との相関を示す増大する放電電
流に対する電圧−電流特性の例えばV1(I)=a1I
2 +b1+c1なる2次式で表される第1の近似曲線式
M1と、減少する放電電流に対する電圧−電流特性の例
えばV2(I)=a2I2 +b2I+c2なる2次式で
表される第2の近似曲線式M2とを求める。
The latest set of the battery terminal voltage and the discharge current obtained in this way is stored for a predetermined period of time, for example, in a memory such as a RAM as rewritable storage means, and is collected. . Using the set of the terminal voltage and the discharge current stored and stored in the memory, and using the least squares method, for example, V1 (I) of the voltage-current characteristic with respect to the increasing discharge current indicating the correlation between the terminal voltage and the discharge current ) = A1I
A first approximation curve equation M1 represented by a quadratic expression that 2 + b1 + c1, voltage for decreasing the discharge current - for example, V2 of the current characteristic (I) = a2I 2 + b2I + c2 becomes the second approximation expressed by a quadratic equation A curve equation M2 is obtained.

【0043】次に、第1の近似曲線式M1によって表さ
れる電圧−電流特性曲線上と、第2の近似曲線式M2に
よって表される電圧−電流特性曲線上の任意の点におけ
る接線を求めるため、第1の近似曲線式M1と第2の近
似曲線式M2とをそれぞれ微分して一次の直線式M1′
及びM2′をそれぞれ求める。この一次の直線式に任意
の点の電流値を代入することによって、その任意の点に
おける近似曲線式の接線の傾き、すなわち、第1の近似
曲線式M1と第2の近似曲線式M2によって表される電
圧−電流特性曲線上の任意の点におけるバッテリの合成
抵抗を求めることができる。特に、2つの電圧−電流特
性曲線上の放電電流の最大値の点の接線の傾きを求める
ため、第1の近似曲線式M1及び第2の近似曲線式M2
をそれぞれ微分して求めた一次の直線式M1′=R1及
びM2′=R2に最大値の値、例えば100Aを代入す
る。その後、上述のようにして求めた2つの近似曲線式
M1及びM2の最大値における2つの接線の傾きを加算
して2で割る演算を行うことによって、2つの接線の傾
きの間の中間値を、電流によって変化しないバッテリの
合成抵抗中の純抵抗Rとして測定することができる。
Next, a tangent at an arbitrary point on the voltage-current characteristic curve represented by the first approximate curve equation M1 and an arbitrary point on the voltage-current characteristic curve represented by the second approximate curve equation M2 is determined. Therefore, the first approximation curve equation M1 and the second approximation curve equation M2 are respectively differentiated to obtain a first-order linear equation M1 '.
And M2 '. By substituting the current value at an arbitrary point into this linear equation, the slope of the tangent of the approximate curve equation at the arbitrary point, that is, the first approximate curve equation M1 and the second approximate curve equation M2, is used. It is possible to obtain the combined resistance of the battery at an arbitrary point on the obtained voltage-current characteristic curve. In particular, the first approximate curve expression M1 and the second approximate curve expression M2 are used to determine the slope of the tangent to the point of the maximum value of the discharge current on the two voltage-current characteristic curves.
Are substituted for the primary linear expressions M1 '= R1 and M2' = R2, respectively, obtained by differentiating. Then, the intermediate value between the slopes of the two tangents is calculated by adding the slopes of the two tangents at the maximum values of the two approximate curve expressions M1 and M2 obtained as described above and dividing the sum by two. , Can be measured as the pure resistance R in the combined resistance of the battery that does not change with current.

【0044】上述したようなことを可能にして本発明の
車両用バッテリ純抵抗測定方法を実施する装置の具体的
な実施の形態を、図面に戻って以下説明する。
A specific embodiment of an apparatus for performing the above-described method for measuring a battery pure resistance of a vehicle which enables the above-described operation will be described below with reference to the drawings.

【0045】図2は本発明の車両用バッテリ純抵抗測定
方法を適用した本発明の一実施形態に係る車両用バッテ
リ純抵抗測定装置の概略構成を一部ブロックにて示す説
明図であり、図中符号1で示す本実施形態の車両用バッ
テリ純抵抗測定装置は、エンジン3に加えてモータジェ
ネレータ5を有するハイブリッド車両に搭載されてい
る。
FIG. 2 is an explanatory diagram showing, in partial blocks, a schematic configuration of a vehicle battery pure resistance measuring apparatus according to an embodiment of the present invention to which the vehicle battery pure resistance measuring method of the present invention is applied. The vehicle battery pure resistance measurement device according to the present embodiment, which is indicated by the reference numeral 1, is mounted on a hybrid vehicle having a motor generator 5 in addition to the engine 3.

【0046】そして、このハイブリッド車両は、通常時
はエンジン3の出力のみをドライブシャフト7からディ
ファレンシャルケース9を介して車輪11に伝達して走
行させ、高負荷時には、バッテリ13からの電力により
モータジェネレータ5をモータとして機能させて、エン
ジン3の出力に加えてモータジェネレータ5の出力をド
ライブシャフト7から車輪11に伝達し、アシスト走行
を行わせるように構成されている。
In this hybrid vehicle, normally, only the output of the engine 3 is transmitted from the drive shaft 7 to the wheels 11 via the differential case 9 to run the vehicle. The motor 5 is configured to function as a motor, and the output of the motor generator 5 is transmitted from the drive shaft 7 to the wheels 11 in addition to the output of the engine 3 to perform the assist traveling.

【0047】また、このハイブリッド車両は、減速時や
制動時にモータジェネレータ5をジェネレータ(発電
機)として機能させ、運動エネルギを電気エネルギに変
換してバッテリ13を充電させるように構成されてい
る。
The hybrid vehicle is configured such that the motor generator 5 functions as a generator (generator) at the time of deceleration or braking, and converts the kinetic energy into electric energy to charge the battery 13.

【0048】なお、モータジェネレータ5はさらに、図
示しないスタータスイッチのオンに伴うエンジン3の始
動時に、エンジン3のフライホイールを強制的に回転さ
せるセルモータとして用いられるが、その場合にモータ
ジェネレータ5には、短時間に大きな電流が流される。
スタータスイッチのオンによりモータジェネレータ5に
よってエンジン3が始動されると、イグニッションキー
(図示せず。)の操作解除に伴って、スタータスイッチ
がオフになってイグニッションスイッチやアクセサリス
イッチのオン状態に移行し、これに伴ってバッテリ13
から流れる放電電流は、定常電流に移行する。
The motor generator 5 is further used as a cell motor for forcibly rotating the flywheel of the engine 3 when the engine 3 is started by turning on a starter switch (not shown). A large current flows in a short time.
When the engine 3 is started by the motor generator 5 by turning on the starter switch, the starter switch is turned off and the ignition switch and the accessory switch are turned on with the release of the operation of an ignition key (not shown). And the battery 13
The discharge current flowing from the battery shifts to a steady current.

【0049】話を構成の説明に戻すと、本実施形態の車
両用バッテリ純抵抗測定装置1は、アシスト走行用のモ
ータやセルモータとして機能するモータジェネレータ5
等、電装品に対するバッテリ13の放電電流Iや、ジェ
ネレータとして機能するモータジェネレータ5からのバ
ッテリ13に対する充電電流を検出する電流センサ15
と、バッテリ13に並列接続した無限大抵抗を有し、バ
ッテリ13の端子電圧Vを検出する電圧センサ17とを
備えている。
Returning to the description of the configuration, the vehicle battery pure resistance measuring apparatus 1 of the present embodiment comprises a motor generator 5 functioning as a motor for assisting traveling or a cell motor.
A current sensor 15 for detecting a discharge current I of the battery 13 with respect to electric components and a charging current of the motor generator 5 functioning as a generator with respect to the battery 13.
And a voltage sensor 17 having an infinite resistance connected in parallel with the battery 13 and detecting a terminal voltage V of the battery 13.

【0050】また、本実施形態の車両用バッテリ純抵抗
測定装置1は、上述した電流センサ15及び電圧センサ
17の出力がインタフェース回路(以下、「I/F」と
略記する。)21におけるA/D変換後に取り込まれる
マイクロコンピュータ(以下、「マイコン」と略記す
る。)23をさらに備えている。
Further, in the vehicle battery pure resistance measuring apparatus 1 of the present embodiment, the output of the current sensor 15 and the voltage sensor 17 is A / A in the interface circuit (hereinafter abbreviated as “I / F”) 21. It further includes a microcomputer (hereinafter abbreviated as “microcomputer”) 23 taken in after the D conversion.

【0051】そして、前記マイコン23は、CPU23
a、RAM23b、及び、ROM23cを有しており、
このうち、CPU23aには、RAM23b及びROM
23cの他、前記I/F21が接続されており、また、
上述した図示しないスタータスイッチ、イグニッション
スイッチやアクセサリスイッチ、モータジェネレータ5
以外の電装品(負荷)のスイッチ等が、さらに接続され
ている。
The microcomputer 23 has a CPU 23
a, a RAM 23b, and a ROM 23c,
The CPU 23a includes a RAM 23b and a ROM
23c, the I / F 21 is connected.
Starter switch, ignition switch, accessory switch, and motor generator 5 (not shown)
Switches and the like of other electrical components (loads) are further connected.

【0052】前記RAM23bは、各種データ記憶用の
データエリア及び各種処理作業に用いるワークエリアを
有しており、前記ROM23cには、CPU23aに各
種処理動作を行わせるための制御プログラムが格納され
ている。
The RAM 23b has a data area for storing various data and a work area used for various processing operations. The ROM 23c stores a control program for causing the CPU 23a to perform various processing operations. .

【0053】なお、上述した電流センサ15及び電圧セ
ンサ17の出力である電流値及び電圧値は、短い周期で
高速にサンプリングされてI/F21を介して、マイコ
ン23のCPU23aに取り込まれ、取り込まれた電流
値及び電圧値は前記RAM23bのデータエリア(記憶
手段に相当する)に所定期間前のものから最新のものま
での分、格納、記憶される。この記憶された実データ
は、バッテリの電圧−電流特性の2次の近似曲線式を求
めるために利用される。
The current value and the voltage value output from the current sensor 15 and the voltage sensor 17 are sampled at high speed in a short cycle, and are taken in by the CPU 23a of the microcomputer 23 via the I / F 21 and taken in. The current value and the voltage value are stored and stored in a data area (corresponding to a storage means) of the RAM 23b from a value before a predetermined period to a latest value. The stored actual data is used to obtain a second-order approximate curve equation of the voltage-current characteristics of the battery.

【0054】次に、前記ROM23cに格納された制御
プログラムに従いCPU23aが行う処理を、図9を参
照して説明する。
Next, the processing performed by the CPU 23a in accordance with the control program stored in the ROM 23c will be described with reference to FIG.

【0055】バッテリ13からの給電を受けてマイコン
23が起動しプログラムがスタートすると、CPU23
aは、まず初期設定を実行する(ステップS1)。
When the microcomputer 23 is started by receiving power supply from the battery 13 and the program is started, the CPU 23
First, a performs initial setting (step S1).

【0056】ステップS1の初期設定が済んだならば、
次に、CPU23aは、電流センサ15の検出したバッ
テリ13の放電電流Iと電圧センサ17の検出したバッ
テリ13の端子電圧VとのA/D変換値を対にしてI/
F21を介して読み込み、読み込んだ実データの最新の
ものを、所定時間分、RAM23bのデータエリアに格
納、記憶して収集する実データ収集処理を実行する(ス
テップS2)。このステップS2における実データ収集
処理は常に継続的に行われる。
When the initial setting of step S1 is completed,
Next, the CPU 23a pairs the A / D conversion value between the discharge current I of the battery 13 detected by the current sensor 15 and the terminal voltage V of the battery 13 detected by the voltage sensor 17,
A real data collection process is performed in which the latest real data read through F21 is stored in the data area of the RAM 23b for a predetermined time, stored, and collected (step S2). The actual data collection process in step S2 is always performed continuously.

【0057】続いて、ステップS2において収集された
放電電流Iと端子電圧Vとの最新の所定時間分の実デー
タは分析され、最小二乗法を適用して、電圧−電流特性
の2次の近似曲線式を求めるのに適当なものであるかど
うかが判定される。すなわち、バッテリから所定値を越
えて単調増大し最大値から所定値以下に単調減少する放
電電流が流れているかどうかを分析する分析処理を行う
(ステップS3)。
Subsequently, the actual data of the latest predetermined time between the discharge current I and the terminal voltage V collected in step S2 is analyzed, and the least-squares method is applied to obtain a second-order approximation of the voltage-current characteristic. It is determined whether it is appropriate to determine the curve equation. That is, an analysis process is performed to analyze whether a discharge current that monotonically increases from the battery beyond a predetermined value and monotonically decreases from the maximum value to a predetermined value or less flows (step S3).

【0058】ステップS3における分析の結果、電圧−
電流特性の2次の近似曲線式を求めるのに適当なものが
収集されているとき(ステップS4のY)、増大する放
電電流に対する電圧−電流特性のV1(I)=a1I2
+b1+C1なる2次式で表される第1の近似曲線式M
1と、減少する放電電流に対する電圧−電流特性の例え
ばV2(I)=a2I2 +b2I+C2なる2次式で表
される第2の近似曲線式M2とを求める近似曲線式算出
処理を実行する(ステップS5)。
As a result of the analysis in step S3, the voltage-
When appropriate one for obtaining a second-order approximation curve equation of current characteristics are collected (Y of step S4), and a voltage for increasing the discharge current - current characteristic V1 (I) = a1I 2
+ B1 + C1 a first approximate curve expression M represented by a quadratic expression
1, the voltage for decreasing the discharge current - for example, V2 of the current characteristic (I) = a2I 2 + b2I + C2 becomes finding a second approximation curve equation M2 represented by the quadratic equation to perform an approximate curve equation calculation process (step S5).

【0059】ステップS5の近似曲線式算出処理によっ
て、2つの近似曲線式M1及びM2が求まった後、次
に、バッテリの純抵抗を求めるための演算処理を実行す
る(ステップS6)。ステップS6における演算処理で
は、増大する放電電流に対する電圧−電流特性のV1
(I)=a1I2 +b1+c1なる2次式で表される第
1の近似曲線式M1と、減少する放電電流に対する電圧
−電流特性の例えばV2(I)=a2I2 +b2I+c
2なる2次式で表される第2の近似曲線式M2とをそれ
ぞれ微分して2つの一次の直線式を求める。
After the two approximate curve equations M1 and M2 are obtained by the approximate curve equation calculation processing in step S5, next, an arithmetic processing for obtaining the pure resistance of the battery is executed (step S6). In the calculation processing in step S6, V1 of the voltage-current characteristic with respect to the increasing discharge current
(I) = the first approximation curve equation M1 represented by a1I 2 + b1 + c1 becomes quadratic, voltage for decreasing the discharge current - current characteristic example V2 (I) = a2I 2 + b2I + c
A second linear equation is obtained by differentiating the second approximate curve equation M2 expressed by two quadratic equations.

【0060】ステップS6における演算処理では、さら
に、求めた2つの一次の直線式近に最大値を代入して最
大値における2つの接線の傾きを求める。そして、ステ
ップS6において求めた2つの接線の傾きを加算平均
し、この値をバッテリの純抵抗として測定し、この測定
した純抵抗は種々の目的で使用するため、RAM23b
のデータエリアに格納されて記憶される(ステップS
7)。ステップS7の測定処理が終了したら、次にステ
ップS4の判定がYとなって、ステップS5の近似曲線
式算出処理、ステップS6の演算処理を実行する機会が
くるまで、ステップS2の収集処理とステップS3の分
析処理とを繰り返し実行する。
In the calculation processing in step S6, the maximum value is further substituted near the two primary linear equations thus obtained, and the slopes of the two tangents at the maximum value are obtained. Then, the slopes of the two tangents determined in step S6 are averaged, and this value is measured as the pure resistance of the battery. The measured pure resistance is used for various purposes.
Is stored in the data area (step S
7). After the measurement processing in step S7 is completed, the determination in step S4 becomes Y, and the collection processing and step S2 in step S2 are performed until there is an opportunity to execute the approximate curve expression calculation processing in step S5 and the calculation processing in step S6. The analysis processing of S3 is repeatedly executed.

【0061】また、本実施形態の車両用バッテリ純抵抗
測定装置1ではフローチャートにおけるステップS2が
請求項中の電圧・電流測定手段に対する処理となってお
り、ステップS5が請求項中の近似曲線算出手段に対応
する処理となっており、ステップS6が請求項中の演算
手段に対応する処理となっている。
Further, in the vehicle battery pure resistance measuring apparatus 1 of the present embodiment, step S2 in the flowchart is a process for the voltage / current measuring means in the claims, and step S5 is an approximate curve calculating means in the claims. And step S6 is a process corresponding to the calculating means in the claims.

【0062】次に、上述のように構成された本実施形態
の車両用バッテリ純抵抗測定装置1の動作(作用)につ
いて説明する。
Next, the operation (action) of the vehicle battery resistance measuring apparatus 1 of the present embodiment configured as described above will be described.

【0063】まず、ハイブリッド車両のモータジェネレ
ータ5以外の電装品(負荷)が作動したり、モータジェ
ネレータ5がモータとして機能するように作動してい
て、それに伴いバッテリ13が放電を行っている状態で
は、負荷に所定値を越えて単調増大し最大値から所定値
以下に単調減少する放電電流が流れたときのバッテリの
端子電圧と放電電流とが周期的に測定される。
First, in a state where electric components (loads) other than the motor generator 5 of the hybrid vehicle are operating or the motor generator 5 is operating so as to function as a motor and the battery 13 is discharging accordingly. The terminal voltage and the discharge current of the battery are periodically measured when a discharge current that monotonically increases beyond the predetermined value and monotonically decreases from the maximum value to a predetermined value or less flows to the load.

【0064】また、本実施形態の車両用バッテリ純抵抗
測定装置1では、周期的に測定された最新のものが、所
定時間分、RAM23bのデータエリアに格納、記憶し
て収集され、収集された放電電流Iと端子電圧Vとの最
新の所定時間分の実データは分析され、最小二乗法を適
用して、電圧−電流特性の2次の近似曲線式を求めるの
に適当なものであるかどうかが判定される。すなわち、
バッテリから所定値を越えて単調増大し最大値から所定
値以下に単調減少する放電電流が流れているかどうかが
分析される。
In the vehicle battery pure resistance measuring apparatus 1 of this embodiment, the latest one periodically measured is stored and stored in the data area of the RAM 23b for a predetermined time, and collected. The actual data of the latest predetermined time between the discharge current I and the terminal voltage V is analyzed, and is it suitable for obtaining a quadratic approximate curve expression of the voltage-current characteristic by applying the least squares method? Is determined. That is,
An analysis is made as to whether a discharge current that monotonically increases from a battery beyond a predetermined value and monotonically decreases from a maximum value to a predetermined value or less flows.

【0065】このため、電圧−電流特性の2次の近似曲
線式を求めるのに適当なものが収集されるまで、近似曲
線式算出処理が行われることがなく、近似曲線式算出処
理も、過去に収集した所定時間分の実データを用いて行
わればよいので、端子電圧と放電電流との周期的な測定
に同期して処理を行わなくてもよく、早い処理速度が求
められない。
For this reason, the approximate curve expression calculation process is not performed until an appropriate one for obtaining the secondary approximate curve expression of the voltage-current characteristic is collected. The processing need not be performed in synchronization with the periodic measurement of the terminal voltage and the discharge current, and a high processing speed is not required.

【0066】[0066]

【発明の効果】以上説明したように、請求項1又は4記
載の発明によれば、車両の通常の使用状態で負荷に電力
を供給したときのバッテリの端子電圧と放電電流とを測
定し、この測定の結果得られるデータを処理して、増大
する放電電流に対する電圧−電流特性の第1の近似曲線
式と減少する放電電流に対する電圧−電流特性の第2の
近似曲線式とを求め、求めた2つの直線式の最大値に対
応する2つの値の間にバッテリの呈する合成抵抗中の純
抵抗があるとして純抵抗を測定しているので、バッテリ
を通常状態で使用している際、すなわち、車両使用中で
もバッテリの純抵抗を測定できる車両用バッテリ純抵抗
測定方法及び装置を提供することができる。
As described above, according to the first or fourth aspect of the present invention, the terminal voltage and the discharge current of the battery when the power is supplied to the load in the normal use state of the vehicle are measured. The data obtained as a result of this measurement is processed to obtain a first approximation curve expression of the voltage-current characteristic for the increasing discharge current and a second approximation curve expression of the voltage-current characteristic for the decreasing discharge current. Since the pure resistance is measured assuming that there is a pure resistance in the combined resistance exhibited by the battery between the two values corresponding to the maximum values of the two linear formulas, when the battery is used in a normal state, Further, it is possible to provide a method and an apparatus for measuring a battery pure resistance for a vehicle, which can measure the pure resistance of the battery even when the vehicle is in use.

【0067】上述した請求項2又は5記載の発明によれ
ば、純抵抗を測定するために2点間の傾斜を求めるため
の少なくとも一方が実データに基づくものとなり、実際
から大きく外れた点を使用することをなくすることがで
きるので、純抵抗の測定精度を安定したもに保つことの
できる車両用バッテリ純抵抗測定方法及び装置を提供す
ることができる。
According to the second or fifth aspect of the present invention, at least one of the methods for obtaining the slope between the two points for measuring the pure resistance is based on the actual data. Since it is not necessary to use the method, it is possible to provide a method and an apparatus for measuring a battery pure resistance for a vehicle, which can keep the measurement precision of the pure resistance stable.

【0068】上述した請求項3又は6記載の発明によれ
ば、記憶した実データを用いて、第1の近似曲線式と第
2の近似曲線式とを求めるに必要な放電電流が流れたこ
とを確認してから、記憶してある実データを用いて第1
の近似曲線式と第2の近似曲線式とを求めることができ
るので、無駄な処理を省くとともに、リアルタイムな高
速処理を行うことなく純抵抗を測定することのできる車
両用バッテリ純抵抗測定方法及び装置を提供することが
できる。
According to the third or sixth aspect of the present invention, the discharge current necessary for obtaining the first approximate curve expression and the second approximate curve expression flows using the stored actual data. Is confirmed, and the first using the stored real data
And the second approximation curve expression can be obtained, so that a waste battery process can be omitted and the pure resistance measurement method for a vehicle battery can measure the pure resistance without performing real-time high-speed processing. An apparatus can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の車両用バッテリ純抵抗測定装置の基本
構成を示すブロック図である。
FIG. 1 is a block diagram showing a basic configuration of a vehicle battery pure resistance measuring device of the present invention.

【図2】本発明の車両用バッテリ純抵抗測定方法を適用
した本発明の一実施形態に係る車両用バッテリ純抵抗測
定装置の概略構成を一部ブロックにて示す説明図であ
る。
FIG. 2 is an explanatory diagram showing, in partial blocks, a schematic configuration of a vehicle battery pure resistance measuring apparatus according to an embodiment of the present invention to which the vehicle battery pure resistance measuring method of the present invention is applied.

【図3】1次近似式で表したV−I特性の一例を示すグ
ラフである。
FIG. 3 is a graph showing an example of a VI characteristic represented by a first-order approximation formula.

【図4】2次近似式で表したV−I特性の一例を示すグ
ラフである。
FIG. 4 is a graph showing an example of a VI characteristic represented by a second-order approximation formula.

【図5】電流に対する分極の変化の一例を示すグラフで
ある。
FIG. 5 is a graph showing an example of a change in polarization with respect to a current.

【図6】1回の放電によって得られる2つの2次の近似
曲線式で表される近似特性曲線の一例を示すグラフであ
る。
FIG. 6 is a graph showing an example of an approximate characteristic curve represented by two secondary approximate curve expressions obtained by one discharge.

【図7】図6に示した2つの近似特性曲線上の任意の点
における接線の傾きを示すグラフである。
FIG. 7 is a graph showing the inclination of a tangent at an arbitrary point on the two approximate characteristic curves shown in FIG.

【図8】図6の2つの近似特性曲線に対して曲線上の放
電電流が最大値となる点における接線を書き込んだグラ
フである。
FIG. 8 is a graph in which tangent lines are drawn at points where the discharge current on the curves has the maximum value with respect to the two approximate characteristic curves in FIG. 6;

【図9】図2中のマイコンが純抵抗測定のため予め定め
たプログラムに従って行う処理を示すフローチャートで
ある。
9 is a flowchart showing processing performed by the microcomputer in FIG. 2 according to a predetermined program for measuring pure resistance.

【図10】従来のバッテリの純抵抗の測定の仕方を説明
するためのグラフである。
FIG. 10 is a graph for explaining a method of measuring a pure resistance of a conventional battery.

【符号の説明】[Explanation of symbols]

23a−1 電圧・電流測定手段(CPU) 23a−2 近似曲線式算出手段(CPU) 23a−3 演算手段(CPU) 23b 記憶手段(RAM) 23a-1 Voltage / current measurement means (CPU) 23a-2 Approximate curve expression calculation means (CPU) 23a-3 Calculation means (CPU) 23b Storage means (RAM)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02J 7/10 H02J 7/10 B H (72)発明者 榎本 倫人 静岡県裾野市御宿1500 矢崎総業株式会社 内 (72)発明者 川口 智博 静岡県裾野市御宿1500 矢崎総業株式会社 内 Fターム(参考) 2G016 CA03 CB01 CB06 CB12 CB21 CC01 CC02 CC03 CC16 CC24 CC27 CC28 5G003 BA01 CA01 CA11 CC02 DA06 EA08 FA06 GB06 GC05 5H030 AA06 AS08 FF42 FF44 FF52 5H115 PA08 PG04 PI16 PO02 PU01 PU21 QE12 SE06 TI02 TI05 TI06 TI10 TR19 TU16 TU17──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02J 7/10 H02J 7/10 BH (72) Inventor Tomohito Enomoto 1500 Onjuku 1500, Susono City, Shizuoka Prefecture In-house (72) Inventor Tomohiro Kawaguchi 1500 Onjuku, Susono-shi, Shizuoka Prefecture F-term (reference) 2G016 CA03 CB01 CB06 CB12 CB21 CC01 CC02 CC03 CC16 CC24 CC27 CC28 5G003 BA01 CA01 CA11 CC02 DA06 EA08 FA06 GB06 GC05 5H030A AS08 FF42 FF44 FF52 5H115 PA08 PG04 PI16 PO02 PU01 PU21 QE12 SE06 TI02 TI05 TI06 TI10 TR19 TU16 TU17

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 車両の負荷に電力を供給するため車両に
搭載されたバッテリの純抵抗を測定する車両用バッテリ
純抵抗測定方法において、 前記負荷に所定値を越えて単調増大し最大値から所定値
以下に単調減少する放電電流が流れたときの前記バッテ
リの端子電圧と放電電流とを周期的に測定してこれら端
子電圧と放電電流との相関を示す前記増大する放電電流
に対する電圧−電流特性の第1の近似二次曲線式と前記
減少する放電電流に対する電圧−電流特性の第2の近似
二次曲線式とを求めると共に、該求めた2つの近似二次
曲線式をそれぞれ微分して前記増大する放電電流及び前
記減少する放電電流に対して前記バッテリが呈する合成
抵抗の変化を示す2つの直線式を求め、 該求めた2つの直線式の前記最大値に対応する2つの値
の間に前記バッテリの呈する合成抵抗中の純抵抗がある
として純抵抗を測定することを特徴とする車両用バッテ
リ純抵抗測定方法。
1. A vehicle battery pure resistance measuring method for measuring the pure resistance of a battery mounted on a vehicle for supplying power to a load of the vehicle, wherein the load monotonically increases beyond a predetermined value and increases from a maximum value to a predetermined value. A voltage-current characteristic for the increasing discharge current, which periodically measures the terminal voltage and the discharge current of the battery when a discharge current that monotonously decreases below the value flows and indicates a correlation between the terminal voltage and the discharge current. And a second approximate quadratic curve equation of the voltage-current characteristic with respect to the decreasing discharge current, and differentiating the two approximate quadratic curve equations, Two linear equations showing the change in the combined resistance exhibited by the battery with respect to the increasing discharge current and the decreasing discharge current are obtained, and between two values corresponding to the maximum value of the obtained two linear equations. Vehicle battery pure resistance measuring method and measuring the net resistance as there is a pure resistance in the combined resistance presented by the serial battery.
【請求項2】 請求項1記載の車両用バッテリ純抵抗測
定方法において、 前記2つの値の中間点の値を前記純抵抗として測定する
ことを特徴とする車両用バッテリ純抵抗測定方法。
2. The vehicle battery pure resistance measuring method according to claim 1, wherein a value of an intermediate point between the two values is measured as the pure resistance.
【請求項3】 請求項1又は2記載の車両用バッテリ純
抵抗測定方法において、 前記第1の近似曲線式と前記第2の近似曲線式とを求め
るに当たって、周期的に測定した前記バッテリの端子電
圧と放電電流とを最新の所定時間分収集して格納、記憶
しておくことを特徴とする車両用バッテリ純抵抗測定方
法。
3. The method of measuring a battery pure resistance for a vehicle according to claim 1, wherein the first approximate curve equation and the second approximate curve equation are periodically measured when obtaining the first approximate curve equation and the second approximate curve equation. A method for measuring a battery pure resistance for a vehicle, wherein a voltage and a discharge current are collected, stored, and stored for the latest predetermined time.
【請求項4】 車両の負荷に電力を供給するため車両に
搭載されたバッテリの純抵抗を測定する車両用バッテリ
純抵抗測定装置において、 前記負荷に所定値を越えて単調増大し最大値から所定値
以下に単調減少する放電電流が流れたときの前記バッテ
リの端子電圧と放電電流とを周期的に測定する電圧・電
流測定手段と、 該電圧・電流測定手段によって測定した端子電圧と放電
電流との相関を示す前記増大する放電電流に対する電圧
−電流特性の第1の近似曲線式と前記減少する放電電流
に対する電圧−電流特性の第2の近似曲線式とを求める
近似曲線式算出手段と、 該近似曲線式算出手段により求めた前記2つの近似二次
曲線式をそれぞれ微分して前記増大する放電電流及び前
記減少する放電電流に対して前記バッテリが呈する合成
抵抗の変化を示す2つの直線式を求め、該求めた2つの
直線式の前記最大値に対応する2つの値を求める演算手
段と、 該演算手段によって求めた前記2つの値の間に前記バッ
テリの呈する合成抵抗中の純抵抗があるとして純抵抗を
測定することを特徴とする車両用バッテリ純抵抗測定装
置。
4. A vehicle battery pure resistance measuring device for measuring a pure resistance of a battery mounted on a vehicle to supply power to a load of the vehicle, wherein the load monotonically increases beyond a predetermined value and increases from a maximum value to a predetermined value. A voltage / current measuring means for periodically measuring a terminal voltage and a discharging current of the battery when a discharging current monotonously decreasing below the value flows; and a terminal voltage and a discharging current measured by the voltage / current measuring means. Approximation curve expression calculating means for obtaining a first approximation curve expression of a voltage-current characteristic with respect to the increasing discharge current and a second approximation curve expression of the voltage-current characteristic with respect to the decreasing discharge current. The two approximate quadratic curve equations obtained by the approximate curve equation calculation means are respectively differentiated to calculate the combined resistance of the battery with respect to the increasing discharge current and the decreasing discharge current. Calculating means for obtaining two linear expressions indicating the change, and obtaining two values corresponding to the maximum values of the obtained two linear expressions; and presenting the battery between the two values obtained by the arithmetic means. A battery pure resistance measuring device for a vehicle, wherein the pure resistance is measured assuming that there is a pure resistance in the combined resistance.
【請求項5】 請求項4記載の車両用バッテリ純抵抗測
定装置において、 前記2つの値の中間点の値を前記純抵抗として測定する
ことを特徴とする車両用バッテリ純抵抗測定装置。
5. The vehicle battery pure resistance measuring device according to claim 4, wherein a value of an intermediate point between the two values is measured as the pure resistance.
【請求項6】 請求項4又は5記載の車両用バッテリ純
抵抗測定装置において、 前記近似曲線式算出手段は、前記第1の近似曲線式と前
記第2の近似曲線式を求めるために、前記電圧・電流測
定手段により周期的に測定した前記バッテリの端子電圧
と放電電流とを、最新の所定時間分収集して格納、記憶
する記憶手段を有することを特徴とする車両用バッテリ
純抵抗測定装置。
6. The vehicle battery pure resistance measuring device according to claim 4, wherein the approximate curve equation calculating means is configured to determine the first approximate curve equation and the second approximate curve equation. A battery pure resistance measuring device for a vehicle, comprising storage means for collecting, storing, and storing terminal voltage and discharge current of the battery periodically measured by a voltage / current measuring means for a latest predetermined time. .
JP2001048637A 2001-02-23 2001-02-23 Vehicle battery pure resistance measuring method and apparatus Expired - Fee Related JP3908913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001048637A JP3908913B2 (en) 2001-02-23 2001-02-23 Vehicle battery pure resistance measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001048637A JP3908913B2 (en) 2001-02-23 2001-02-23 Vehicle battery pure resistance measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2002249006A true JP2002249006A (en) 2002-09-03
JP3908913B2 JP3908913B2 (en) 2007-04-25

Family

ID=18909871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001048637A Expired - Fee Related JP3908913B2 (en) 2001-02-23 2001-02-23 Vehicle battery pure resistance measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP3908913B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050234A1 (en) * 2003-11-19 2005-06-02 Yazaki Corporation Saturation polarization estimation method and device, and discharge-enabled capacitance estimation method
JP2011103748A (en) * 2009-11-11 2011-05-26 Sanyo Electric Co Ltd Method for calculating available charging and discharging current of battery, and power supply device and vehicle with the same
CN111999667A (en) * 2020-08-21 2020-11-27 惠州亿纬锂能股份有限公司 Method for evaluating internal resistance of battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050234A1 (en) * 2003-11-19 2005-06-02 Yazaki Corporation Saturation polarization estimation method and device, and discharge-enabled capacitance estimation method
JP2011103748A (en) * 2009-11-11 2011-05-26 Sanyo Electric Co Ltd Method for calculating available charging and discharging current of battery, and power supply device and vehicle with the same
CN111999667A (en) * 2020-08-21 2020-11-27 惠州亿纬锂能股份有限公司 Method for evaluating internal resistance of battery

Also Published As

Publication number Publication date
JP3908913B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
US20070096743A1 (en) Method and apparatus for judging deterioration of battery
JP2001021628A (en) Apparatus for measuring capacity of battery with rechargeable capacity calculation function by using temperature sensor
JP2004045375A (en) Battery state monitoring device, saturation polarization detection method and dischargeable capacity detection method
JP2002243814A (en) Method and instrument for measuring pure resistance of battery for vehicle
JP3986992B2 (en) Battery dischargeable capacity estimation method and apparatus
JP2004301780A (en) Battery state monitoring device, its method, and dischargeable capacity detecting method
JP3930777B2 (en) Battery degradation degree calculation method and apparatus
US6788068B2 (en) Method and device for measuring pure resistance of on-vehicle battery by periodically measuring a discharge current and terminal voltage while a rush current flows into a constant load
JP2004301779A (en) Battery state monitoring device and its method
CN104950181A (en) Storage battery internal resistance measuring method based on change of charging current and device thereof
JP2002303658A (en) Method and apparatus for calculating correction coefficient for charged capacity state in battery
JP3817141B2 (en) Deterioration degree determination method and apparatus for vehicle battery
JP2002168929A (en) Method and device for measuring genuine resistance of battery for vehicle
JP2002249006A (en) Method and device for measuring battery pure resistance for vehicle
JP4383020B2 (en) In-vehicle battery pure resistance measuring method and apparatus
JP3986991B2 (en) Dischargeable capacity detection method
JP3488135B2 (en) Battery remaining capacity measurement device
JP2002303646A (en) Method and apparatus for measuring pure resistance of on-vehicle battery
JP3869666B2 (en) Vehicle battery charge state measuring method and apparatus
KR20070020322A (en) Method and apparatus for judging deterioration of battery
JP3825660B2 (en) Method and apparatus for calculating open circuit voltage of in-vehicle battery, method and apparatus for detecting charge capacity state of in-vehicle battery
JP2004301784A (en) Dischargeable capacity estimating method and device for battery
JP2005077128A (en) Detector and method for detecting battery condition
JP3976633B2 (en) Discharge voltage drop component calculation method in battery, and discharge voltage drop component separation calculation method and apparatus
JP3845303B2 (en) In-vehicle battery current-voltage characteristic measuring method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3908913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees