JP2000214089A - Decision method for fertilization amount - Google Patents

Decision method for fertilization amount

Info

Publication number
JP2000214089A
JP2000214089A JP11014397A JP1439799A JP2000214089A JP 2000214089 A JP2000214089 A JP 2000214089A JP 11014397 A JP11014397 A JP 11014397A JP 1439799 A JP1439799 A JP 1439799A JP 2000214089 A JP2000214089 A JP 2000214089A
Authority
JP
Japan
Prior art keywords
fertilization
fertilization amount
sample
amount
delayed fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11014397A
Other languages
Japanese (ja)
Other versions
JP3908870B2 (en
Inventor
Toshiaki Ito
利昭 伊藤
Koji Tsuchiya
広司 土屋
Fumi Yamazaki
文 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP01439799A priority Critical patent/JP3908870B2/en
Publication of JP2000214089A publication Critical patent/JP2000214089A/en
Application granted granted Critical
Publication of JP3908870B2 publication Critical patent/JP3908870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fertilizing (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a decision method in which whether a fertilization amount is proper or not can be decided with good accuracy. SOLUTION: In this decision method for a fertilization amount, whether the amount of a fertilizer executed to a sample is within a prescribed range or not is decided. A step wherein the sample to which the fertilizer is executed is irradiated with excitation light is provided. A step wherein delay fluorescence generated from the sample which is irradiated with the excitation light is detected for a prescribed time is provided. A step (S 101) and a step (S 102) which calculated attenuation data as the relationship between the detection time of the delay fluorescence and the luminous intensity of the delay fluorescence are provided. A step (S 103) which finds the decision amount of the fertilization amount on the basis of the attenuation data is provided. In addition, a step (S 104) and a step (S 105) which decide whether the decision value of the fertilization amount is within a predetermined range or not are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料に施された肥
料の量が適正であるか否かを判定する方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining whether the amount of fertilizer applied to a sample is appropriate.

【0002】[0002]

【従来の技術】茶農園等では、うまみを増す目的で、他
の作物と比較して多量の肥料が施されている。ところ
が、肥料を過剰に施すと、新芽の生育が遅れる、根が枯
れる等の障害が発生してしまう。また、河川、地下水の
硝酸酸性化を誘起することもあり、過剰の施肥は、環境
問題の原因にもなっている。
2. Description of the Related Art In a tea plantation or the like, a large amount of fertilizer is applied in comparison with other crops in order to increase umami. However, when fertilizer is excessively applied, the growth of new shoots is delayed, and roots wither and other obstacles occur. In addition, it can induce nitrate acidification of rivers and groundwater, and excessive fertilization causes environmental problems.

【0003】このような過剰の施肥を防止するために施
肥量を判定する方法として、従来から、土壌を採取して
肥料濃度を分析する方法や、土を掘り起こして根の状態
を目視にて判断する方法が知られている。
[0003] As a method of determining the amount of fertilization to prevent such excessive fertilization, a method of collecting soil and analyzing the concentration of fertilizer or a method of digging up soil and visually determining a root state has been conventionally used. There are known ways to do this.

【0004】[0004]

【発明が解決しようとする課題】しかし、前者の方法で
は、その場での観察ができないだけでなく、施肥後の日
数、雨水等の環境に大きく左右されるため、施肥量が適
正範囲内であるか否かを正確に判定することは難しい。
また、後者の方法では、過剰の施肥によって根枯れ等の
症状が起きて初めて目視で把握することができる場合が
多く、試料を回復させるには手遅れになりがちである。
このため、前者の方法と同様に、施肥量の判定を正確に
行うことは困難である。
However, in the former method, not only the observation on the spot is not possible, but also the number of days after fertilization and the environment such as rainwater, etc., greatly affect the fertilization amount within an appropriate range. It is difficult to accurately determine whether there is.
Further, in the latter method, it is often possible to visually recognize the symptoms such as root wilt due to excessive fertilization, and it is often too late to recover the sample.
For this reason, similarly to the former method, it is difficult to accurately determine the fertilization amount.

【0005】本発明は、かかる事情に鑑みてなされたも
のであり、施肥量が適正であるか否かの判定を精度良く
行うことのできる施肥量判定方法を提供することを目的
とする。
[0005] The present invention has been made in view of such circumstances, and has as its object to provide a fertilization amount determination method capable of accurately determining whether or not a fertilization amount is appropriate.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、試料に施された肥料の量が所定の範囲内
であるか否かを判定する施肥量判定方法であって、肥料
が施された試料に励起光を照射する工程と、励起光が照
射された試料から発生する遅延蛍光を所定時間検出する
工程と、遅延蛍光の検出時間と遅延蛍光の発光強度との
関係である減衰データを算出する工程と、減衰データに
基づいて施肥量判定値を求める工程と、施肥量判定値が
予め定められた範囲内であるか否かを判定する工程と、
を備えることを特徴とする。
According to the present invention, there is provided a fertilizer application determining method for determining whether an amount of a fertilizer applied to a sample is within a predetermined range. Irradiating the fertilizer-treated sample with excitation light, detecting the delayed fluorescence generated from the sample irradiated with the excitation light for a predetermined time, and determining the relationship between the detection time of the delayed fluorescence and the emission intensity of the delayed fluorescence. A step of calculating a certain attenuation data, a step of calculating a fertilization amount determination value based on the attenuation data, and a step of determining whether the fertilization amount determination value is within a predetermined range,
It is characterized by having.

【0007】本発明に係る施肥量判定方法によれば、ま
ず、肥料が施された植物の葉などの試料に向けて、励起
光が照射される。すると、植物の葉などから遅延蛍光が
発生する。かかる遅延蛍光は、励起光が一度葉緑体内部
で化学エネルギーに変換された後、ある程度の遅延時間
を経たときに再度光エネルギーとして放出されるもので
あり、このような遅延蛍光をモニターすれば、いわゆる
表面的な情報だけでなく、上記化学エネルギーを受け取
る分子の情報、即ち内部の情報まで得ることができる。
[0007] According to the fertilizer application amount judging method according to the present invention, first, excitation light is applied to a sample such as a leaf of a fertilized plant. Then, delayed fluorescence is generated from the leaves of the plant and the like. Such delayed fluorescence is one in which the excitation light is once converted into chemical energy inside the chloroplast and then emitted again as light energy after a certain delay time.If such delayed fluorescence is monitored, It is possible to obtain not only superficial information but also information on molecules that receive the chemical energy, that is, information on the inside.

【0008】試料から発生した遅延蛍光は、光電子増倍
管等をはじめとする光検出器などによって所定時間検出
される。その後、遅延蛍光の検出時間と遅延蛍光の発光
強度との関係である減衰データが算出され、この減衰デ
ータに基づいて施肥量判定値が求められる。そして、こ
の施肥量判定値が予め求めておいた範囲内であるか否
か、ひいては試料への施肥量が所定範囲であるか否かが
判定される。ここで、施肥量が適正であるときの施肥量
判定値に基づいて許容範囲を定めておけば、試料に施し
た肥料の量が適正であるか否かを判定することができ
る。
The delayed fluorescence generated from the sample is detected for a predetermined time by a photodetector such as a photomultiplier tube. Thereafter, attenuation data, which is a relationship between the detection time of the delayed fluorescence and the emission intensity of the delayed fluorescence, is calculated, and a fertilization amount determination value is obtained based on the attenuation data. Then, it is determined whether or not the fertilization amount determination value is within a range obtained in advance, and whether or not the fertilization amount to the sample is within a predetermined range. Here, if the allowable range is determined based on the fertilization amount determination value when the fertilization amount is appropriate, it can be determined whether the amount of the fertilizer applied to the sample is appropriate.

【0009】また、本発明の施肥量判定装置において、
施肥量判定値は、減衰データに基づいて作成される減衰
曲線の二点の傾きの比の値であることが望ましい。
Further, in the fertilizer application amount determining apparatus of the present invention,
It is desirable that the fertilization amount determination value is a value of a ratio of a slope of two points of an attenuation curve created based on the attenuation data.

【0010】この場合、たとえば、遅延蛍光の検出初期
における減衰曲線の傾きをk1、検出後期における減衰
曲線の傾きをk2とした場合、k2/k1又はk1/k
2の値が施肥量判定値となる。本発明者の鋭意研究の結
果、k2/k1等で示される施肥量判定値は、試料に施
された肥料の量と一定の関係があることが見い出され
た。そのため、施肥量が適正である場合や肥料を施しす
ぎて試料が枯れた場合などの施肥量判定値を予めデータ
として蓄積し、このデータに基づいて、施肥量判定値の
許容範囲を定めることができる。
In this case, for example, if the slope of the decay curve at the early stage of detection of delayed fluorescence is k1, and the slope of the decay curve at the late stage of detection is k2, k2 / k1 or k1 / k
The value of 2 is the fertilization amount determination value. As a result of earnest research by the present inventors, it has been found that the fertilization amount determination value represented by k2 / k1 or the like has a certain relationship with the amount of fertilizer applied to the sample. Therefore, it is possible to accumulate the fertilization amount determination value in advance when the fertilization amount is appropriate or when the sample is withered due to excessive application of fertilizer, and determine the allowable range of the fertilization amount determination value based on this data. it can.

【0011】[0011]

【発明の実施の形態】以下、添付図面を参照して、本発
明に係る施肥量判定方法の好適な実施形態について詳細
に説明する。尚、同一要素には同一符号を用いるものと
し、重複する記載は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the method for determining fertilizer application according to the present invention will be described below in detail with reference to the accompanying drawings. Note that the same reference numerals are used for the same elements, and duplicate descriptions are omitted.

【0012】図1は、本実施形態の施肥量判定方法に用
いる施肥量判定装置2の構成図である。施肥量判定装置
2は、遅延蛍光測定装置4、この遅延蛍光測定装置4に
ケーブル10を介して接続された判定装置6およびディ
スプレイ8から構成されている。なお、遅延蛍光測定装
置4は、判定装置6から脱着可能な携帯型装置である。
FIG. 1 is a configuration diagram of a fertilizer application amount judging device 2 used in the fertilizer application amount judging method of the present embodiment. The fertilizer application amount determination device 2 includes a delayed fluorescence measurement device 4, a determination device 6 connected to the delayed fluorescence measurement device 4 via a cable 10, and a display 8. The delayed fluorescence measurement device 4 is a portable device that can be detached from the determination device 6.

【0013】まず、遅延蛍光測定装置4の構成について
説明する。遅延蛍光測定装置4には、試料12を狭持で
きるクリップ形状をなし、さらに外来光を遮断できるよ
うに構成された試料セット部14が設けられている。な
お、本実施形態では、試料12として茶葉を使用してい
る。
First, the configuration of the delayed fluorescence measuring device 4 will be described. The delayed fluorescence measurement device 4 is provided with a sample setting section 14 which has a clip shape capable of holding the sample 12 and is configured to block external light. In this embodiment, tea leaves are used as the sample 12.

【0014】本実施形態では、遅延蛍光を検出する光検
出器として、光電子増倍管(PMT)16を用いてお
り、当該光電子増倍管16と試料セット部14との間に
は、外部からの光を遮断できる略円筒形状の遅延蛍光通
過部18が形成されている。なお、光電子増倍管16に
はマルチアルカリ光電面が装着されており、その分光感
度特性から遅延蛍光波長である720〜760nmの光
を検出することができる。
In the present embodiment, a photomultiplier tube (PMT) 16 is used as a photodetector for detecting delayed fluorescence. A substantially cylindrical shaped delayed fluorescence passage section 18 capable of blocking the light of the above-described type is formed. The photomultiplier tube 16 is equipped with a multi-alkali photocathode, and can detect light having a delayed fluorescence wavelength of 720 to 760 nm from its spectral sensitivity characteristics.

【0015】遅延蛍光通過部18内の試料セット部14
近傍には、試料12を励起する励起光の光源であるレー
ザーダイオード(LD)20が配置されている。レーザ
ーダイオード20から放出されるレーザ光は、波長68
0nmで、試料12の照射位置におけるレーザ光の強度
は、10mW/cm2である。また、遅延蛍光通過部1
8内には、試料セット部14側から順に、シャッター2
2、集光レンズ24、フィルタ26が配置されている。
集光用レンズ24として、f50の1:1のリレーレン
ズが用いられ、フィルタ26には、波長が720nmよ
り短い光をカットするカットオフフィルタが使用されて
いる。
The sample setting section 14 in the delayed fluorescence passage section 18
In the vicinity, a laser diode (LD) 20 which is a light source of excitation light for exciting the sample 12 is arranged. The laser light emitted from the laser diode 20 has a wavelength of 68
At 0 nm, the intensity of the laser light at the irradiation position of the sample 12 is 10 mW / cm 2 . In addition, the delayed fluorescence passing section 1
8, shutters 2 are arranged in order from the sample setting unit 14 side.
2, a condenser lens 24 and a filter 26 are arranged.
A 1: 1 relay lens of f50 is used as the condenser lens 24, and a cut-off filter that cuts light having a wavelength shorter than 720 nm is used as the filter 26.

【0016】また、光電子増倍管16の図1における左
側には、駆動スイッチ28の作動に伴うLD20の点灯
および消灯、シャッター22の開閉、光電子増倍管16
による遅延蛍光の受光時間などを制御する制御装置30
が配置されている。また、制御装置30の近傍には、光
電子増倍管16、LD20およびシャッター22の駆動
源である電池32が交換可能に配置されている。
On the left side of the photomultiplier tube 16 in FIG. 1, the turning on and off of the LD 20, the opening and closing of the shutter 22, the opening and closing of the shutter 22,
Control device 30 for controlling the reception time of delayed fluorescence by
Is arranged. In the vicinity of the control device 30, a battery 32, which is a drive source of the photomultiplier tube 16, the LD 20, and the shutter 22, is exchangeably disposed.

【0017】次に、図2のブロック図を用いて、遅延蛍
光測定装置4に接続された判定装置6およびディスプレ
イ8の構成を説明する。図2に示されているように、判
定装置6には、遅延蛍光測定装置4内の光電子増倍管1
6からの信号を増幅するプリアンプ34と、増幅された
信号をカウントするカウンタ36と、減衰曲線の算出、
施肥量判定値の算出、算出した施肥量判定値が許容範囲
(所定範囲)内か否かの判定等を行うCPU40と、詳
しくは後述する施肥量判定値の許容範囲が複数の肥料に
ついて予め蓄積された許容範囲データ記憶部38と、が
内蔵されている。また、CPU40には、減衰曲線、施
肥量判定値、および判定結果等を表示可能なディスプレ
イ8が接続されている。
Next, the configurations of the determination device 6 and the display 8 connected to the delayed fluorescence measurement device 4 will be described with reference to the block diagram of FIG. As shown in FIG. 2, the determination device 6 includes the photomultiplier tube 1 in the delayed fluorescence measurement device 4.
6, a preamplifier 34 for amplifying the signal from the counter 6, a counter 36 for counting the amplified signal,
A CPU 40 for calculating a fertilization amount determination value, determining whether or not the calculated fertilization amount determination value is within an allowable range (predetermined range), and in detail, an allowable range of the fertilization amount determination value described later is stored in advance for a plurality of fertilizers. And a tolerance data storage unit 38. Further, a display 8 capable of displaying an attenuation curve, a fertilization amount determination value, a determination result, and the like is connected to the CPU 40.

【0018】ここで、図3を用いて、一般的な減衰曲線
の説明をする。図3は、横軸を遅延蛍光の検出時間、縦
軸を遅延蛍光の発光強度としたグラフであり、この図に
示された曲線が減衰曲線である。ここでは、施肥量が適
正(窒素成分が年間約50kg/10a)な農地から採
取された茶葉(丸印)、肥料過多(年間約70kg/1
0a)の農地から採取された茶葉A(四角印)、肥料過
多(年間約80kg/10a)の農地から採取された茶
葉B(三角印)、肥料過多(年間約100kg/10
a)の農地から採取された茶葉C(バツ印)の4種類の
試料を用いている。なお、測定のばらつきを防止するた
め、各圃場について、数本の樹木から茶葉をランダムに
33枚採取した。
Here, a general attenuation curve will be described with reference to FIG. FIG. 3 is a graph in which the horizontal axis represents the detection time of the delayed fluorescence and the vertical axis represents the emission intensity of the delayed fluorescence, and the curve shown in this figure is the attenuation curve. Here, tea leaves (circles) collected from agricultural land where the fertilization rate is appropriate (nitrogen component is about 50 kg / 10a / year), and fertilizer excess (about 70 kg / year / year)
0a) tea leaves A (squares) collected from the agricultural land, excessive fertilizers (about 80 kg / 10 a year), tea leaves B (triangles) collected from the agricultural land, excess fertilizer (about 100 kg / 10 annually)
Four kinds of samples of tea leaves C (crosses) collected from the agricultural land of a) are used. In addition, in order to prevent variation in the measurement, 33 tea leaves were randomly collected from several trees in each field.

【0019】茶葉Cに関しては、地上に現れている部分
の観察では肥料過多による影響を判断できないが、土を
掘り起こして根を観察したところ肥料過剰による障害が
発生し始めていることが分かった。また、茶葉A,B
は、外観上は全く肥料の影響を判断することができなか
った。なお、図3より、施肥量が多くなるに連れて、遅
延蛍光の発光量の総和が少なくなることがわかる。
With respect to the tea leaves C, the influence of excess fertilizer cannot be determined by observing the portion that appears on the ground. However, when the soil was dug up and the roots were observed, it was found that troubles due to excess fertilizer had started to occur. In addition, tea leaves A and B
Could not determine the effect of fertilizer on the appearance. Note that FIG. 3 shows that the total amount of the delayed fluorescence emission decreases as the fertilization amount increases.

【0020】図4は、図3に示した減衰曲線の励起光遮
断後1〜10秒の減衰率(傾き)k1および15〜40
秒後の減衰率(傾き)k2を算出し、これらを2次元マ
ッピングしたグラフである。肥料過多の茶葉A〜Cにつ
いては、施肥量が適正のときと比較して、k1の分布よ
り初期の減衰が緩やかになることが分かり、k2の分布
より後期の減衰率が大きくなることが分かる。特に、最
も施肥量の多い茶葉C(バツ印)に関しては、施肥量が
適正のときと比較して、後期の減衰率が極めて大きくな
っている。尚、k1およびk2を求めるための減衰曲線
上の二点の位置は、適宜変更することができる。
FIG. 4 shows the decay rates (gradients) k1 and 15-40 of the decay curve shown in FIG.
6 is a graph in which an attenuation rate (slope) k2 after seconds is calculated and these are two-dimensionally mapped. As for the tea leaves A to C with excess fertilizer, it can be seen that the initial attenuation becomes slower than the distribution of k1 and the attenuation rate in the latter period becomes larger than the distribution of k2 as compared to when the fertilization amount is appropriate. . In particular, as for the tea leaves C (crosses) with the largest amount of fertilization, the decay rate in the latter period is extremely higher than when the amount of fertilization is appropriate. Note that the positions of two points on the attenuation curve for obtaining k1 and k2 can be appropriately changed.

【0021】図4で得られたk1およびk2から、本発
明者らは、k1/k2の値が試料への施肥量に関連があ
ることを見い出し、その値を施肥量判定値と呼ぶことに
した。図5は、その施肥量判定値をヒストグラムとして
示したものである。横軸を施肥量判定値とし、縦軸をそ
の頻度とした。図5より、施肥量判定値の平均値は、肥
料が過剰になるに連れて小さくなることが分かる。この
とき、たとえば施肥量判定値の許容範囲を5.00以上
に設定することで、施肥量判定値が5.00以上のとき
に施肥量が適正と判定し、5.00よりも小さい場合に
肥料過多と判定することができる。また、許容範囲を
4.5以上に設定すれば、施肥量判定値が4.5よりも
小さいときに、茶葉Cのように根に障害が発生している
と判定することができる。なお、これらの許容範囲は、
この実験で用いた茶葉および肥料と同じものを用いる場
合に利用することができる。また、このような許容範囲
に関するデータが、判定装置6の許容範囲データ記憶部
38に蓄積されている。
Based on k1 and k2 obtained in FIG. 4, the present inventors have found that the value of k1 / k2 is related to the amount of fertilization applied to the sample, and call the value a fertilization amount determination value. did. FIG. 5 shows the fertilization amount determination value as a histogram. The horizontal axis was the fertilization amount determination value, and the vertical axis was the frequency. From FIG. 5, it can be seen that the average value of the fertilization amount determination values decreases as the amount of fertilizer becomes excessive. At this time, for example, by setting the allowable range of the fertilization amount determination value to 5.00 or more, when the fertilization amount determination value is 5.00 or more, the fertilization amount is determined to be appropriate, and when the fertilization amount is smaller than 5.00, It can be determined that fertilizer is excessive. In addition, if the allowable range is set to 4.5 or more, when the fertilization amount determination value is smaller than 4.5, it can be determined that a failure has occurred in the root as in tea leaves C. Note that these tolerances are
It can be used when the same tea leaves and fertilizers used in this experiment are used. Further, data on such an allowable range is stored in the allowable range data storage unit 38 of the determination device 6.

【0022】続いて、施肥量が適正か否かを判定する方
法を説明する。
Next, a method for determining whether or not the fertilization amount is appropriate will be described.

【0023】まず、図1を参照して、遅延蛍光の検出ま
でを説明する。最初に、施肥量の判定の対象となる試料
12を試料セット部14にセットした後、約2分間遮光
状態で放置する。その後、オペレータが駆動スイッチ2
8をオンにすることにより、シャッター22を閉じた状
態でLD20が約30秒間点灯し、試料12の光励起を
行う。30秒間の光励起が終わった後、制御装置30
は、シャッター22を開くと同時に、LD20への供給
電源をオフにする。LD20の消灯後、試料12から遅
延蛍光が発生し、当該遅延蛍光は、シャッター22を通
過し、集光レンズ24によって集光されて、光電子増倍
管16に到達する。この際、フィルタ26によって、7
20nmよりも波長の短い光は遮断される。制御装置3
0の指令のもと、光電子増倍管16は、200msのサ
ンプリングを200回すなわち約40秒間の経時変化を
測定する。
First, the process up to detection of delayed fluorescence will be described with reference to FIG. First, the sample 12 to be subjected to the determination of the amount of fertilization is set in the sample setting unit 14, and then left in a light-shielded state for about 2 minutes. Then, the operator operates the drive switch 2
When the shutter 8 is turned on, the LD 20 is turned on for about 30 seconds with the shutter 22 closed, and the sample 12 is excited. After the light excitation for 30 seconds is completed, the control device 30
Opens the shutter 22 and turns off the power supply to the LD 20 at the same time. After the LD 20 is turned off, delayed fluorescence is generated from the sample 12, and the delayed fluorescence passes through the shutter 22, is collected by the condenser lens 24, and reaches the photomultiplier 16. At this time, the filter 26
Light with a wavelength shorter than 20 nm is blocked. Control device 3
Under the command of 0, the photomultiplier tube 16 measures 200 times of sampling of 200 ms, that is, changes over time of about 40 seconds.

【0024】続いて、図2および図6を参照して、光電
子増倍管16で検出された遅延蛍光の読み出しから、施
肥量の判定結果の表示までの判定装置6に内蔵されたC
PU40の制御手順を説明する。光電子増倍管16が所
定時間遅延蛍光を検出した後、CPU40は、光電子増
倍管16から遅延蛍光の電気信号である遅延蛍光データ
を読み出す(S101)。光電子増倍管16から読み出
された遅延蛍光データは、プリアンプ34により増幅さ
れ、増幅された遅延蛍光データは、カウンタ36でカウ
ントされる。続いて、CPU40は、遅延蛍光データの
カウント値に基づいて、遅延蛍光の検出時間と発光強度
との関係を示す減衰曲線を算出する(S102)。
Next, referring to FIG. 2 and FIG. 6, the C built in the determination device 6 from the reading of the delayed fluorescence detected by the photomultiplier tube 16 to the display of the determination result of the fertilization amount.
The control procedure of the PU 40 will be described. After the photomultiplier tube 16 detects the delayed fluorescence for a predetermined time, the CPU 40 reads out delayed fluorescence data, which is an electrical signal of the delayed fluorescence, from the photomultiplier tube 16 (S101). The delayed fluorescence data read from the photomultiplier tube 16 is amplified by a preamplifier 34, and the amplified delayed fluorescence data is counted by a counter 36. Next, the CPU 40 calculates an attenuation curve indicating the relationship between the detection time of the delayed fluorescence and the emission intensity based on the count value of the delayed fluorescence data (S102).

【0025】減衰曲線を算出した後、CPU40は、施
肥量判定値を算出する(S103)。本実施形態では、
CPU40は、上述のように遅延蛍光の検出開始1〜1
0秒後の傾きk1と検出開始15〜40秒後の傾きk2
を求め、施肥量判定値であるk1/k2の値を算出す
る。なお、実際には、幾つかの試料より求めた判定値の
平均値が算出される。施肥量判定値を算出した後、CP
U40は、許容範囲データ記憶部38から施肥量判定値
の許容範囲に関するデータを読み出す(S104)。
After calculating the attenuation curve, the CPU 40 calculates a fertilization amount determination value (S103). In this embodiment,
As described above, the CPU 40 starts detection of delayed fluorescence 1 to 1
Slope k1 after 0 seconds and slope k2 15 to 40 seconds after the start of detection
Is calculated, and the value of k1 / k2 which is the fertilization amount determination value is calculated. In practice, an average value of the determination values obtained from several samples is calculated. After calculating the fertilization amount determination value, the CP
U40 reads data on the allowable range of the fertilization amount determination value from the allowable range data storage unit 38 (S104).

【0026】そして、CPU40は、施肥量判定値が許
容範囲を超えているか否かを判断することにより、試料
12への施肥量が適正であるか否かを判定する(S10
5)。なお、上述のように、施肥量判定値が許容範囲内
のときは施肥量が適正と判定され、施肥量判定値が許容
範囲の下限よりも小さいときは、施肥量が過剰になって
いると判定される。本実施形態では、施肥量の過剰のみ
を判定し、過小については判定しないため、許容範囲の
上限を設ける必要はない。但し、許容範囲の上限、すな
わち施肥量が少なすぎる場合の許容値も定めれば、施肥
量の過小を防止することもできる。また、施肥量判定値
の許容範囲は、適宜変更することができる。
Then, the CPU 40 determines whether or not the fertilization amount applied to the sample 12 is appropriate by determining whether or not the fertilization amount determination value exceeds the allowable range (S10).
5). Note that, as described above, when the fertilization amount determination value is within the allowable range, the fertilization amount is determined to be appropriate, and when the fertilization amount determination value is smaller than the lower limit of the allowable range, the fertilization amount is excessive. Is determined. In the present embodiment, it is not necessary to set an upper limit of the allowable range because only the excess of the fertilization amount is determined, and the determination is not made of the excessively small amount. However, if an upper limit of the allowable range, that is, an allowable value when the amount of fertilization is too small is also determined, it is possible to prevent the amount of fertilization from being too small. Further, the allowable range of the fertilization amount determination value can be appropriately changed.

【0027】施肥量の判定を行った後、ディスプレイ8
に、減衰曲線、施肥量判定値、および施肥量の判定結果
の表示指令を送り(S106)、CPU40の制御動作
は終了する。ディスプレイ8に表示された施肥量の判定
結果を用いて、たとえば過剰の施肥を取り締まったり、
その後の施肥量を決定する際しての参考にすることがで
きる。
After determining the amount of fertilizer, the display 8
Then, a command to display the attenuation curve, the fertilization amount determination value, and the determination result of the fertilization amount is sent (S106), and the control operation of the CPU 40 ends. Using the determination result of the amount of fertilization displayed on the display 8, for example, controlling over fertilization,
This can be used as a reference when determining the amount of fertilizer to be applied thereafter.

【0028】本実施形態の施肥量判定装置2によれば、
試料のある現場で容易に施肥量の判定を行うことがで
き、しかも、試料から発せられる遅延蛍光を利用してい
るため、試料の内部情報を目視などの場合と比較して正
確に知ることができる。このため、施肥量の判定を精度
良く容易に行うことができる。
According to the fertilizer application amount determining apparatus 2 of the present embodiment,
The amount of fertilizer applied can be easily determined at the site where the sample is located.In addition, since the delayed fluorescence emitted from the sample is used, the internal information of the sample can be known more accurately than when it is visually observed. it can. Therefore, it is possible to easily and accurately determine the amount of fertilizer.

【0029】以上、本発明者によってなされた発明を実
施形態に基づき具体的に説明したが、本発明は上記実施
形態に限定されるものではない。例えば、判定部および
ディスプレイを遅延蛍光測定装置に組み込んでもよい。
この場合、農地などの現場での利用が一層容易になる。
さらに、施肥量判定値をk1/k2でなくk2/k1と
しても、施肥量の判定を行うことができる。
As described above, the invention made by the present inventor has been specifically described based on the embodiments. However, the present invention is not limited to the above embodiments. For example, the determination unit and the display may be incorporated in the delayed fluorescence measurement device.
In this case, use on the site such as farmland is further facilitated.
Further, the fertilization amount can be determined even when the fertilization amount determination value is set to k2 / k1 instead of k1 / k2.

【0030】[0030]

【発明の効果】以上説明したように、本発明に係る施肥
量判定方法によれば、試料から発せられた遅延蛍光を所
定時間検出した後、遅延蛍光の検出時間と遅延蛍光の発
光強度との関係である減衰データが算出され、この減衰
データに基づいて施肥量判定値が求められる。そして、
この施肥量判定値が予め求めておいた許容範囲内である
か否か、ひいては試料への施肥量が所定範囲であるか否
かが判定される。ここで、施肥量が適正であるときの施
肥量判定値に基づいて、上記許容範囲を定めておけば、
試料に施した肥料の量が適正であるか否かを判定するこ
とができる。
As described above, according to the fertilization rate determination method according to the present invention, after detecting the delayed fluorescence emitted from the sample for a predetermined time, the detection time of the delayed fluorescence and the emission intensity of the delayed fluorescence are determined. Attenuation data as a relationship is calculated, and a fertilization amount determination value is determined based on the attenuation data. And
It is determined whether or not the fertilization amount determination value is within an allowable range determined in advance, and whether or not the fertilization amount to the sample is within a predetermined range. Here, if the above-mentioned allowable range is determined based on the fertilization amount determination value when the fertilization amount is appropriate,
It can be determined whether the amount of fertilizer applied to the sample is appropriate.

【0031】ここで、本発明では、試料から発せられる
遅延蛍光を利用しているため、いわゆる表面的な情報だ
けでなく試料の内部の情報まで得ることができる。この
ため、施肥量が適正か否かの判定を精度良く行うことが
できる。
Here, in the present invention, since delayed fluorescence emitted from the sample is used, not only so-called surface information but also information inside the sample can be obtained. Therefore, it is possible to accurately determine whether or not the fertilization amount is appropriate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の施肥量判定方法に使用する施肥量判定
装置を示す図である。
FIG. 1 is a diagram showing a fertilization amount determination device used in a fertilization amount determination method of the present invention.

【図2】施肥量判定装置の判定部の構成を詳細に示した
ブロック図である。
FIG. 2 is a block diagram showing a configuration of a determination unit of the fertilizer application amount determination device in detail.

【図3】施肥量が適正な試料と施肥量が過剰な試料に基
づいて求められた減衰曲線を示すグラフである。
FIG. 3 is a graph showing an attenuation curve obtained based on a sample with an appropriate amount of fertilization and a sample with an excessive amount of fertilization.

【図4】図3に示した減衰曲線より求めたk1およびk
2の値を2次元マッピングしたグラフである。
FIG. 4 shows k1 and k obtained from the attenuation curve shown in FIG.
2 is a graph obtained by two-dimensionally mapping values of 2.

【図5】図3に示した減衰曲線より求めた施肥量判定値
を示したヒストグラムである。
FIG. 5 is a histogram showing fertilization amount determination values obtained from the attenuation curve shown in FIG. 3;

【図6】判定部のCPUの制御手順を示すフローチャー
トである。
FIG. 6 is a flowchart illustrating a control procedure of a CPU of a determination unit.

【符号の説明】[Explanation of symbols]

2…施肥量判定装置、4…遅延蛍光測定装置、6…判定
装置、12…試料、14…試料セット部、16…光電子
増倍管、20…レーザーダイオード、22…シャッタ
ー、24…集光レンズ、26…フィルタ、28…駆動ス
イッチ、30…制御装置、32…電池、34…プリアン
プ、36…カウンタ、38…許容範囲データ記憶部。
2 ... fertilizer application amount judging device, 4 ... delayed fluorescence measuring device, 6 ... judging device, 12 ... sample, 14 ... sample setting section, 16 ... photomultiplier tube, 20 ... laser diode, 22 ... shutter, 24 ... condensing lens , 26 ... Filter, 28 ... Drive Switch, 30 ... Control Device, 32 ... Battery, 34 ... Preamplifier, 36 ... Counter, 38 ... Permissible Range Data Storage Unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 文 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 Fターム(参考) 2B052 BA08 2G043 AA01 BA14 CA07 DA04 EA01 FA03 FA05 FA07 GA02 GA07 GB17 GB21 HA01 HA11 JA03 KA05 LA02 NA01 NA06 NA11 ────────────────────────────────────────────────── ─── Continued on the front page (72) Fumi Yamazaki, Inventor 1126 Nomachi, Hamamatsu City, Shizuoka Prefecture F-term in Hamamatsu Photonics Co., Ltd. HA01 HA11 JA03 KA05 LA02 NA01 NA06 NA11

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 試料に施された肥料の量が所定の範囲内
であるか否かを判定する施肥量判定方法であって、 前記肥料が施された前記試料に励起光を照射する工程
と、 前記励起光が照射された前記試料から発生する遅延蛍光
を所定時間検出する工程と、 前記遅延蛍光の検出時間と前記遅延蛍光の発光強度との
関係である減衰データを算出する工程と、 前記減衰データに基づいて施肥量判定値を求める工程
と、 前記施肥量判定値が予め定められた範囲内であるか否か
を判定する工程と、 を備えることを特徴とする施肥量判定方法。
1. A fertilization amount determination method for determining whether an amount of fertilizer applied to a sample is within a predetermined range, comprising: irradiating the sample to which the fertilizer has been applied with excitation light; Detecting a delayed fluorescence generated from the sample irradiated with the excitation light for a predetermined time; calculating attenuation data that is a relationship between the detection time of the delayed fluorescence and the emission intensity of the delayed fluorescence; A fertilization amount determination method, comprising: determining a fertilization amount determination value based on attenuation data; and determining whether the fertilization amount determination value is within a predetermined range.
【請求項2】 前記施肥量判定値は、前記減衰データに
基づいて作成される減衰曲線の二点の傾きの比の値であ
ることを特徴とする請求項1記載の施肥量判定方法。
2. The fertilization amount determination method according to claim 1, wherein the fertilization amount determination value is a value of a ratio of a slope of two points of an attenuation curve created based on the attenuation data.
JP01439799A 1999-01-22 1999-01-22 Fertilizer application method Expired - Fee Related JP3908870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01439799A JP3908870B2 (en) 1999-01-22 1999-01-22 Fertilizer application method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01439799A JP3908870B2 (en) 1999-01-22 1999-01-22 Fertilizer application method

Publications (2)

Publication Number Publication Date
JP2000214089A true JP2000214089A (en) 2000-08-04
JP3908870B2 JP3908870B2 (en) 2007-04-25

Family

ID=11859925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01439799A Expired - Fee Related JP3908870B2 (en) 1999-01-22 1999-01-22 Fertilizer application method

Country Status (1)

Country Link
JP (1) JP3908870B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005066434A (en) * 2003-08-22 2005-03-17 Anzai Sogo Kenkyusho:Kk Apparatus for sorting foreign matter in tea leaf
JPWO2005062027A1 (en) * 2003-12-19 2007-07-12 浜松ホトニクス株式会社 Hazardous substance evaluation method and hazardous substance evaluation kit
JP2014240831A (en) * 2013-05-17 2014-12-25 国立大学法人京都大学 Diagnostic method of plant vitality, and measuring system and diagnostic system used for the same
CN111615901A (en) * 2020-04-30 2020-09-04 北京农业信息技术研究中心 Fruit tree fertilizing amount prediction method and system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005066434A (en) * 2003-08-22 2005-03-17 Anzai Sogo Kenkyusho:Kk Apparatus for sorting foreign matter in tea leaf
JPWO2005062027A1 (en) * 2003-12-19 2007-07-12 浜松ホトニクス株式会社 Hazardous substance evaluation method and hazardous substance evaluation kit
JP4699214B2 (en) * 2003-12-19 2011-06-08 浜松ホトニクス株式会社 Hazardous substance evaluation method and hazardous substance evaluation kit
US9448170B2 (en) 2003-12-19 2016-09-20 Hamamatsu Photonics K.K. Harmful substance evaluating method and harmful substance evaluation kit
JP2014240831A (en) * 2013-05-17 2014-12-25 国立大学法人京都大学 Diagnostic method of plant vitality, and measuring system and diagnostic system used for the same
US10024832B2 (en) 2013-05-17 2018-07-17 Kyoto University Method for evaluating vitality of plant, and measurement system and evaluation system
CN111615901A (en) * 2020-04-30 2020-09-04 北京农业信息技术研究中心 Fruit tree fertilizing amount prediction method and system

Also Published As

Publication number Publication date
JP3908870B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
Flexas et al. Steady-state and maximum chlorophyll fluorescence responses to water stress in grapevine leaves: a new remote sensing system
Lichtenthaler et al. Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system
Du et al. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China
Gitelson et al. Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements
Campbell et al. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance
Hák et al. Decrease of the chlorophyll fluorescence ratio F690/F730 during greening and development of leaves
Gillner et al. Contrasting strategies for tree species to cope with heat and dry conditions at urban sites
CN103250043B (en) For determining sensing system and the method for plant optical characteristics
Liu et al. Detecting solar-induced chlorophyll fluorescence from field radiance spectra based on the Fraunhofer line principle
US20130276368A1 (en) Plant health diagnostic method and plant health diagnostic device
JP6485850B2 (en) Plant vitality diagnostic method, and measurement system and diagnostic system used therefor
Stober et al. Blue, green, and red fluorescence emission signatures of green, etiolated, and white leaves
Paul et al. Predicting growth and sequestration of carbon by plantations growing in regions of low-rainfall in southern Australia
Apostol et al. Laser-induced fluorescence signatures as a tool for remote monitoring of water and nitrogen stresses in plants
JP2000214089A (en) Decision method for fertilization amount
Bell et al. The evolution of spectral sensing and advances in precision turfgrass management
JP3807940B2 (en) Diagnostic method of plant growth
EP0615618A1 (en) Process and device for measuring algae fluorescence feedback
JP3884592B2 (en) Herbicide application amount determination device and herbicide application amount determination method
Luedeker et al. Laser-induced leaf fluorescence: a tool for vegetation status and stress monitoring and optical-aided agriculture
CN106680205A (en) LED lighting system capable of monitoring plant growth state in real time
Shropshire et al. Optical reflectance sensor for detecting plants
Richards et al. Laser-induced fluorescence spectroscopy of dark-and light-adapted bean (Phaseolus vulgaris L.) and wheat (Triticum aestivum L.) plants grown under three irradiance levels and subjected to fluctuating lighting conditions
JPH0823783A (en) Method for controlling growth of plant based on ingredient amount of leaf
Thalheimer A leaf-mounted capacitance sensor for continuous monitoring of foliar transpiration and solar irradiance as an indicator of plant water status

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees