JP3908655B2 - Communication apparatus and communication method - Google Patents

Communication apparatus and communication method Download PDF

Info

Publication number
JP3908655B2
JP3908655B2 JP2002361665A JP2002361665A JP3908655B2 JP 3908655 B2 JP3908655 B2 JP 3908655B2 JP 2002361665 A JP2002361665 A JP 2002361665A JP 2002361665 A JP2002361665 A JP 2002361665A JP 3908655 B2 JP3908655 B2 JP 3908655B2
Authority
JP
Japan
Prior art keywords
communication
path
fluctuation
transmission
transmission path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002361665A
Other languages
Japanese (ja)
Other versions
JP2004194141A (en
Inventor
盛友 大杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002361665A priority Critical patent/JP3908655B2/en
Publication of JP2004194141A publication Critical patent/JP2004194141A/en
Application granted granted Critical
Publication of JP3908655B2 publication Critical patent/JP3908655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、通信装置における通信帯域制御技術に関連し、例えば、PON(Passive Optical Network)等の光通信装置における通信帯域制御技術に関連する。
【0002】
【従来の技術】
従来の技術として、特開2002−77212に開示された光多分岐通信システムがある。
図5は、従来技術に係る通信システムの構成を簡略化して示す図である。
図中の1はPON区間の伝送路が2重化され、ブランチ切替機能及びDBA(Dynamic Bandwidth Allocation)機能を有する親局である。
2は親局1に収容される子局であり、31及び32は親局と子局を接続する0系及び1系の光カプラである。
41及び42は、子局毎またはパス毎の上り伝送帯域使用量を監視する機能、子局または伝送路の障害検出機能、子局数またはパス数の変動検出機能を有する0系及び1系のPON終端及び上り伝送帯域監視部である。
51及び52は0系及び1系のDBA機能部であり、61及び62は0系及び1系の障害/変更監視部である。
7は初期立上げ時及び子局または伝送路の障害や子局数またはパス数の変更に起因して▲1▼0系または1系への振り分けバランスが崩れた場合、▲2▼最低保障帯域の和が略均等でなくなった場合、▲3▼最大帯域の和が略均等でなくなった場合、▲4▼最大帯域と最低保障帯域の差分の和が略均等でなくなった場合、▲5▼設定帯域の和が略均等でなくなった場合、の何れかが発生した時に両系における子局毎またはパス毎の伝送路設定選択を行う伝送路設定選択部である。設定選択の判断基準として、判断基準▲1▼0系または1系への振り分けバランスが良いこと、判断基準▲2▼最低保障帯域の和が略均等であること、判断基準▲3▼最大帯域の和が略均等であること、判断基準▲4▼最大帯域と最低保障帯域の差分の和が略均等であること、判断基準▲5▼設定帯域の和が略均等であること、がある。
8は伝送路設定選択部7からの選択情報に従って両系からの入力信号及び両系への出力信号の経路を制御するセレクタスイッチ部である。
91及び92は子局側0系及び1系のPON終端部であり、10は親局側からの伝送路設定選択情報に従って両系におけるパス毎の伝送路設定選択を行う伝送路設定選択部である。11は伝送路設定選択部10からの選択情報に従って両系からの入力信号及び両系への出力信号の経路を制御するセレクタスイッチ部である。
なお、親局1が伝送路を設定選択する単位としては子局毎またはパス毎が考えられるが、ここでは簡単のために1子局に1パスのみ設定されているものとする。
【0003】
【特許文献1】
特開2002−77212号公報
【0004】
【発明が解決しようとする課題】
従来技術に係る光多分岐システムは以上のように構成されているが、以下のような問題がある。
まず例としてインターネット接続を考えると、企業に設置された子局(ここでは簡単のために1子局に1パスのみ設定されていることとするため、以下では「子局」とのみ表現する。)への上り信号入力は昼に増加し、夜に減少する。逆に一般家庭に設置された子局への上り信号入力は夜に増加し、昼に減少する。また一週間での信号入力の変動についても、週末に増加する子局と減少する子局が生じる。この様に子局に入力される上り信号の変動は、子局毎に任意の周期を有する時間的変動特性がある。
【0005】
図6に例として一日における4子局それぞれに入力される上り信号の時間的変動を示す。例として子局21、子局22は企業に設置されており、子局23、子局24は一般家庭に設置されているとする。なお両系ともに正常運用されており、簡単のために4子局とも最低保障帯域、最大帯域、設定帯域、子局毎の時間的変動特性の周期(一日)がそれぞれ等しいものとする。また、子局に入力される上り信号量は最大帯域を越えず、DBA機能によってそのまま上り伝送帯域使用量となることとする。
【0006】
従来技術における子局の0系または1系への振り分け判断基準は前述の判断基準▲1▼から判断基準▲5▼であり、図6の場合各系に2子局ずつ振り分ければ全ての判断基準において4子局が同等と判断される。その結果、子局21、子局22が0系に振り分けられ、子局23、子局24が1系に振り分けられることがある。そのように振り分けられた場合、昼または夜の時間帯において0系または1系のどちらか片系に上り信号の増加が集中する。
【0007】
同様に一週間の例を図7に示す。
図7の場合においても、子局21、子局22が0系に振り分けられ、子局23、子局24が1系に振り分けられることがある。そのように振り分けられた場合、月曜日〜金曜日または土曜日、日曜日において0系または1系のどちらか片系に上り信号の増加が集中する。
【0008】
上り信号の増加が片系に集中すると、集中した系においては同一系に接続されている他の子局がDBA機能にて利用できる余剰帯域が減少することになり、逆に信号の増加が集中していない系においては他の子局がDBA機能にて利用できる余剰帯域が増加する。しかし、従来技術での伝送路設定選択部7による設定選択の変更が行われるのは、子局または伝送路の障害や子局数またはパス数の変更に起因して▲1▼0系または1系への振り分けバランスが崩れた場合、▲2▼最低保障帯域の和が略均等でなくなった場合、▲3▼最大帯域の和が略均等でなくなった場合、▲4▼最大帯域と最低保障帯域の差分の和が略均等でなくなった場合、▲5▼設定帯域の和が略均等でなくなった場合などに限られるため、それ以外では初期設定時の設定選択のまま選択された系は固定となる。その結果、時間的変動特性のために周期的に発生する上り信号の増加の片系への集中を回避することができない。
【0009】
この様に従来技術では上り信号の増加がある時間帯において片系へ集中する場合でも伝送路設定選択の変更が行えないため、他系の余剰帯域などを有効利用できずに非効率となっていた。つまり、従来技術では、子局毎またはパス毎の上り伝送帯域使用量の時間的変動特性を考慮する機能がないため、類似の時間的変動特性をもつ子局またはパスが同一系に偏って設定選択されても設定選択の変更が行えず、上り伝送帯域使用量の増加の片系への集中を回避できなかった。その結果、上り帯域の有効利用ができず問題であった。
【0010】
本発明は、上記のような従来技術の問題点を解決することを主な目的としており、伝送帯域使用量の時間的変動特性を考慮して伝送帯域の有効利用を図ることを主な目的とする。
【0011】
【課題を解決するための手段】
本発明に係る通信装置は、
それぞれが複数の対向装置のそれぞれに接続している複数の伝送路に接続され、対向装置ごとに通信に用いる伝送路を設定し、設定した伝送路を用いてそれぞれの対向装置と通信を行う通信装置であって、
対向装置ごとに通信帯域使用量をモニターし、対向装置ごとに時間に対する通信帯域使用量の変動特性を学習する変動特性学習部と、
前記変動特性学習部による変動特性の学習結果に基づき、いずれかの対向装置について通信に用いる伝送路を設定選択する伝送路設定選択部とを有することを特徴とする。
【0012】
【発明の実施の形態】
実施の形態1.
【0013】
本実施の形態に係る通信システムの構成図を図1に示す。
1は親局であり、通信装置の例に相当する。また、2は子局であり、対向装置に相当する。図1では、子局2は1つだけしか示されていないが、複数の子局2が2重化された伝送路を介して親局1と接続されている。また、各子局は複数のパスを収容していてもよい。
図1では、図5と比較して、親局1では上り伝送帯域使用量変動特性学習部12が追加され、また、0系DBA機能部51、1系DBA機能部52、伝送路設定選択部7に後述する機能が追加されている。それ以外の部分については図5に示したものと同様である。なお、上り伝送帯域使用量変動特性学習部12は、変動特性学習部に相当する。
また、子局2の構成は、図5に示したものと同様である。
【0014】
0系DBA機能部51及び1系DBA機能部52には、各系に設定選択されている子局毎またはパス毎の上り伝送帯域使用量(通信帯域使用量)を示す伝送帯域情報を上り伝送帯域使用量変動特性学習部12に対して出力する機能を追加する。
上り伝送帯域使用量変動特性学習部12は、0系に設定選択された子局毎またはパス毎の上り伝送帯域情報を0系DBA機能部51より取得して子局毎またはパス毎の上り伝送帯域使用量をモニターし、1系に設定選択された子局毎またはパス毎の上り伝送帯域情報を1系DBA機能部52より取得して子局毎またはパス毎の上り伝送帯域使用量をモニターし、それらに基づいて全子局又は全パスについて子局毎またはパス毎に時間的な上り伝送帯域使用量の変動特性を統計的に学習する。
学習するとは、上り伝送帯域使用量をW、子局数またはパス数をN、時間をt、学習するべき変動特性の周期をTとすると、「W=f(t)、0≦t<T、n=1,2,3,,,N」で表されるm次関数f(m:整数)を、実際の上り伝送帯域使用量の時間的変動に可能な限り近似するように子局毎またはパス毎に求めることである。学習する関数の次数m及び関数の種類は設定可能であり、次数mが大きいほど学習できる変動特性の精度が高くなる。関数fの例としては、線形関数、非線形関数などがあり、sin関数「F(x)=Asin(Bx+C)+D:A,B,C,Dは任意の実数」やシグモイド関数「F(x)=A/{B+exp(−Cx+D)}+E:A,B,C,D,Eは任意の実数」などの関数を一種類または多種類、単数または複数の和で構成される関数などもある。関数fを学習する期間をTとすると、TはTの整数倍(T=PT、P:整数)であり、T及びTを任意に設定可能である。例えばTを1日、Tを一週間としたり、Tを一週間、Tを一月とするなどが可能である。また、再学習開始のトリガ要因(例えば、子局または経路の障害発生や装置管理者からのコマンドなど)、学習回数Q(有限回数または無限回数)、学習頻度(例えば毎月の第一週に学習するなど)または学習間隔Lについても任意に設定可能である。
【0015】
上り伝送帯域使用量変動特性学習部12は、学習する期間Tが終了すると伝送路設定選択部7に対して学習結果として、学習した全子局または全パスについて子局毎またはパス毎の変動特性情報(関数f、周期Tなど)及び、設定選択変更要求を出力する。
図2に学習に関するフローチャートを示す。
【0016】
子局nまたはパスnについての関数f(t)の学習について説明する。
関数の例としてm次関数「f(t)=an,m+an,m−1m−1+…+an,1t+an,0」とすると、学習するとは各係数「an,m,an,m−1,…,an,0」の値を求めることである。学習には最小二乗誤差法を用い、学習期間中の任意のサンプル時間t=t(0≦t<T)における実際の上り伝送帯域使用量がWnxであったとすると、|f(t)−Wnxの値が小さくなるように各係数「an,m,an,m−1,…,an,0」の値をそれぞれに対して学習期間Tが終了するまで修正を繰り返す。
【0017】
上り伝送帯域使用量変動特性学習部12より設定選択変更要求が入力された伝送路設定選択部7は、初期設定時に全子局毎または全パス毎に設定された各パラメータ(最低保障帯域、最大帯域、設定帯域など)と上り伝送帯域使用量変動特性学習部12より入力された子局毎またはパス毎の変動特性情報(関数f、周期Tなど)に基づき伝送路設定選択の変更を行う。
子局毎またはパス毎の0系または1系への振り分け判断基準は、例えば、従来技術の基準である、判断基準▲1▼0系または1系への振り分けバランスが良いこと、判断基準▲2▼最低保障帯域の和が略均等であること、判断基準▲3▼最大帯域の和が略均等であること、判断基準▲4▼最大帯域と最低保障帯域の差分の和が略均等であること、判断基準▲5▼設定帯域の和が略均等であること、及び、本実施の形態で追加する判断基準▲6▼上り伝送帯域使用量の時間的変動特性が類似した子局またはパスが同一系に偏らないこと、である。
0系、1系のいずれか片側の伝送路に伝送帯域使用量が偏る時間帯がある場合、すなわち、0系の伝送路の伝送帯域使用量、1系の伝送路の伝送帯域使用量に時間に対する変動がある場合に、伝送路設定選択部7は判断基準▲6▼を適用して時間に対する変動を抑制するようにいずれかの子局について伝送路の設定を変更する。
なお、判断基準▲1▼から判断基準▲6▼については任意の重み付けが可能であり、その重みについても設定可能である。なお、子局や伝送路に障害が発生するか、子局数またはパス数に変動が発生した場合は、0系障害/変更監視部61または1系障害/変更監視部62より設定選択変更要求が入力され、同様の判断基準に従って伝送路設定選択の変更を行う。ただし、変動特性の学習が完了していない場合は上記判断基準▲6▼は除く。
【0018】
以上のような機能を追加することにより、学習に関する設定パラメータ(学習期間T、学習回数Q、学習間隔Lなど)を任意に設定することで子局毎またはパス毎の伝送路設定選択の変更を動的に行うことが可能となる。また、時間的変動特性を考慮することで類似の時間的変動特性をもつ子局またはパスが同一系に集中的に設定選択されることを避け、上り伝送帯域使用量の増加の片系への集中を回避することが出来る。その結果、両系における上り伝送帯域使用量に関して時間的な統計多重効果が得られ、DBA機能で使用できる余剰帯域の片系への偏りが無くなり、上り伝送帯域の使用効率が向上する。
【0019】
例として図6の場合について本実施の形態を適用した場合の動作を図3で説明する。
簡単のために学習する関数を2次関数f(t)=an,2+an,1t+an,0とし、周期を一日とすると、学習の結果、子局21、子局22の係数an,2は負の値となり、子局23、子局24の係数an,2は正の値となる(図3の特性関数のグラフが、これらの学習結果に対応している)。4子局に関しては判定基準▲1▼から判定基準▲5▼について同等であるため、本実施の形態で追加する判断基準▲6▼によって子局21と子局22または子局23と子局24はそれぞれ別系に設定選択される。図3では、例として子局22が0系から1系に変更され、子局24が1系から0系に変更された状況を示している。伝送路設定選択部7による伝送路の設定の変更により、図3の0系の上り伝送帯域のグラフ301及び1系の上り伝送帯域のグラフ302に示すように、両系の伝送路の伝送帯域使用量の時間的な変動が抑制される。
この結果、上り伝送帯域使用量の増加または減少について両系で時間的な統計多重効果が得られ、帯域の有効利用が可能となる。
【0020】
次に図7の場合について本実施の形態を適用した場合の動作を図4で説明する。
学習する関数をシグモイド関数f(t)=a/{b+exp(−ct+d)}+eとし、周期を一週間とすると、学習の結果子局21、子局22の係数の積a・cは負の値となり、子局23、子局24の係数の積a・cは正の値となる(図4の特性関数のグラフが、これらの学習結果に対応している)。
よって上記同様子局21と子局22または子局23と子局24はそれぞれ別系に設定選択される。図4では、例として子局22が0系から1系に変更され、子局24が1系から0系に変更された状況を示している。伝送路設定選択部7による伝送路の設定の変更により、図4の0系の上り伝送帯域のグラフ401及び1系の上り伝送帯域のグラフ402に示すように、両系の伝送路の伝送帯域使用量の時間的な変動が抑制される。
この結果、上り伝送帯域使用量の増加または減少について両系で時間的な統計多重効果が得られ、帯域の有効利用が可能となる。
【0021】
このように、本実施の形態に係る親局(通信装置)は、PON区間の伝送路が2重化され、その両系ともが現用系として使用できかつ子局毎またはパス毎に系を切り替えられるブランチ切替が可能な系構成で、子局毎またはパス毎に動的に帯域を割り当てられるDBA機能を有する通信装置であって、伝送路が両系ともに正常運用されている場合、子局毎またはパス毎の上り伝送帯域使用量の時間的変動特性などに基づき子局毎またはパス毎に伝送路を動的に設定選択することを特徴とする。
【0022】
上述したように、従来は、子局毎またはパス毎の伝送路を初期設定時の各種設定パラメータ(最低保障帯域、最大帯域、設定帯域など)に基づき設定選択しており、障害の発生や子局数またはパス数の変動が発生しない限り固定であった。しかし、実運用中の上り伝送帯域使用量の時間的な変動は子局毎またはパス毎に特性があり、類似の特性をもつ子局またはパスが同一系に設定選択された場合、ある時間帯の上り伝送帯域使用量の増加または減少が片系に集中し非効率となる。
そこで、本実施の形態に係る親局は、まず子局毎またはパス毎の上り伝送帯域使用量の時間的変動特性を学習し、その時間的変動特性と初期設定時の各種設定パラメータに基づいて子局毎またはパス毎に伝送路を動的に設定選択し、上り伝送帯域使用量の増加または減少の片系への集中を回避する点に特徴がある。この結果、時間的な統計多重効果が得られ、帯域の有効利用が可能となる。
【0023】
【発明の効果】
以上のように、この発明によれば、対向装置ごと又はパスごとに通信帯域使用量の時間に対する変動特性を学習し、学習結果に基づきいずれかの対向装置又はパスについて通信に用いる伝送路を設定選択するため、通信帯域使用量の増加または減少が特定の伝送路へ集中することを回避することができ、通信帯域の有効利用が可能となる。
【図面の簡単な説明】
【図1】 実施の形態1に係る通信システムの構成例を示す図。
【図2】 実施の形態1に係る時間的変動特性の学習処理の例を示すフローチャート図。
【図3】 実施の形態1に係る伝送路の変更処理の例を示す図。
【図4】 実施の形態1に係る伝送路の変更処理の例を示す図。
【図5】 従来技術を説明する図。
【図6】 従来技術を説明する図。
【図7】 従来技術を説明する図。
【符号の説明】
1 親局、2 子局、7 伝送路設定選択部、8 セレクタスイッチ部、10伝送路設定選択部、11 セレクタスイッチ部、12 上り伝送帯域使用量変動特性学習部、31 0系光カプラ、32 1系光カプラ、41 0系PON終端及び上り伝送帯域監視部、42 1系PON終端及び上り伝送帯域監視部、51 0系DBA機能部、52 1系DBA機能部、61 0系障害/変更監視部、62 1系障害/変更監視部、91 0系PON終端部、92 1系PON終端部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a communication band control technique in a communication apparatus, and relates to a communication band control technique in an optical communication apparatus such as a PON (Passive Optical Network).
[0002]
[Prior art]
As a conventional technique, there is an optical multi-branch communication system disclosed in JP-A-2002-77212.
FIG. 5 is a diagram showing a simplified configuration of a communication system according to the prior art.
In the figure, reference numeral 1 denotes a master station in which the transmission path in the PON section is duplicated and has a branch switching function and a DBA (Dynamic Bandwidth Allocation) function.
Reference numeral 2 denotes a slave station accommodated in the master station 1, and reference numerals 31 and 32 denote 0-system and 1-system optical couplers for connecting the master station and the slave station.
41 and 42 are a 0-system and a 1-system having a function of monitoring the uplink transmission band usage for each slave station or each path, a fault detection function for the slave station or transmission path, and a function for detecting a change in the number of slave stations or the number of paths. It is a PON termination and upstream transmission band monitoring unit.
Reference numerals 51 and 52 denote 0-system and 1-system DBA function units, and 61 and 62 denote 0-system and 1-system failure / change monitoring units.
7 is the minimum guaranteed bandwidth when the start-up and when the distribution balance to the 0 system or 1 system is lost due to the failure of the slave station or transmission path or the change in the number of slave stations or paths. If the sum of the maximum bandwidth and the minimum guaranteed bandwidth is no longer equal, or if the sum of the maximum bandwidth and the minimum guaranteed bandwidth is not substantially equal This is a transmission path setting selection unit that performs transmission path setting selection for each slave station or for each path in both systems when any of the bands is not substantially equal. Criteria for setting selection are as follows: Criteria (1) Good distribution balance to 0 system or 1 system, Criteria (2) Sum of minimum guaranteed bandwidth is almost equal, Criteria (3) Maximum bandwidth The sum is substantially equal, the criterion (4) is the sum of the differences between the maximum bandwidth and the minimum guaranteed bandwidth, and the criterion (5) is the sum of the set bands is substantially equal.
A selector switch unit 8 controls the path of the input signal from both systems and the output signal to both systems in accordance with the selection information from the transmission path setting selection unit 7.
91 and 92 are PON termination units on the slave station side 0 system and 1 system, and 10 is a transmission path setting selection unit that performs transmission path setting selection for each path in both systems according to transmission path setting selection information from the master station side. is there. A selector switch unit 11 controls the path of the input signal from both systems and the output signal to both systems in accordance with the selection information from the transmission path setting selection unit 10.
As a unit for setting and selecting a transmission path by the master station 1, every slave station or each path can be considered. However, for simplicity, it is assumed that only one path is set for one slave station.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-77212
[Problems to be solved by the invention]
The conventional optical multi-branch system is configured as described above, but has the following problems.
First, considering an Internet connection as an example, a slave station installed in a company (in this case, only one path is set for one slave station for the sake of simplicity, only “slave station” is expressed below. The upstream signal input to) increases at daytime and decreases at night. On the contrary, the upstream signal input to the slave station installed in a general household increases at night and decreases at noon. In addition, with respect to fluctuations in signal input in one week, there are slave stations that increase and decrease on weekends. Thus, the fluctuation of the upstream signal input to the slave station has a temporal fluctuation characteristic having an arbitrary period for each slave station.
[0005]
As an example, FIG. 6 shows temporal changes in uplink signals input to each of the four slave stations in one day. For example, it is assumed that the slave station 21 and the slave station 22 are installed in a company, and the slave station 23 and the slave station 24 are installed in a general household. Both systems are operating normally, and for simplicity, it is assumed that the four slave stations have the same minimum guaranteed bandwidth, maximum bandwidth, set bandwidth, and period (one day) of time variation characteristics for each slave station. In addition, the uplink signal amount input to the slave station does not exceed the maximum bandwidth, and is directly used as the uplink transmission bandwidth usage by the DBA function.
[0006]
In the prior art, the criteria for allocating the slave stations to the 0-system or 1-system are the above-mentioned criteria (1) to criteria (5). In the case of FIG. Four slave stations are judged to be equivalent in the standard. As a result, the slave station 21 and the slave station 22 may be assigned to the 0 system, and the slave station 23 and the slave station 24 may be assigned to the 1 system. In such a case, the increase of the upstream signal is concentrated on either the 0 system or the 1 system in the daytime or night time zone.
[0007]
Similarly, an example of one week is shown in FIG.
Also in the case of FIG. 7, the slave station 21 and the slave station 22 may be assigned to the 0 system, and the slave station 23 and the slave station 24 may be assigned to the 1 system. In such a case, the increase of the upstream signal is concentrated on either the 0 system or the 1 system on Monday to Friday, Saturday, or Sunday.
[0008]
When the increase in upstream signals is concentrated in one system, in the concentrated system, the surplus bandwidth that other slave stations connected to the same system can use in the DBA function decreases, and conversely the increase in signals is concentrated. In a system that is not, the surplus bandwidth that other slave stations can use with the DBA function increases. However, the change in the setting selection by the transmission line setting selection unit 7 in the prior art is due to the failure of the slave station or the transmission path or the change in the number of slave stations or the number of paths. If the balance of distribution to the system is lost, (2) the sum of the minimum guaranteed bandwidth is not substantially equal, (3) the sum of the maximum bandwidth is not substantially equal, (4) the maximum bandwidth and the minimum guaranteed bandwidth If the sum of the difference between the two is no longer substantially uniform, and (5) it is limited to the case where the sum of the set bands is no longer substantially uniform, the system selected in the initial setting is fixed. Become. As a result, it is not possible to avoid the concentration of the increase in the uplink signal that occurs periodically due to the temporal variation characteristic to one system.
[0009]
As described above, in the conventional technique, even when the increase of the uplink signal is concentrated in one system in a certain time zone, it is not possible to change the transmission path setting selection. It was. In other words, in the prior art, there is no function that takes into account the temporal variation characteristics of the uplink transmission band usage for each slave station or each path, so slave stations or paths with similar temporal variation characteristics are set to be biased to the same system. Even if it is selected, the setting selection cannot be changed, and the increase in the uplink transmission band usage cannot be concentrated on one system. As a result, it was a problem that the upstream bandwidth could not be effectively used.
[0010]
The main object of the present invention is to solve the above-described problems of the prior art, and the main object is to effectively use the transmission band in consideration of the temporal variation characteristics of the transmission band usage. To do.
[0011]
[Means for Solving the Problems]
The communication device according to the present invention is
Communication that is connected to each of a plurality of transmission lines connected to each of a plurality of opposite devices, sets a transmission line used for communication for each opposite device, and communicates with each opposite device using the set transmission line A device,
A fluctuation characteristic learning unit that monitors communication band usage for each opposite device and learns fluctuation characteristics of communication band usage with respect to time for each opposite device;
A transmission line setting selection unit configured to select and select a transmission line used for communication with respect to any one of the opposite devices based on a learning result of the fluctuation characteristic by the fluctuation characteristic learning unit.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
[0013]
FIG. 1 shows a configuration diagram of a communication system according to the present embodiment.
Reference numeral 1 denotes a master station, which corresponds to an example of a communication device. Reference numeral 2 denotes a slave station, which corresponds to a counter device. Although only one slave station 2 is shown in FIG. 1, a plurality of slave stations 2 are connected to the master station 1 via a duplexed transmission path. Each slave station may accommodate a plurality of paths.
In FIG. 1, compared with FIG. 5, the upstream transmission band usage variation characteristic learning unit 12 is added in the master station 1, and the 0-system DBA function unit 51, the 1-system DBA function unit 52, and the transmission path setting selection unit 7 adds functions to be described later. Other portions are the same as those shown in FIG. The uplink transmission band usage amount fluctuation characteristic learning unit 12 corresponds to a fluctuation characteristic learning unit.
The configuration of the slave station 2 is the same as that shown in FIG.
[0014]
In the 0-system DBA function unit 51 and the 1-system DBA function unit 52, transmission band information indicating the uplink transmission band usage (communication band usage) for each slave station or path set and selected for each system is uplink transmitted. A function of outputting to the bandwidth usage variation characteristic learning unit 12 is added.
The uplink transmission band use amount fluctuation characteristic learning unit 12 acquires the uplink transmission band information for each slave station or path set and selected for the 0 system from the 0 system DBA function unit 51 and performs uplink transmission for each slave station or for each path. Monitors the bandwidth usage and monitors the upstream transmission bandwidth usage for each slave station or path by acquiring the upstream transmission bandwidth information for each slave station or path selected from the 1-system DBA function unit 52. Based on these, the fluctuation characteristics of the temporal upstream transmission band usage are statistically learned for each slave station or for each path for all slave stations or all paths.
Learning is defined as “W n = f n (t), 0 ≦ t, where W is the upstream transmission band usage, N is the number of slave stations or paths, t is time, and T is the period of the fluctuation characteristics to be learned. The m-order function f n (m: integer) represented by <T, n = 1, 2, 3,... N is approximated as much as possible to the temporal variation of the actual uplink transmission band usage. This is to be obtained for each slave station or for each path. The order m of the function to be learned and the type of the function can be set. The larger the order m, the higher the accuracy of the fluctuation characteristics that can be learned. Examples of the function f n include a linear function and a non-linear function. The sin function “F (x) = Asin (Bx + C) + D: A, B, C, and D are arbitrary real numbers” and the sigmoid function “F (x ) = A / {B + exp (−Cx + D)} + E: A, B, C, D, E are arbitrary real numbers ”or a single type or a function composed of a plurality of sums. . When the period of learning the function f n and T L, T L is an integral multiple (T L = PT, P: integer) of the T it is, can be arbitrarily set T and T L. For example, T can be one day, TL can be one week, T can be one week, and TL can be one month. Also, triggers for starting re-learning (for example, a failure of a slave station or a path or a command from a device administrator), learning frequency Q (finite number or infinite number), learning frequency (for example, learning in the first week of each month) Or the learning interval L can be arbitrarily set.
[0015]
When the learning period TL ends, the uplink transmission band usage fluctuation characteristic learning unit 12 obtains a learning result for the transmission path setting selection unit 7 for every slave station or all paths learned for each slave station or each path. Characteristic information (function f n , period T, etc.) and setting selection change request are output.
FIG. 2 shows a flowchart regarding learning.
[0016]
Learning of the function f n (t) for the slave station n or the path n will be described.
As an example of the function, if an m-order function “f n (t) = a n, m t m + a n, m−1 t m−1 +... + A n, 1 t + a n, 0 ”, each coefficient “ a n, m , a n, m−1 ,..., a n, 0 ”. If the least square error method is used for learning and the actual uplink transmission band usage at an arbitrary sample time t = t x (0 ≦ t x <T) during the learning period is W nx , | f n ( t x) -W nx | each coefficient as a value of 2 is smaller, "a n, m, a n, m-1, ..., a n, 0 " learning period T L is completed for each value of Repeat the correction until
[0017]
The transmission line setting selection unit 7 to which the setting selection change request is input from the uplink transmission band usage fluctuation characteristic learning unit 12 receives the parameters (minimum guaranteed bandwidth, maximum value) set for every child station or every path at the time of initial setting. The transmission path setting selection is changed based on the fluctuation characteristic information (function f n , period T, etc.) for each slave station or each path input from the upstream transmission band usage fluctuation characteristic learning unit 12. .
The criteria for allocating to the 0-system or 1-system for each slave station or each path are, for example, the criteria of the prior art. ▼ The sum of the minimum guaranteed bandwidth is substantially equal, the criterion (3) The sum of the maximum bandwidth is substantially equal, and the criterion (4) The sum of the differences between the maximum bandwidth and the minimum guaranteed bandwidth is substantially equal. Criteria (5) The sum of set bands is substantially equal, and criteria added in this embodiment (6) Slave stations or paths with similar temporal variation characteristics of upstream transmission band usage are the same It is not biased to the system.
When there is a time zone in which the transmission band usage is biased on either one of the transmission lines of the 0 system and the 1 system, that is, the transmission band usage of the 0 system transmission path and the transmission band usage of the 1 system transmission path When there is a change in the transmission line, the transmission line setting selection unit 7 changes the transmission line setting for any of the slave stations so as to suppress the fluctuation with respect to time by applying the criterion (6).
It should be noted that the determination criteria {circle over (1)} to the determination criteria {circle around (6)} can be arbitrarily weighted, and the weights can also be set. When a failure occurs in the slave station or the transmission path, or when the number of slave stations or the number of paths changes, a setting selection change request is issued from the 0-system failure / change monitoring unit 61 or the 1-system failure / change monitoring unit 62. Is input, and the transmission line setting selection is changed according to the same determination criteria. However, when the learning of the fluctuation characteristics is not completed, the above criterion (6) is excluded.
[0018]
By adding functions as described above, setting parameters related to learning (learning period T L , learning count Q, learning interval L, etc.) can be arbitrarily set to change transmission path setting selection for each slave station or for each path. Can be performed dynamically. Also, by considering the time variation characteristics, it is avoided that slave stations or paths with similar time variation characteristics are intensively selected and selected in the same system, and the increase in upstream transmission bandwidth usage is reduced to one system. Concentration can be avoided. As a result, a temporal statistical multiplexing effect can be obtained with respect to the amount of uplink transmission band used in both systems, the surplus band that can be used with the DBA function is not biased to one system, and the use efficiency of the uplink transmission band is improved.
[0019]
As an example, the operation when this embodiment is applied to the case of FIG. 6 will be described with reference to FIG.
For the sake of simplicity, the function to be learned is a quadratic function f n (t) = an , 2 t 2 + an , 1 t + a n, 0 , and the period is one day. coefficients a n, 2 of 22 becomes a negative value, the slave station 23, the coefficient a n, 2 of the slave station 24 becomes a positive value (the graph of the characteristic function of FIG. 3, in response to these learning result ) Since the determination criteria (1) to (5) are the same for the four slave stations, the slave station 21 and the slave station 22 or the slave station 23 and the slave station 24 are added according to the decision criterion (6) added in the present embodiment. Are selected and set as separate systems. FIG. 3 shows a situation where the slave station 22 is changed from the 0 system to the 1 system and the slave station 24 is changed from the 1 system to the 0 system as an example. By changing the transmission line setting by the transmission line setting selection unit 7, the transmission bandwidths of the transmission lines of both systems as shown in the graph 301 of the upstream transmission band of the 0 system and the graph 302 of the upstream transmission band of the 1 system in FIG. Temporal fluctuations in usage are suppressed.
As a result, a temporal statistical multiplexing effect can be obtained in both systems with respect to an increase or decrease in the uplink transmission band usage, and the band can be effectively used.
[0020]
Next, the operation when this embodiment is applied to the case of FIG. 7 will be described with reference to FIG.
Learning to function sigmoid function f n (t) = a a n / {b n + exp (-c n t + d n)} + e n, when the period one week, the learning results slave station 21, the coefficient of the child station 22 the product a n · c n a negative value, the slave station 23, the product a n · c n of the coefficients of the slave station 24 has a positive value (graphs of the characteristic function of FIG. 4, in these learning result Yes)
Accordingly, the slave station 21 and the slave station 22 or the slave station 23 and the slave station 24 are set and selected as separate systems, respectively. FIG. 4 shows a situation where the slave station 22 is changed from the 0 system to the 1 system and the slave station 24 is changed from the 1 system to the 0 system as an example. By changing the transmission line setting by the transmission line setting selection unit 7, as shown in the graph 401 of the upstream transmission band of system 0 and the graph 402 of the upstream transmission band of system 1 in FIG. Temporal fluctuations in usage are suppressed.
As a result, a temporal statistical multiplexing effect can be obtained in both systems with respect to an increase or decrease in the uplink transmission band usage, and the band can be effectively used.
[0021]
As described above, in the master station (communication device) according to the present embodiment, the transmission path in the PON section is duplexed, both systems can be used as the active system, and the system can be switched for each slave station or each path. A communication apparatus having a DBA function capable of dynamically allocating bandwidth for each slave station or each path in a system configuration capable of branch switching, and when both transmission systems are normally operated, It is characterized in that a transmission path is dynamically set and selected for each slave station or for each path based on the temporal variation characteristic of the amount of uplink transmission band used for each path.
[0022]
As described above, conventionally, the transmission path for each slave station or each path is set and selected based on various setting parameters (minimum guaranteed bandwidth, maximum bandwidth, set bandwidth, etc.) at the time of initial setting. It was fixed unless the number of stations or the number of paths fluctuated. However, the temporal fluctuation of the uplink transmission band usage during actual operation has characteristics for each slave station or path, and when a slave station or path with similar characteristics is set and selected for the same system, a certain time zone The increase or decrease in the amount of uplink transmission band usage is concentrated on one system and becomes inefficient.
Therefore, the master station according to the present embodiment first learns the temporal variation characteristics of the uplink transmission band usage for each slave station or each path, and based on the temporal variation characteristics and various setting parameters at the initial setting. It is characterized in that a transmission path is dynamically set and selected for each slave station or for each path, and concentration of an increase or decrease in uplink transmission band usage in one system is avoided. As a result, a temporal statistical multiplexing effect is obtained, and the bandwidth can be effectively used.
[0023]
【The invention's effect】
As described above, according to the present invention, the fluctuation characteristics with respect to time of the communication band usage amount are learned for each opposing device or for each path, and the transmission path used for communication is set for any opposing device or path based on the learning result. Therefore, it is possible to avoid the increase or decrease of the communication band usage amount from being concentrated on a specific transmission path, and the communication band can be effectively used.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration example of a communication system according to a first embodiment.
FIG. 2 is a flowchart showing an example of a time variation characteristic learning process according to the first embodiment;
FIG. 3 is a diagram showing an example of transmission path change processing according to the first embodiment;
4 is a diagram showing an example of transmission path change processing according to Embodiment 1. FIG.
FIG. 5 is a diagram illustrating a conventional technique.
FIG. 6 is a diagram illustrating a conventional technique.
FIG. 7 is a diagram illustrating a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Master station, 2 Slave station, 7 Transmission line setting selection part, 8 Selector switch part, 10 Transmission line setting selection part, 11 Selector switch part, 12 Uplink transmission band use amount fluctuation characteristic learning part, 310 system optical coupler, 32 1 system optical coupler, 4 0 system PON termination and upstream transmission band monitoring unit, 42 1 system PON termination and upstream transmission band monitoring unit, 5 10 system DBA function unit, 52 1 system DBA function unit, 6 10 system fault / change monitoring 62, 1 system failure / change monitoring section, 910 system PON termination section, 92 1 system PON termination section.

Claims (7)

それぞれが複数の対向装置のそれぞれに接続している複数の伝送路に接続され、対向装置ごとに通信に用いる伝送路の系を設定し、設定した系の伝送路を用いてそれぞれの対向装置と通信を行う通信装置であって、
対向装置ごとに通信帯域使用量をモニターし、対向装置ごとに時間に対する通信帯域使用量の変動特性を学習する変動特性学習部と、
前記変動特性学習部による変動特性の学習結果に基づき、類似の時間的変動特性をもつ対向装置が同一系に設定選択されないように、それぞれの対向装置について通信に用いる伝送路の系を設定選択する伝送路設定選択部とを有することを特徴とする通信装置。
Each is connected to a transmission line of a plurality systems that are connected to each of the plurality of the opposing device, and set the system of the transmission path used for communication for each opposing device, each of the opposite device using the transmission path of the system set A communication device that communicates with
A fluctuation characteristic learning unit that monitors communication band usage for each opposite device and learns fluctuation characteristics of communication band usage with respect to time for each opposite device;
Based on the learning result of the variation characteristic by the variation characteristic learning unit, the transmission line system used for communication is set and selected for each opposite device so that the opposite devices having similar temporal variation characteristics are not set to the same system. A communication apparatus comprising: a transmission path setting selection unit.
前記伝送路設定選択部は、
前記変動特性学習部による変動特性の学習結果に基づき、伝送路の各系の最大帯域を変更することなく、それぞれの対向装置について通信に用いる伝送路の系を設定選択することを特徴とする請求項1に記載の通信装置。
The transmission line setting selection unit
The transmission path system used for communication is set and selected for each counter device without changing the maximum bandwidth of each transmission path system based on the learning result of the fluctuation characteristics by the fluctuation characteristic learning unit. Item 4. The communication device according to Item 1.
それぞれが複数の対向装置のそれぞれに接続している複数の伝送路に接続され、それぞれの対向装置に収容されているパスごとに通信に用いる伝送路の系を設定し、設定した系の伝送路を用いてそれぞれのパスについての通信を行う通信装置であって、
パスごとに通信帯域使用量をモニターし、パスごとに時間に対する通信帯域使用量の変動特性を学習する変動特性学習部と、
前記変動特性学習部による変動特性の学習結果に基づき、類似の時間的変動特性をもつパスが同一系に設定選択されないように、それぞれのパスについて通信に用いる伝送路の系を設定選択する伝送路設定選択部とを有することを特徴とする通信装置。
Each is connected to a transmission line of a plurality systems that are connected to each of the plurality of the opposing device, and set the system of the transmission path used for communication for each path contained in each of the opposing device, transmission system set A communication device that performs communication for each path using a road,
A fluctuation characteristic learning unit that monitors communication band usage for each path and learns fluctuation characteristics of communication band usage with respect to time for each path;
A transmission line for setting and selecting a transmission line system used for communication for each path so that paths having similar temporal fluctuation characteristics are not set and selected in the same system based on the learning result of the fluctuation characteristic by the fluctuation characteristic learning unit. A communication apparatus comprising: a setting selection unit.
前記伝送路設定選択部は、
前記変動特性学習部による変動特性の学習結果に基づき、伝送路の各系の最大帯域を変更することなく、それぞれのパスについて通信に用いる伝送路の系を設定選択することを特徴とする請求項に記載の通信装置。
The transmission line setting selection unit
The transmission path system used for communication is set and selected for each path without changing the maximum bandwidth of each transmission path system based on the learning result of the fluctuation characteristics by the fluctuation characteristic learning unit. 3. The communication device according to 3 .
前記通信装置は、
複数の対向装置との間で光通信を行う光通信装置であることを特徴とする請求項1〜4のいずれかに記載の通信装置。
The communication device
The communication apparatus according to claim 1, wherein the communication apparatus is an optical communication apparatus that performs optical communication with a plurality of opposing apparatuses.
それぞれが複数の対向装置のそれぞれに接続している複数の伝送路を介して複数の対向装置と通信が可能であり、対向装置ごとに通信に用いる伝送路の系を設定し、設定した系の伝送路を用いてそれぞれの対向装置と通信を行う通信方法であって、
対向装置ごとに通信帯域使用量をモニターし、対向装置ごとに時間に対する通信帯域使用量の変動特性を学習する変動特性学習ステップと、
前記変動特性学習ステップによる変動特性の学習結果に基づき、類似の時間的変動特性をもつ対向装置が同一系に設定選択されないように、それぞれの対向装置について通信に用いる伝送路の系を設定選択する伝送路設定選択ステップとを有することを特徴とする通信方法。
Each are possible to communicate via a plurality transmission line that are connected to a plurality of opposing device to each of the plurality of the opposing device, and set the system of the transmission path used for communication for each opposing device, a system has been set A communication method for communicating with each opposing device using a transmission path of
A fluctuation characteristic learning step for monitoring communication band usage for each opposing device and learning fluctuation characteristics of communication bandwidth usage with respect to time for each opposing device;
Based on the learning result of the fluctuation characteristics in the fluctuation characteristic learning step, the transmission path system used for communication is set and selected for each opposite apparatus so that the opposite apparatuses having similar temporal fluctuation characteristics are not selected and selected as the same system. And a transmission path setting selection step.
それぞれが複数の対向装置のそれぞれに接続している複数の伝送路を介して複数の対向装置と通信が可能であり、それぞれの対向装置に収容されているパスごとに通信に用いる伝送路の系を設定し、設定した系の伝送路を用いてそれぞれのパスについての通信を行う通信方法であって、
パスごとに通信帯域使用量をモニターし、パスごとに時間に対する通信帯域使用量の変動特性を学習する変動特性学習ステップと、
前記変動特性学習ステップによる変動特性の学習結果に基づき、類似の時間的変動特性をもつパスが同一系に設定選択されないように、それぞれのパスについて通信に用いる伝送路の系を設定選択する伝送路設定選択ステップとを有することを特徴とする通信方法。
Each through a transmission path of a plurality systems that are connected to each of the plurality of opposing device can communicate with a plurality of opposing device, transmission path used for the communication for each path contained in each of the opposing device A communication method for setting a system and performing communication for each path using a transmission path of the set system ,
A fluctuation characteristic learning step for monitoring communication band usage for each path and learning fluctuation characteristics of communication band usage with respect to time for each path;
A transmission line that sets and selects a transmission line system used for communication for each path so that paths having similar temporal fluctuation characteristics are not set and selected in the same system based on the learning result of the fluctuation characteristic in the fluctuation characteristic learning step And a setting selection step.
JP2002361665A 2002-12-13 2002-12-13 Communication apparatus and communication method Expired - Fee Related JP3908655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002361665A JP3908655B2 (en) 2002-12-13 2002-12-13 Communication apparatus and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002361665A JP3908655B2 (en) 2002-12-13 2002-12-13 Communication apparatus and communication method

Publications (2)

Publication Number Publication Date
JP2004194141A JP2004194141A (en) 2004-07-08
JP3908655B2 true JP3908655B2 (en) 2007-04-25

Family

ID=32760315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002361665A Expired - Fee Related JP3908655B2 (en) 2002-12-13 2002-12-13 Communication apparatus and communication method

Country Status (1)

Country Link
JP (1) JP3908655B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4829805B2 (en) * 2007-01-30 2011-12-07 日本放送協会 Station side device and subscriber side device
JP5080515B2 (en) * 2009-02-26 2012-11-21 Kddi株式会社 Traffic flow distribution method and system

Also Published As

Publication number Publication date
JP2004194141A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
US5463615A (en) Node failure restoration tool
US5253247A (en) Traffic control method and traffic control system for controlling cell traffic in an asynchronous transfer mode communication network
US6400687B1 (en) ATM network management
Bouillet et al. Lightpath re-optimization in mesh optical networks
JPH0276356A (en) Communication network control method, communication method, communication node, line terminator and communication terminal equipment
WO2015018295A1 (en) System and Method for Photonic Switching and Controlling Photonic Switching in a Data Center
JPH11252123A (en) Virtual path band distribution system in asynchronous transfer mode exchange network
EP3447966A1 (en) System and method for proactive traffic restoration in a network
Butt et al. A survey of dynamic bandwidth assignment schemes for TDM-based passive optical network
Barpanda et al. QoS aware routing and wavelength allocation in optical burst switching networks using differential evolution optimization
Dikbiyik et al. Exploiting excess capacity to improve robustness of WDM mesh networks
Sivaraman et al. HiPeR-l: A high performance reservation protocol with look-ahead for broadcast WDM networks
JPH01132246A (en) Data transmission system able to eliminate deviation of traffic
Shen et al. A two-phase approach for dynamic lightpath scheduling in WDM optical networks
JP3908655B2 (en) Communication apparatus and communication method
EP0904647B1 (en) Atm network management
Clarke et al. An integrated system for designing minimum cost survivable telecommunications networks
US20090268756A1 (en) Method for Reserving Bandwidth in a Network Resource of a Communications Network
Xia et al. SLA-aware provisioning for revenue maximization in telecom mesh networks
Sharma et al. Adaptive Weights-based Dynamic Resource Provisioning in Space Division Multiplexed-Elastic Optical Networks (SDM-EONs)
JP3053356B2 (en) Bandwidth variable communication device
Zhang et al. Resource dimensioning in WDM networks under state-based routing schemes
Papadimitriou et al. Adaptive bandwidth allocation schemes for lightwave LANs with asymmetric traffic
Guo et al. A new path protection algorithm for meshed survivable wavelength-division-multiplexing networks
Youn et al. A Shared Buffer‐Constrained Topology Reconfiguration Scheme in Wavelength Routed Networks

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040519

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees