JP3908870B2 - Fertilizer application method - Google Patents

Fertilizer application method Download PDF

Info

Publication number
JP3908870B2
JP3908870B2 JP01439799A JP1439799A JP3908870B2 JP 3908870 B2 JP3908870 B2 JP 3908870B2 JP 01439799 A JP01439799 A JP 01439799A JP 1439799 A JP1439799 A JP 1439799A JP 3908870 B2 JP3908870 B2 JP 3908870B2
Authority
JP
Japan
Prior art keywords
fertilizer
delayed fluorescence
fertilization
sample
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01439799A
Other languages
Japanese (ja)
Other versions
JP2000214089A (en
Inventor
利昭 伊藤
広司 土屋
文 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP01439799A priority Critical patent/JP3908870B2/en
Publication of JP2000214089A publication Critical patent/JP2000214089A/en
Application granted granted Critical
Publication of JP3908870B2 publication Critical patent/JP3908870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、試料に施された肥料の量が適正であるか否かを判定する方法に関するものである。
【0002】
【従来の技術】
茶農園等では、うまみを増す目的で、他の作物と比較して多量の肥料が施されている。ところが、肥料を過剰に施すと、新芽の生育が遅れる、根が枯れる等の障害が発生してしまう。また、河川、地下水の硝酸酸性化を誘起することもあり、過剰の施肥は、環境問題の原因にもなっている。
【0003】
このような過剰の施肥を防止するために施肥量を判定する方法として、従来から、土壌を採取して肥料濃度を分析する方法や、土を掘り起こして根の状態を目視にて判断する方法が知られている。
【0004】
【発明が解決しようとする課題】
しかし、前者の方法では、その場での観察ができないだけでなく、施肥後の日数、雨水等の環境に大きく左右されるため、施肥量が適正範囲内であるか否かを正確に判定することは難しい。また、後者の方法では、過剰の施肥によって根枯れ等の症状が起きて初めて目視で把握することができる場合が多く、試料を回復させるには手遅れになりがちである。このため、前者の方法と同様に、施肥量の判定を正確に行うことは困難である。
【0005】
本発明は、かかる事情に鑑みてなされたものであり、施肥量が適正であるか否かの判定を精度良く行うことのできる施肥量判定方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明は、試料に施された肥料の量が所定の範囲内であるか否かを判定する施肥量判定方法であって、肥料が施された試料に励起光を照射する工程と、励起光が照射された試料から発生する遅延蛍光を所定時間検出する工程と、遅延蛍光の検出時間と遅延蛍光の発光強度との関係である減衰データを算出する工程と、減衰データに基づいて施肥量判定値を求める工程と、施肥量判定値が予め定められた範囲内であるか否かを判定する工程と、を備えることを特徴とする。
【0007】
本発明に係る施肥量判定方法によれば、まず、肥料が施された植物の葉などの試料に向けて、励起光が照射される。すると、植物の葉などから遅延蛍光が発生する。かかる遅延蛍光は、励起光が一度葉緑体内部で化学エネルギーに変換された後、ある程度の遅延時間を経たときに再度光エネルギーとして放出されるものであり、このような遅延蛍光をモニターすれば、いわゆる表面的な情報だけでなく、上記化学エネルギーを受け取る分子の情報、即ち内部の情報まで得ることができる。
【0008】
試料から発生した遅延蛍光は、光電子増倍管等をはじめとする光検出器などによって所定時間検出される。その後、遅延蛍光の検出時間と遅延蛍光の発光強度との関係である減衰データが算出され、この減衰データに基づいて施肥量判定値が求められる。そして、この施肥量判定値が予め求めておいた範囲内であるか否か、ひいては試料への施肥量が所定範囲であるか否かが判定される。ここで、施肥量が適正であるときの施肥量判定値に基づいて許容範囲を定めておけば、試料に施した肥料の量が適正であるか否かを判定することができる。
【0009】
また、本発明の施肥量判定装置において、施肥量判定値は、減衰データに基づいて作成される減衰曲線の二点の傾きの比の値であることが望ましい。
【0010】
この場合、たとえば、遅延蛍光の検出初期における減衰曲線の傾きをk1、検出後期における減衰曲線の傾きをk2とした場合、k2/k1又はk1/k2の値が施肥量判定値となる。本発明者の鋭意研究の結果、k2/k1等で示される施肥量判定値は、試料に施された肥料の量と一定の関係があることが見い出された。そのため、施肥量が適正である場合や肥料を施しすぎて試料が枯れた場合などの施肥量判定値を予めデータとして蓄積し、このデータに基づいて、施肥量判定値の許容範囲を定めることができる。
【0011】
【発明の実施の形態】
以下、添付図面を参照して、本発明に係る施肥量判定方法の好適な実施形態について詳細に説明する。尚、同一要素には同一符号を用いるものとし、重複する記載は省略する。
【0012】
図1は、本実施形態の施肥量判定方法に用いる施肥量判定装置2の構成図である。施肥量判定装置2は、遅延蛍光測定装置4、この遅延蛍光測定装置4にケーブル10を介して接続された判定装置6およびディスプレイ8から構成されている。なお、遅延蛍光測定装置4は、判定装置6から脱着可能な携帯型装置である。
【0013】
まず、遅延蛍光測定装置4の構成について説明する。遅延蛍光測定装置4には、試料12を狭持できるクリップ形状をなし、さらに外来光を遮断できるように構成された試料セット部14が設けられている。なお、本実施形態では、試料12として茶葉を使用している。
【0014】
本実施形態では、遅延蛍光を検出する光検出器として、光電子増倍管(PMT)16を用いており、当該光電子増倍管16と試料セット部14との間には、外部からの光を遮断できる略円筒形状の遅延蛍光通過部18が形成されている。なお、光電子増倍管16にはマルチアルカリ光電面が装着されており、その分光感度特性から遅延蛍光波長である720〜760nmの光を検出することができる。
【0015】
遅延蛍光通過部18内の試料セット部14近傍には、試料12を励起する励起光の光源であるレーザーダイオード(LD)20が配置されている。レーザーダイオード20から放出されるレーザ光は、波長680nmで、試料12の照射位置におけるレーザ光の強度は、10mW/cm2である。また、遅延蛍光通過部18内には、試料セット部14側から順に、シャッター22、集光レンズ24、フィルタ26が配置されている。集光用レンズ24として、f50の1:1のリレーレンズが用いられ、フィルタ26には、波長が720nmより短い光をカットするカットオフフィルタが使用されている。
【0016】
また、光電子増倍管16の図1における左側には、駆動スイッチ28の作動に伴うLD20の点灯および消灯、シャッター22の開閉、光電子増倍管16による遅延蛍光の受光時間などを制御する制御装置30が配置されている。また、制御装置30の近傍には、光電子増倍管16、LD20およびシャッター22の駆動源である電池32が交換可能に配置されている。
【0017】
次に、図2のブロック図を用いて、遅延蛍光測定装置4に接続された判定装置6およびディスプレイ8の構成を説明する。図2に示されているように、判定装置6には、遅延蛍光測定装置4内の光電子増倍管16からの信号を増幅するプリアンプ34と、増幅された信号をカウントするカウンタ36と、減衰曲線の算出、施肥量判定値の算出、算出した施肥量判定値が許容範囲(所定範囲)内か否かの判定等を行うCPU40と、詳しくは後述する施肥量判定値の許容範囲が複数の肥料について予め蓄積された許容範囲データ記憶部38と、が内蔵されている。また、CPU40には、減衰曲線、施肥量判定値、および判定結果等を表示可能なディスプレイ8が接続されている。
【0018】
ここで、図3を用いて、一般的な減衰曲線の説明をする。図3は、横軸を遅延蛍光の検出時間、縦軸を遅延蛍光の発光強度としたグラフであり、この図に示された曲線が減衰曲線である。ここでは、施肥量が適正(窒素成分が年間約50kg/10a)な農地から採取された茶葉(丸印)、肥料過多(年間約70kg/10a)の農地から採取された茶葉A(四角印)、肥料過多(年間約80kg/10a)の農地から採取された茶葉B(三角印)、肥料過多(年間約100kg/10a)の農地から採取された茶葉C(バツ印)の4種類の試料を用いている。なお、測定のばらつきを防止するため、各圃場について、数本の樹木から茶葉をランダムに33枚採取した。
【0019】
茶葉Cに関しては、地上に現れている部分の観察では肥料過多による影響を判断できないが、土を掘り起こして根を観察したところ肥料過剰による障害が発生し始めていることが分かった。また、茶葉A,Bは、外観上は全く肥料の影響を判断することができなかった。なお、図3より、施肥量が多くなるに連れて、遅延蛍光の発光量の総和が少なくなることがわかる。
【0020】
図4は、図3に示した減衰曲線の励起光遮断後1〜10秒の減衰率(傾き)k1および15〜40秒後の減衰率(傾き)k2を算出し、これらを2次元マッピングしたグラフである。肥料過多の茶葉A〜Cについては、施肥量が適正のときと比較して、k1の分布より初期の減衰が緩やかになることが分かり、k2の分布より後期の減衰率が大きくなることが分かる。特に、最も施肥量の多い茶葉C(バツ印)に関しては、施肥量が適正のときと比較して、後期の減衰率が極めて大きくなっている。尚、k1およびk2を求めるための減衰曲線上の二点の位置は、適宜変更することができる。
【0021】
図4で得られたk1およびk2から、本発明者らは、k1/k2の値が試料への施肥量に関連があることを見い出し、その値を施肥量判定値と呼ぶことにした。図5は、その施肥量判定値をヒストグラムとして示したものである。横軸を施肥量判定値とし、縦軸をその頻度とした。図5より、施肥量判定値の平均値は、肥料が過剰になるに連れて小さくなることが分かる。このとき、たとえば施肥量判定値の許容範囲を5.00以上に設定することで、施肥量判定値が5.00以上のときに施肥量が適正と判定し、5.00よりも小さい場合に肥料過多と判定することができる。また、許容範囲を4.5以上に設定すれば、施肥量判定値が4.5よりも小さいときに、茶葉Cのように根に障害が発生していると判定することができる。なお、これらの許容範囲は、この実験で用いた茶葉および肥料と同じものを用いる場合に利用することができる。また、このような許容範囲に関するデータが、判定装置6の許容範囲データ記憶部38に蓄積されている。
【0022】
続いて、施肥量が適正か否かを判定する方法を説明する。
【0023】
まず、図1を参照して、遅延蛍光の検出までを説明する。最初に、施肥量の判定の対象となる試料12を試料セット部14にセットした後、約2分間遮光状態で放置する。その後、オペレータが駆動スイッチ28をオンにすることにより、シャッター22を閉じた状態でLD20が約30秒間点灯し、試料12の光励起を行う。30秒間の光励起が終わった後、制御装置30は、シャッター22を開くと同時に、LD20への供給電源をオフにする。LD20の消灯後、試料12から遅延蛍光が発生し、当該遅延蛍光は、シャッター22を通過し、集光レンズ24によって集光されて、光電子増倍管16に到達する。この際、フィルタ26によって、720nmよりも波長の短い光は遮断される。制御装置30の指令のもと、光電子増倍管16は、200msのサンプリングを200回すなわち約40秒間の経時変化を測定する。
【0024】
続いて、図2および図6を参照して、光電子増倍管16で検出された遅延蛍光の読み出しから、施肥量の判定結果の表示までの判定装置6に内蔵されたCPU40の制御手順を説明する。光電子増倍管16が所定時間遅延蛍光を検出した後、CPU40は、光電子増倍管16から遅延蛍光の電気信号である遅延蛍光データを読み出す(S101)。光電子増倍管16から読み出された遅延蛍光データは、プリアンプ34により増幅され、増幅された遅延蛍光データは、カウンタ36でカウントされる。続いて、CPU40は、遅延蛍光データのカウント値に基づいて、遅延蛍光の検出時間と発光強度との関係を示す減衰曲線を算出する(S102)。
【0025】
減衰曲線を算出した後、CPU40は、施肥量判定値を算出する(S103)。本実施形態では、CPU40は、上述のように遅延蛍光の検出開始1〜10秒後の傾きk1と検出開始15〜40秒後の傾きk2を求め、施肥量判定値であるk1/k2の値を算出する。なお、実際には、幾つかの試料より求めた判定値の平均値が算出される。施肥量判定値を算出した後、CPU40は、許容範囲データ記憶部38から施肥量判定値の許容範囲に関するデータを読み出す(S104)。
【0026】
そして、CPU40は、施肥量判定値が許容範囲を超えているか否かを判断することにより、試料12への施肥量が適正であるか否かを判定する(S105)。なお、上述のように、施肥量判定値が許容範囲内のときは施肥量が適正と判定され、施肥量判定値が許容範囲の下限よりも小さいときは、施肥量が過剰になっていると判定される。本実施形態では、施肥量の過剰のみを判定し、過小については判定しないため、許容範囲の上限を設ける必要はない。但し、許容範囲の上限、すなわち施肥量が少なすぎる場合の許容値も定めれば、施肥量の過小を防止することもできる。また、施肥量判定値の許容範囲は、適宜変更することができる。
【0027】
施肥量の判定を行った後、ディスプレイ8に、減衰曲線、施肥量判定値、および施肥量の判定結果の表示指令を送り(S106)、CPU40の制御動作は終了する。ディスプレイ8に表示された施肥量の判定結果を用いて、たとえば過剰の施肥を取り締まったり、その後の施肥量を決定する際しての参考にすることができる。
【0028】
本実施形態の施肥量判定装置2によれば、試料のある現場で容易に施肥量の判定を行うことができ、しかも、試料から発せられる遅延蛍光を利用しているため、試料の内部情報を目視などの場合と比較して正確に知ることができる。このため、施肥量の判定を精度良く容易に行うことができる。
【0029】
以上、本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではない。例えば、判定部およびディスプレイを遅延蛍光測定装置に組み込んでもよい。この場合、農地などの現場での利用が一層容易になる。さらに、施肥量判定値をk1/k2でなくk2/k1としても、施肥量の判定を行うことができる。
【0030】
【発明の効果】
以上説明したように、本発明に係る施肥量判定方法によれば、試料から発せられた遅延蛍光を所定時間検出した後、遅延蛍光の検出時間と遅延蛍光の発光強度との関係である減衰データが算出され、この減衰データに基づいて施肥量判定値が求められる。そして、この施肥量判定値が予め求めておいた許容範囲内であるか否か、ひいては試料への施肥量が所定範囲であるか否かが判定される。ここで、施肥量が適正であるときの施肥量判定値に基づいて、上記許容範囲を定めておけば、試料に施した肥料の量が適正であるか否かを判定することができる。
【0031】
ここで、本発明では、試料から発せられる遅延蛍光を利用しているため、いわゆる表面的な情報だけでなく試料の内部の情報まで得ることができる。このため、施肥量が適正か否かの判定を精度良く行うことができる。
【図面の簡単な説明】
【図1】本発明の施肥量判定方法に使用する施肥量判定装置を示す図である。
【図2】施肥量判定装置の判定部の構成を詳細に示したブロック図である。
【図3】施肥量が適正な試料と施肥量が過剰な試料に基づいて求められた減衰曲線を示すグラフである。
【図4】図3に示した減衰曲線より求めたk1およびk2の値を2次元マッピングしたグラフである。
【図5】図3に示した減衰曲線より求めた施肥量判定値を示したヒストグラムである。
【図6】判定部のCPUの制御手順を示すフローチャートである。
【符号の説明】
2…施肥量判定装置、4…遅延蛍光測定装置、6…判定装置、12…試料、14…試料セット部、16…光電子増倍管、20…レーザーダイオード、22…シャッター、24…集光レンズ、26…フィルタ、28…駆動スイッチ、30…制御装置、32…電池、34…プリアンプ、36…カウンタ、38…許容範囲データ記憶部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for determining whether or not the amount of fertilizer applied to a sample is appropriate.
[0002]
[Prior art]
In tea farms and the like, a large amount of fertilizer is applied in order to increase umami compared to other crops. However, if fertilizer is applied excessively, troubles such as delayed growth of shoots and withering of roots occur. Moreover, the acidification of nitric acid in rivers and groundwater can be induced, and excessive fertilization has also caused environmental problems.
[0003]
As a method for determining the amount of fertilization to prevent such excessive fertilization, conventionally, there are a method of collecting soil and analyzing the fertilizer concentration, and a method of digging up the soil and visually determining the state of the roots. Are known.
[0004]
[Problems to be solved by the invention]
However, with the former method, not only the observation on the spot is not possible, but also it depends greatly on the environment such as the number of days after fertilization and rainwater, so accurately determine whether the fertilization amount is within the appropriate range It ’s difficult. Further, in the latter method, it is often possible to grasp visually only after symptoms such as root death occur due to excessive fertilization, and it tends to be too late to recover the sample. For this reason, as in the former method, it is difficult to accurately determine the amount of fertilization.
[0005]
The present invention has been made in view of such circumstances, and an object thereof is to provide a fertilization amount determination method capable of accurately determining whether or not the fertilization amount is appropriate.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention provides a fertilizer application amount determination method for determining whether or not the amount of fertilizer applied to a sample is within a predetermined range, and the excitation light is applied to the sample subjected to fertilizer. A step of detecting delayed fluorescence generated from a sample irradiated with excitation light for a predetermined time, a step of calculating attenuation data that is a relationship between the detection time of delayed fluorescence and the emission intensity of delayed fluorescence, The method includes a step of obtaining a fertilization amount determination value based on the attenuation data, and a step of determining whether the fertilization amount determination value is within a predetermined range.
[0007]
According to the fertilization amount determination method according to the present invention, first, excitation light is irradiated toward a sample such as a leaf of a plant to which fertilizer has been applied. Then, delayed fluorescence is generated from the leaves of the plant. Such delayed fluorescence is emitted once again as light energy after a certain delay time after the excitation light is once converted into chemical energy inside the chloroplast, and if such delayed fluorescence is monitored, It is possible to obtain not only so-called superficial information but also information on the molecule receiving the chemical energy, that is, internal information.
[0008]
Delayed fluorescence generated from the sample is detected for a predetermined time by a photodetector such as a photomultiplier tube. Thereafter, attenuation data that is the relationship between the detection time of delayed fluorescence and the emission intensity of delayed fluorescence is calculated, and a fertilizer application determination value is obtained based on this attenuation data. Then, it is determined whether or not the fertilization amount determination value is within a predetermined range, and thus whether or not the fertilization amount to the sample is within a predetermined range. Here, if the allowable range is determined based on the fertilizer application amount determination value when the fertilizer application amount is appropriate, it can be determined whether or not the amount of fertilizer applied to the sample is appropriate.
[0009]
In the fertilizer application determination device of the present invention, it is desirable that the fertilizer application determination value is a value of a ratio of two slopes of an attenuation curve created based on the attenuation data.
[0010]
In this case, for example, when the slope of the decay curve in the early detection of delayed fluorescence is k1, and the slope of the decay curve in the latter detection period is k2, the value of k2 / k1 or k1 / k2 becomes the fertilizer application amount determination value. As a result of intensive studies by the present inventors, it has been found that the fertilization amount judgment value indicated by k2 / k1 or the like has a certain relationship with the amount of fertilizer applied to the sample. Therefore, the fertilizer application amount judgment value such as when the fertilizer application amount is appropriate or when the sample withered too much is accumulated as data in advance, and the allowable range of the fertilizer application judgment value can be determined based on this data it can.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, with reference to an accompanying drawing, a suitable embodiment of a fertilization amount judging method concerning the present invention is described in detail. In addition, the same code | symbol shall be used for the same element and the overlapping description is abbreviate | omitted.
[0012]
FIG. 1 is a configuration diagram of a fertilization amount determination device 2 used in the fertilization amount determination method of the present embodiment. The fertilizer application determination device 2 includes a delayed fluorescence measurement device 4, a determination device 6 connected to the delayed fluorescence measurement device 4 via a cable 10, and a display 8. The delayed fluorescence measurement device 4 is a portable device that can be detached from the determination device 6.
[0013]
First, the configuration of the delayed fluorescence measurement device 4 will be described. The delayed fluorescence measurement device 4 is provided with a sample setting unit 14 configured to have a clip shape that can hold the sample 12 and to block external light. In the present embodiment, tea leaves are used as the sample 12.
[0014]
In this embodiment, a photomultiplier tube (PMT) 16 is used as a photodetector for detecting delayed fluorescence. Light from the outside is interposed between the photomultiplier tube 16 and the sample setting unit 14. A substantially cylindrical delayed fluorescence passage portion 18 that can be blocked is formed. The photomultiplier tube 16 is equipped with a multi-alkali photocathode and can detect light having a delayed fluorescence wavelength of 720 to 760 nm from its spectral sensitivity characteristics.
[0015]
A laser diode (LD) 20 that is a light source of excitation light for exciting the sample 12 is disposed in the vicinity of the sample setting unit 14 in the delayed fluorescence passage unit 18. The laser light emitted from the laser diode 20 has a wavelength of 680 nm, and the intensity of the laser light at the irradiation position of the sample 12 is 10 mW / cm 2 . In addition, a shutter 22, a condensing lens 24, and a filter 26 are disposed in the delayed fluorescence passage unit 18 in order from the sample setting unit 14 side. A f50 1: 1 relay lens is used as the condensing lens 24, and a cut-off filter that cuts light having a wavelength shorter than 720 nm is used as the filter 26.
[0016]
Further, on the left side of the photomultiplier tube 16 in FIG. 1, a control device that controls lighting and extinguishing of the LD 20, opening and closing of the shutter 22, opening and closing time of the delayed fluorescence by the photomultiplier tube 16, etc. 30 is arranged. Further, in the vicinity of the control device 30, a battery 32 which is a drive source for the photomultiplier tube 16, the LD 20 and the shutter 22 is replaceably disposed.
[0017]
Next, the configuration of the determination device 6 and the display 8 connected to the delayed fluorescence measurement device 4 will be described using the block diagram of FIG. As shown in FIG. 2, the determination device 6 includes a preamplifier 34 that amplifies a signal from the photomultiplier tube 16 in the delayed fluorescence measurement device 4, a counter 36 that counts the amplified signal, and an attenuation. CPU 40 that performs calculation of a curve, calculation of fertilization amount determination value, determination of whether or not the calculated fertilization amount determination value is within an allowable range (predetermined range), and a plurality of allowable ranges of fertilization amount determination values described later in detail An allowable range data storage unit 38 previously stored for the fertilizer is incorporated. The CPU 40 is connected to a display 8 that can display an attenuation curve, a fertilization amount determination value, a determination result, and the like.
[0018]
Here, a general attenuation curve will be described with reference to FIG. FIG. 3 is a graph in which the horizontal axis represents the detection time of delayed fluorescence and the vertical axis represents the emission intensity of delayed fluorescence, and the curve shown in this figure is an attenuation curve. Here, tea leaves collected from farmland where the amount of fertilizer is appropriate (nitrogen component is about 50 kg / 10a per year) (round mark), tea leaves A collected from farmland where fertilizer is excessive (about 70 kg / 10a per year) (square mark) 4 types of tea leaves B (triangular marks) collected from farmland with excessive fertilizer (approximately 80 kg / 10a per year) and tea leaves C (cross marks) collected from agricultural land with excessive fertilizer (approximately 100 kg / 10a per year) Used. In order to prevent variation in measurement, 33 tea leaves were randomly collected from several trees for each field.
[0019]
Regarding the tea leaves C, the effect of excessive fertilizer cannot be determined by observing the portion appearing on the ground, but when digging up the soil and observing the roots, it was found that damage due to excessive fertilizer began to occur. Moreover, tea leaves A and B were not able to judge the influence of a fertilizer on appearance. In addition, FIG. 3 shows that the sum total of the amount of light emission of delayed fluorescence decreases as the fertilization amount increases.
[0020]
FIG. 4 calculates the attenuation rate (slope) k1 of 1 to 10 seconds after the excitation light blocking of the attenuation curve shown in FIG. 3 and the attenuation rate (slope) k2 after 15 to 40 seconds, and these are two-dimensionally mapped. It is a graph. For tea leaves A to C with excessive fertilizer, it can be seen that the initial attenuation is slower than the distribution of k1, and the late attenuation rate is larger than the distribution of k2, compared to when the amount of fertilizer is appropriate. . In particular, with regard to tea leaf C (cross mark) with the largest amount of fertilization, the late decay rate is extremely large compared to when the amount of fertilization is appropriate. The positions of the two points on the attenuation curve for obtaining k1 and k2 can be changed as appropriate.
[0021]
From k1 and k2 obtained in FIG. 4, the present inventors found that the value of k1 / k2 is related to the amount of fertilizer applied to the sample, and decided to call that value the fertilizer amount judgment value. FIG. 5 shows the fertilization amount determination value as a histogram. The horizontal axis is the fertilization amount judgment value, and the vertical axis is the frequency. From FIG. 5, it can be seen that the average value of the fertilizer application determination value decreases as the fertilizer becomes excessive. At this time, for example, by setting the allowable range of the fertilization amount determination value to 5.00 or more, the fertilization amount is determined to be appropriate when the fertilization amount determination value is 5.00 or more, and is smaller than 5.00 It can be determined that there is too much fertilizer. In addition, if the allowable range is set to 4.5 or more, it can be determined that the root is damaged like the tea leaf C when the fertilization amount determination value is smaller than 4.5. These allowable ranges can be used when the same tea leaves and fertilizer used in this experiment are used. Further, data regarding such an allowable range is accumulated in the allowable range data storage unit 38 of the determination device 6.
[0022]
Next, a method for determining whether or not the amount of fertilization is appropriate will be described.
[0023]
First, with reference to FIG. 1, the process up to the detection of delayed fluorescence will be described. First, after setting the sample 12 for which the fertilization amount is to be determined in the sample setting unit 14, the sample 12 is left in a light-shielded state for about 2 minutes. Thereafter, when the operator turns on the drive switch 28, the LD 20 is lit for about 30 seconds with the shutter 22 closed, and the sample 12 is photoexcited. After the 30 seconds of light excitation, the control device 30 opens the shutter 22 and simultaneously turns off the power supply to the LD 20. After the LD 20 is turned off, delayed fluorescence is generated from the sample 12. The delayed fluorescence passes through the shutter 22, is collected by the condenser lens 24, and reaches the photomultiplier tube 16. At this time, the filter 26 blocks light having a wavelength shorter than 720 nm. Under the instruction of the control device 30, the photomultiplier tube 16 measures 200 time sampling 200 times, that is, a change with time of about 40 seconds.
[0024]
Subsequently, referring to FIGS. 2 and 6, the control procedure of the CPU 40 built in the determination device 6 from the readout of the delayed fluorescence detected by the photomultiplier tube 16 to the display of the determination result of the fertilizer application amount will be described. To do. After the photomultiplier tube 16 detects delayed fluorescence for a predetermined time, the CPU 40 reads delayed fluorescence data, which is an electrical signal of delayed fluorescence, from the photomultiplier tube 16 (S101). The delayed fluorescence data read from the photomultiplier tube 16 is amplified by the preamplifier 34, and the amplified delayed fluorescence data is counted by the counter 36. Subsequently, the CPU 40 calculates an attenuation curve indicating the relationship between the detection time of delayed fluorescence and the emission intensity based on the count value of the delayed fluorescence data (S102).
[0025]
After calculating the attenuation curve, the CPU 40 calculates a fertilizer application amount determination value (S103). In the present embodiment, as described above, the CPU 40 obtains the slope k1 after the start of detection of delayed fluorescence 1 to 10 seconds and the slope k2 after the start of detection 15 to 40 seconds, and the value of k1 / k2 that is a fertilizer amount determination value. Is calculated. Actually, an average value of determination values obtained from several samples is calculated. After calculating the fertilizer application amount determination value, the CPU 40 reads data relating to the allowable range of the fertilizer application amount determination value from the allowable range data storage unit 38 (S104).
[0026]
Then, the CPU 40 determines whether or not the fertilization amount to the sample 12 is appropriate by determining whether or not the fertilization amount determination value exceeds the allowable range (S105). In addition, as described above, when the fertilization amount determination value is within the allowable range, the fertilization amount is determined to be appropriate, and when the fertilization amount determination value is smaller than the lower limit of the allowable range, the fertilization amount is excessive. Determined. In this embodiment, it is not necessary to set an upper limit of the allowable range because only an excessive amount of fertilizer is determined and not determined if it is too small. However, if the upper limit of the allowable range, that is, the allowable value when the amount of fertilization is too small is determined, it is possible to prevent the fertilization amount from being too small. Moreover, the tolerance | permissible_range of a fertilizer application amount judgment value can be changed suitably.
[0027]
After determining the fertilizer amount, a display command for the attenuation curve, fertilizer amount determination value, and fertilizer amount determination result is sent to the display 8 (S106), and the control operation of the CPU 40 ends. The determination result of the fertilization amount displayed on the display 8 can be used as a reference when, for example, controlling excessive fertilization or determining the subsequent fertilization amount.
[0028]
According to the fertilizer application amount determination device 2 of the present embodiment, the fertilizer application amount can be easily determined at the site where the sample is present, and since the delayed fluorescence emitted from the sample is used, the internal information of the sample is obtained. Compared to the case of visual observation or the like, it is possible to know accurately. For this reason, the fertilization amount can be determined easily with high accuracy.
[0029]
Although the invention made by the present inventor has been specifically described based on the embodiment, the present invention is not limited to the above embodiment. For example, the determination unit and the display may be incorporated in the delayed fluorescence measurement device. In this case, use on the site such as farmland becomes easier. Furthermore, even if the fertilization amount determination value is not k1 / k2 but k2 / k1, the fertilization amount can be determined.
[0030]
【The invention's effect】
As described above, according to the fertilization amount determination method according to the present invention, after detecting the delayed fluorescence emitted from the sample for a predetermined time, attenuation data that is the relationship between the detection time of the delayed fluorescence and the emission intensity of the delayed fluorescence. Is calculated, and a fertilization amount determination value is obtained based on the attenuation data. Then, it is determined whether or not the fertilization amount determination value is within an allowable range obtained in advance, and thus whether or not the fertilization amount to the sample is within a predetermined range. Here, if the said tolerance | permissible_range is defined based on the fertilizer application amount determination value when an amount of fertilizer is appropriate, it can be determined whether the quantity of the fertilizer applied to the sample is appropriate.
[0031]
Here, in the present invention, since delayed fluorescence emitted from the sample is used, not only superficial information but also information inside the sample can be obtained. For this reason, it is possible to accurately determine whether the amount of fertilization is appropriate.
[Brief description of the drawings]
FIG. 1 is a diagram showing a fertilizer application determination device used in a fertilizer application determination method of the present invention.
FIG. 2 is a block diagram showing in detail the configuration of a determination unit of the fertilizer application amount determination device.
FIG. 3 is a graph showing an attenuation curve obtained based on a sample with an appropriate amount of fertilization and a sample with an excessive amount of fertilization.
4 is a graph obtained by two-dimensional mapping of k1 and k2 values obtained from the attenuation curve shown in FIG.
FIG. 5 is a histogram showing fertilization amount determination values obtained from the attenuation curve shown in FIG. 3;
FIG. 6 is a flowchart illustrating a control procedure of a CPU of a determination unit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 2 ... Fertilization amount determination apparatus, 4 ... Delay fluorescence measuring apparatus, 6 ... Determination apparatus, 12 ... Sample, 14 ... Sample setting part, 16 ... Photomultiplier tube, 20 ... Laser diode, 22 ... Shutter, 24 ... Condensing lens , 26 ... filter, 28 ... drive switch, 30 ... control device, 32 ... battery, 34 ... preamplifier, 36 ... counter, 38 ... tolerance range data storage unit.

Claims (2)

試料に施された肥料の量が所定の範囲内であるか否かを判定する施肥量判定方法であって、
前記肥料が施された前記試料に励起光を照射する工程と、
前記励起光が照射された前記試料から発生する遅延蛍光を所定時間検出する工程と、
前記遅延蛍光の検出時間と前記遅延蛍光の発光強度との関係である減衰データを算出する工程と、
前記減衰データに基づいて施肥量判定値を求める工程と、
前記施肥量判定値が予め定められた範囲内であるか否かを判定する工程と、
を備えることを特徴とする施肥量判定方法。
A fertilizer application determination method for determining whether the amount of fertilizer applied to a sample is within a predetermined range,
Irradiating the sample to which the fertilizer has been applied with excitation light;
Detecting delayed fluorescence generated from the sample irradiated with the excitation light for a predetermined time;
Calculating attenuation data which is a relationship between the detection time of the delayed fluorescence and the emission intensity of the delayed fluorescence;
Obtaining a fertilizer amount determination value based on the attenuation data;
A step of determining whether or not the fertilization amount determination value is within a predetermined range;
A fertilization amount determination method comprising:
前記施肥量判定値は、前記減衰データに基づいて作成される減衰曲線の二点の傾きの比の値であることを特徴とする請求項1記載の施肥量判定方法。The fertilization amount determination method according to claim 1, wherein the fertilization amount determination value is a value of a ratio of two slopes of an attenuation curve created based on the attenuation data.
JP01439799A 1999-01-22 1999-01-22 Fertilizer application method Expired - Fee Related JP3908870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01439799A JP3908870B2 (en) 1999-01-22 1999-01-22 Fertilizer application method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01439799A JP3908870B2 (en) 1999-01-22 1999-01-22 Fertilizer application method

Publications (2)

Publication Number Publication Date
JP2000214089A JP2000214089A (en) 2000-08-04
JP3908870B2 true JP3908870B2 (en) 2007-04-25

Family

ID=11859925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01439799A Expired - Fee Related JP3908870B2 (en) 1999-01-22 1999-01-22 Fertilizer application method

Country Status (1)

Country Link
JP (1) JP3908870B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005066434A (en) * 2003-08-22 2005-03-17 Anzai Sogo Kenkyusho:Kk Apparatus for sorting foreign matter in tea leaf
WO2005062027A1 (en) * 2003-12-19 2005-07-07 Hamamatsu Photonics K.K. Harmful substance evaluating method and harmful substance evaluation kit
JP6485850B2 (en) 2013-05-17 2019-03-20 国立大学法人京都大学 Plant vitality diagnostic method, and measurement system and diagnostic system used therefor
CN111615901A (en) * 2020-04-30 2020-09-04 北京农业信息技术研究中心 Fruit tree fertilizing amount prediction method and system

Also Published As

Publication number Publication date
JP2000214089A (en) 2000-08-04

Similar Documents

Publication Publication Date Title
Lichtenthaler et al. Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system
Du et al. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China
JP5881082B2 (en) Plant health diagnosis method and plant health diagnosis device
Liu et al. Detecting solar-induced chlorophyll fluorescence from field radiance spectra based on the Fraunhofer line principle
Buschmann et al. Imaging of the blue, green, and red fluorescence emission of plants: an overview
Xu et al. Ecosystem respiration in a young ponderosa pine plantation in the Sierra Nevada Mountains, California
Gillner et al. Contrasting strategies for tree species to cope with heat and dry conditions at urban sites
Campillo et al. Using digital images to characterize canopy coverage and light interception in a processing tomato crop
Thind et al. Establishment of threshold leaf colour greenness for need-based fertilizer nitrogen management in irrigated wheat (Triticum aestivum L.) using leaf colour chart
JP6485850B2 (en) Plant vitality diagnostic method, and measurement system and diagnostic system used therefor
CN103250043A (en) Sensor system and method for determining an optical property of a plant
Kimberley et al. Impact of Swiss needle-cast on growth of Douglas-fir
DeLong The light interception index: a potential tool for assisting in vegetation management decisions
JP3908870B2 (en) Fertilizer application method
Lu et al. Evaluation of Granier's sap flux sensor in young mango trees
Apostol et al. Laser-induced fluorescence signatures as a tool for remote monitoring of water and nitrogen stresses in plants
JP3807940B2 (en) Diagnostic method of plant growth
Saito et al. Development and performance characteristics of laser-induced fluorescence imaging lidar for forestry applications
JP3884592B2 (en) Herbicide application amount determination device and herbicide application amount determination method
CN106680205A (en) LED lighting system capable of monitoring plant growth state in real time
Shropshire et al. Optical reflectance sensor for detecting plants
Luedeker et al. Laser-induced leaf fluorescence: a tool for vegetation status and stress monitoring and optical-aided agriculture
Mortensen et al. Critical levels of O 3 for wood production of European beech (Fagus sylvatica L.)
Heisel et al. Laser-induced fluorescence imaging for monitoring nitrogen fertilizing treatments of wheat
JP3346373B2 (en) Plant growth diagnosis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees