JP2004194141A - Device and method for communication - Google Patents

Device and method for communication Download PDF

Info

Publication number
JP2004194141A
JP2004194141A JP2002361665A JP2002361665A JP2004194141A JP 2004194141 A JP2004194141 A JP 2004194141A JP 2002361665 A JP2002361665 A JP 2002361665A JP 2002361665 A JP2002361665 A JP 2002361665A JP 2004194141 A JP2004194141 A JP 2004194141A
Authority
JP
Japan
Prior art keywords
communication
path
learning
opposing
transmission path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002361665A
Other languages
Japanese (ja)
Other versions
JP3908655B2 (en
Inventor
Moritomo Osugi
盛友 大杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002361665A priority Critical patent/JP3908655B2/en
Publication of JP2004194141A publication Critical patent/JP2004194141A/en
Application granted granted Critical
Publication of JP3908655B2 publication Critical patent/JP3908655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make effective use of a transmission band by considering a temporal fluctuation characteristic of a used amount of upstream transmission band in an optical communication system. <P>SOLUTION: A fluctuation characteristic learning part 12 of the usage of the upstream transmission band monitors the used amount of the upstream transmission band every slave station or path connected to 0-system and 1-system transmission paths, and learns the temporal fluctuation characteristics of the usage of the upstream transmission band every slave station or path. On the basis of the learning results of the learning part 12, a transmission path setting selecting part 7 changes the setting of the transmission path so that an increase in the usage of upstream transmission band does not concentrate on one of the systems. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、通信装置における通信帯域制御技術に関連し、例えば、PON(Passive Optical Network)等の光通信装置における通信帯域制御技術に関連する。
【0002】
【従来の技術】
従来の技術として、特開2002−77212に開示された光多分岐通信システムがある。
図5は、従来技術に係る通信システムの構成を簡略化して示す図である。
図中の1はPON区間の伝送路が2重化され、ブランチ切替機能及びDBA(Dynamic Bandwidth Allocation)機能を有する親局である。
2は親局1に収容される子局であり、31及び32は親局と子局を接続する0系及び1系の光カプラである。
41及び42は、子局毎またはパス毎の上り伝送帯域使用量を監視する機能、子局または伝送路の障害検出機能、子局数またはパス数の変動検出機能を有する0系及び1系のPON終端及び上り伝送帯域監視部である。
51及び52は0系及び1系のDBA機能部であり、61及び62は0系及び1系の障害/変更監視部である。
7は初期立上げ時及び子局または伝送路の障害や子局数またはパス数の変更に起因して▲1▼0系または1系への振り分けバランスが崩れた場合、▲2▼最低保障帯域の和が略均等でなくなった場合、▲3▼最大帯域の和が略均等でなくなった場合、▲4▼最大帯域と最低保障帯域の差分の和が略均等でなくなった場合、▲5▼設定帯域の和が略均等でなくなった場合、の何れかが発生した時に両系における子局毎またはパス毎の伝送路設定選択を行う伝送路設定選択部である。設定選択の判断基準として、判断基準▲1▼0系または1系への振り分けバランスが良いこと、判断基準▲2▼最低保障帯域の和が略均等であること、判断基準▲3▼最大帯域の和が略均等であること、判断基準▲4▼最大帯域と最低保障帯域の差分の和が略均等であること、判断基準▲5▼設定帯域の和が略均等であること、がある。
8は伝送路設定選択部7からの選択情報に従って両系からの入力信号及び両系への出力信号の経路を制御するセレクタスイッチ部である。
91及び92は子局側0系及び1系のPON終端部であり、10は親局側からの伝送路設定選択情報に従って両系におけるパス毎の伝送路設定選択を行う伝送路設定選択部である。11は伝送路設定選択部10からの選択情報に従って両系からの入力信号及び両系への出力信号の経路を制御するセレクタスイッチ部である。
なお、親局1が伝送路を設定選択する単位としては子局毎またはパス毎が考えられるが、ここでは簡単のために1子局に1パスのみ設定されているものとする。
【0003】
【特許文献1】
特開2002−77212号公報
【0004】
【発明が解決しようとする課題】
従来技術に係る光多分岐システムは以上のように構成されているが、以下のような問題がある。
まず例としてインターネット接続を考えると、企業に設置された子局(ここでは簡単のために1子局に1パスのみ設定されていることとするため、以下では「子局」とのみ表現する。)への上り信号入力は昼に増加し、夜に減少する。逆に一般家庭に設置された子局への上り信号入力は夜に増加し、昼に減少する。また一週間での信号入力の変動についても、週末に増加する子局と減少する子局が生じる。この様に子局に入力される上り信号の変動は、子局毎に任意の周期を有する時間的変動特性がある。
【0005】
図6に例として一日における4子局それぞれに入力される上り信号の時間的変動を示す。例として子局21、子局22は企業に設置されており、子局23、子局24は一般家庭に設置されているとする。なお両系ともに正常運用されており、簡単のために4子局とも最低保障帯域、最大帯域、設定帯域、子局毎の時間的変動特性の周期(一日)がそれぞれ等しいものとする。また、子局に入力される上り信号量は最大帯域を越えず、DBA機能によってそのまま上り伝送帯域使用量となることとする。
【0006】
従来技術における子局の0系または1系への振り分け判断基準は前述の判断基準▲1▼から判断基準▲5▼であり、図6の場合各系に2子局ずつ振り分ければ全ての判断基準において4子局が同等と判断される。その結果、子局21、子局22が0系に振り分けられ、子局23、子局24が1系に振り分けられることがある。そのように振り分けられた場合、昼または夜の時間帯において0系または1系のどちらか片系に上り信号の増加が集中する。
【0007】
同様に一週間の例を図7に示す。
図7の場合においても、子局21、子局22が0系に振り分けられ、子局23、子局24が1系に振り分けられることがある。そのように振り分けられた場合、月曜日〜金曜日または土曜日、日曜日において0系または1系のどちらか片系に上り信号の増加が集中する。
【0008】
上り信号の増加が片系に集中すると、集中した系においては同一系に接続されている他の子局がDBA機能にて利用できる余剰帯域が減少することになり、逆に信号の増加が集中していない系においては他の子局がDBA機能にて利用できる余剰帯域が増加する。しかし、従来技術での伝送路設定選択部7による設定選択の変更が行われるのは、子局または伝送路の障害や子局数またはパス数の変更に起因して▲1▼0系または1系への振り分けバランスが崩れた場合、▲2▼最低保障帯域の和が略均等でなくなった場合、▲3▼最大帯域の和が略均等でなくなった場合、▲4▼最大帯域と最低保障帯域の差分の和が略均等でなくなった場合、▲5▼設定帯域の和が略均等でなくなった場合などに限られるため、それ以外では初期設定時の設定選択のまま選択された系は固定となる。その結果、時間的変動特性のために周期的に発生する上り信号の増加の片系への集中を回避することができない。
【0009】
この様に従来技術では上り信号の増加がある時間帯において片系へ集中する場合でも伝送路設定選択の変更が行えないため、他系の余剰帯域などを有効利用できずに非効率となっていた。つまり、従来技術では、子局毎またはパス毎の上り伝送帯域使用量の時間的変動特性を考慮する機能がないため、類似の時間的変動特性をもつ子局またはパスが同一系に偏って設定選択されても設定選択の変更が行えず、上り伝送帯域使用量の増加の片系への集中を回避できなかった。その結果、上り帯域の有効利用ができず問題であった。
【0010】
本発明は、上記のような従来技術の問題点を解決することを主な目的としており、伝送帯域使用量の時間的変動特性を考慮して伝送帯域の有効利用を図ることを主な目的とする。
【0011】
【課題を解決するための手段】
本発明に係る通信装置は、
それぞれが複数の対向装置のそれぞれに接続している複数の伝送路に接続され、対向装置ごとに通信に用いる伝送路を設定し、設定した伝送路を用いてそれぞれの対向装置と通信を行う通信装置であって、
対向装置ごとに通信帯域使用量をモニターし、対向装置ごとに時間に対する通信帯域使用量の変動特性を学習する変動特性学習部と、
前記変動特性学習部による変動特性の学習結果に基づき、いずれかの対向装置について通信に用いる伝送路を設定選択する伝送路設定選択部とを有することを特徴とする。
【0012】
【発明の実施の形態】
実施の形態1.
【0013】
本実施の形態に係る通信システムの構成図を図1に示す。
1は親局であり、通信装置の例に相当する。また、2は子局であり、対向装置に相当する。図1では、子局2は1つだけしか示されていないが、複数の子局2が2重化された伝送路を介して親局1と接続されている。また、各子局は複数のパスを収容していてもよい。
図1では、図5と比較して、親局1では上り伝送帯域使用量変動特性学習部12が追加され、また、0系DBA機能部51、1系DBA機能部52、伝送路設定選択部7に後述する機能が追加されている。それ以外の部分については図5に示したものと同様である。なお、上り伝送帯域使用量変動特性学習部12は、変動特性学習部に相当する。
また、子局2の構成は、図5に示したものと同様である。
【0014】
0系DBA機能部51及び1系DBA機能部52には、各系に設定選択されている子局毎またはパス毎の上り伝送帯域使用量(通信帯域使用量)を示す伝送帯域情報を上り伝送帯域使用量変動特性学習部12に対して出力する機能を追加する。
上り伝送帯域使用量変動特性学習部12は、0系に設定選択された子局毎またはパス毎の上り伝送帯域情報を0系DBA機能部51より取得して子局毎またはパス毎の上り伝送帯域使用量をモニターし、1系に設定選択された子局毎またはパス毎の上り伝送帯域情報を1系DBA機能部52より取得して子局毎またはパス毎の上り伝送帯域使用量をモニターし、それらに基づいて全子局又は全パスについて子局毎またはパス毎に時間的な上り伝送帯域使用量の変動特性を統計的に学習する。
学習するとは、上り伝送帯域使用量をW、子局数またはパス数をN、時間をt、学習するべき変動特性の周期をTとすると、「W=f(t)、0≦t<T、n=1,2,3,,,N」で表されるm次関数f(m:整数)を、実際の上り伝送帯域使用量の時間的変動に可能な限り近似するように子局毎またはパス毎に求めることである。学習する関数の次数m及び関数の種類は設定可能であり、次数mが大きいほど学習できる変動特性の精度が高くなる。関数fの例としては、線形関数、非線形関数などがあり、sin関数「F(x)=Asin(Bx+C)+D:A,B,C,Dは任意の実数」やシグモイド関数「F(x)=A/{B+exp(−Cx+D)}+E:A,B,C,D,Eは任意の実数」などの関数を一種類または多種類、単数または複数の和で構成される関数などもある。関数fを学習する期間をTとすると、TはTの整数倍(T=PT、P:整数)であり、T及びTを任意に設定可能である。例えばTを1日、Tを一週間としたり、Tを一週間、Tを一月とするなどが可能である。また、再学習開始のトリガ要因(例えば、子局または経路の障害発生や装置管理者からのコマンドなど)、学習回数Q(有限回数または無限回数)、学習頻度(例えば毎月の第一週に学習するなど)または学習間隔Lについても任意に設定可能である。
【0015】
上り伝送帯域使用量変動特性学習部12は、学習する期間Tが終了すると伝送路設定選択部7に対して学習結果として、学習した全子局または全パスについて子局毎またはパス毎の変動特性情報(関数f、周期Tなど)及び、設定選択変更要求を出力する。
図2に学習に関するフローチャートを示す。
【0016】
子局nまたはパスnについての関数f(t)の学習について説明する。
関数の例としてm次関数「f(t)=an,m+an,m−1m−1+…+an,1t+an,0」とすると、学習するとは各係数「an,m,an,m−1,…,an,0」の値を求めることである。学習には最小二乗誤差法を用い、学習期間中の任意のサンプル時間t=t(0≦t<T)における実際の上り伝送帯域使用量がWnxであったとすると、|f(t)−Wnxの値が小さくなるように各係数「an,m,an,m−1,…,an,0」の値をそれぞれに対して学習期間Tが終了するまで修正を繰り返す。
【0017】
上り伝送帯域使用量変動特性学習部12より設定選択変更要求が入力された伝送路設定選択部7は、初期設定時に全子局毎または全パス毎に設定された各パラメータ(最低保障帯域、最大帯域、設定帯域など)と上り伝送帯域使用量変動特性学習部12より入力された子局毎またはパス毎の変動特性情報(関数f、周期Tなど)に基づき伝送路設定選択の変更を行う。
子局毎またはパス毎の0系または1系への振り分け判断基準は、例えば、従来技術の基準である、判断基準▲1▼0系または1系への振り分けバランスが良いこと、判断基準▲2▼最低保障帯域の和が略均等であること、判断基準▲3▼最大帯域の和が略均等であること、判断基準▲4▼最大帯域と最低保障帯域の差分の和が略均等であること、判断基準▲5▼設定帯域の和が略均等であること、及び、本実施の形態で追加する判断基準▲6▼上り伝送帯域使用量の時間的変動特性が類似した子局またはパスが同一系に偏らないこと、である。
0系、1系のいずれか片側の伝送路に伝送帯域使用量が偏る時間帯がある場合、すなわち、0系の伝送路の伝送帯域使用量、1系の伝送路の伝送帯域使用量に時間に対する変動がある場合に、伝送路設定選択部7は判断基準▲6▼を適用して時間に対する変動を抑制するようにいずれかの子局について伝送路の設定を変更する。
なお、判断基準▲1▼から判断基準▲6▼については任意の重み付けが可能であり、その重みについても設定可能である。なお、子局や伝送路に障害が発生するか、子局数またはパス数に変動が発生した場合は、0系障害/変更監視部61または1系障害/変更監視部62より設定選択変更要求が入力され、同様の判断基準に従って伝送路設定選択の変更を行う。ただし、変動特性の学習が完了していない場合は上記判断基準▲6▼は除く。
【0018】
以上のような機能を追加することにより、学習に関する設定パラメータ(学習期間T、学習回数Q、学習間隔Lなど)を任意に設定することで子局毎またはパス毎の伝送路設定選択の変更を動的に行うことが可能となる。また、時間的変動特性を考慮することで類似の時間的変動特性をもつ子局またはパスが同一系に集中的に設定選択されることを避け、上り伝送帯域使用量の増加の片系への集中を回避することが出来る。その結果、両系における上り伝送帯域使用量に関して時間的な統計多重効果が得られ、DBA機能で使用できる余剰帯域の片系への偏りが無くなり、上り伝送帯域の使用効率が向上する。
【0019】
例として図6の場合について本実施の形態を適用した場合の動作を図3で説明する。
簡単のために学習する関数を2次関数f(t)=an,2+an,1t+an,0とし、周期を一日とすると、学習の結果、子局21、子局22の係数an,2は負の値となり、子局23、子局24の係数an,2は正の値となる(図3の特性関数のグラフが、これらの学習結果に対応している)。4子局に関しては判定基準▲1▼から判定基準▲5▼について同等であるため、本実施の形態で追加する判断基準▲6▼によって子局21と子局22または子局23と子局24はそれぞれ別系に設定選択される。図3では、例として子局22が0系から1系に変更され、子局24が1系から0系に変更された状況を示している。伝送路設定選択部7による伝送路の設定の変更により、図3の0系の上り伝送帯域のグラフ301及び1系の上り伝送帯域のグラフ302に示すように、両系の伝送路の伝送帯域使用量の時間的な変動が抑制される。
この結果、上り伝送帯域使用量の増加または減少について両系で時間的な統計多重効果が得られ、帯域の有効利用が可能となる。
【0020】
次に図7の場合について本実施の形態を適用した場合の動作を図4で説明する。
学習する関数をシグモイド関数f(t)=a/{b+exp(−ct+d)}+eとし、周期を一週間とすると、学習の結果子局21、子局22の係数の積a・cは負の値となり、子局23、子局24の係数の積a・cは正の値となる(図4の特性関数のグラフが、これらの学習結果に対応している)。
よって上記同様子局21と子局22または子局23と子局24はそれぞれ別系に設定選択される。図4では、例として子局22が0系から1系に変更され、子局24が1系から0系に変更された状況を示している。伝送路設定選択部7による伝送路の設定の変更により、図4の0系の上り伝送帯域のグラフ401及び1系の上り伝送帯域のグラフ402に示すように、両系の伝送路の伝送帯域使用量の時間的な変動が抑制される。
この結果、上り伝送帯域使用量の増加または減少について両系で時間的な統計多重効果が得られ、帯域の有効利用が可能となる。
【0021】
このように、本実施の形態に係る親局(通信装置)は、PON区間の伝送路が2重化され、その両系ともが現用系として使用できかつ子局毎またはパス毎に系を切り替えられるブランチ切替が可能な系構成で、子局毎またはパス毎に動的に帯域を割り当てられるDBA機能を有する通信装置であって、伝送路が両系ともに正常運用されている場合、子局毎またはパス毎の上り伝送帯域使用量の時間的変動特性などに基づき子局毎またはパス毎に伝送路を動的に設定選択することを特徴とする。
【0022】
上述したように、従来は、子局毎またはパス毎の伝送路を初期設定時の各種設定パラメータ(最低保障帯域、最大帯域、設定帯域など)に基づき設定選択しており、障害の発生や子局数またはパス数の変動が発生しない限り固定であった。しかし、実運用中の上り伝送帯域使用量の時間的な変動は子局毎またはパス毎に特性があり、類似の特性をもつ子局またはパスが同一系に設定選択された場合、ある時間帯の上り伝送帯域使用量の増加または減少が片系に集中し非効率となる。
そこで、本実施の形態に係る親局は、まず子局毎またはパス毎の上り伝送帯域使用量の時間的変動特性を学習し、その時間的変動特性と初期設定時の各種設定パラメータに基づいて子局毎またはパス毎に伝送路を動的に設定選択し、上り伝送帯域使用量の増加または減少の片系への集中を回避する点に特徴がある。この結果、時間的な統計多重効果が得られ、帯域の有効利用が可能となる。
【0023】
【発明の効果】
以上のように、この発明によれば、対向装置ごと又はパスごとに通信帯域使用量の時間に対する変動特性を学習し、学習結果に基づきいずれかの対向装置又はパスについて通信に用いる伝送路を設定選択するため、通信帯域使用量の増加または減少が特定の伝送路へ集中することを回避することができ、通信帯域の有効利用が可能となる。
【図面の簡単な説明】
【図1】実施の形態1に係る通信システムの構成例を示す図。
【図2】実施の形態1に係る時間的変動特性の学習処理の例を示すフローチャート図。
【図3】実施の形態1に係る伝送路の変更処理の例を示す図。
【図4】実施の形態1に係る伝送路の変更処理の例を示す図。
【図5】従来技術を説明する図。
【図6】従来技術を説明する図。
【図7】従来技術を説明する図。
【符号の説明】
1 親局、2 子局、7 伝送路設定選択部、8 セレクタスイッチ部、10伝送路設定選択部、11 セレクタスイッチ部、12 上り伝送帯域使用量変動特性学習部、31 0系光カプラ、32 1系光カプラ、41 0系PON終端及び上り伝送帯域監視部、42 1系PON終端及び上り伝送帯域監視部、51 0系DBA機能部、52 1系DBA機能部、61 0系障害/変更監視部、62 1系障害/変更監視部、91 0系PON終端部、92 1系PON終端部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a communication band control technique in a communication apparatus, for example, a communication band control technique in an optical communication apparatus such as a PON (Passive Optical Network).
[0002]
[Prior art]
As a conventional technique, there is an optical multi-branch communication system disclosed in JP-A-2002-77212.
FIG. 5 is a diagram showing a simplified configuration of a communication system according to the related art.
In the figure, reference numeral 1 denotes a master station in which the transmission path in the PON section is duplicated and has a branch switching function and a DBA (Dynamic Bandwidth Allocation) function.
Reference numeral 2 denotes a slave station accommodated in the master station 1, and reference numerals 31 and 32 denote optical couplers of system 0 and system 1 for connecting the master station and the slave station.
Reference numerals 41 and 42 denote a system 0 and a system 1 having a function of monitoring the amount of uplink transmission bandwidth used for each slave station or path, a function for detecting a fault in the slave station or transmission path, and a function for detecting a change in the number of slave stations or the number of paths. It is a PON termination and upstream transmission band monitoring unit.
Reference numerals 51 and 52 denote DBA function units of the 0-system and 1-system, and 61 and 62 denote failure / change monitoring units of the 0-system and the 1-system.
7 indicates: (1) when the distribution balance to the 0 system or 1 system is disrupted at the time of initial startup and due to a failure of the slave station or the transmission line or a change in the number of slave stations or the number of paths, (2) the minimum guaranteed bandwidth. (3) when the sum of the maximum bandwidths is not substantially equal, (4) when the sum of the differences between the maximum bandwidth and the minimum guaranteed bandwidth is not substantially equal, (5) setting A transmission path setting selection unit for selecting a transmission path setting for each slave station or path in both systems when any of the sums of the bands is not substantially equal. As criteria for selecting the setting, the criteria 1 are that the distribution balance to the 0 or 1 system is good, the criteria 2 are that the sum of the minimum guaranteed bands is substantially equal, and the criteria 3 is the maximum bandwidth. The sum is substantially equal, the criterion {circle around (4)} the sum of the differences between the maximum band and the minimum guaranteed band is substantially equal, and the criterion {circle around (5)} the sum of the set bands is substantially equal.
Reference numeral 8 denotes a selector switch unit that controls the paths of input signals from both systems and output signals to both systems according to the selection information from the transmission path setting selection unit 7.
Reference numerals 91 and 92 denote PON terminators of the 0 and 1 systems on the slave station side, and 10 denotes a transmission path setting selection section for performing transmission path setting selection for each path in both systems according to transmission path setting selection information from the master station. is there. Reference numeral 11 denotes a selector switch unit that controls the paths of input signals from both systems and output signals to both systems in accordance with selection information from the transmission path setting selection unit 10.
Note that the unit for setting and selecting the transmission path by the master station 1 may be for each slave station or for each path. However, for simplicity, it is assumed that only one path is set for one slave station.
[0003]
[Patent Document 1]
JP-A-2002-77212
[Problems to be solved by the invention]
The optical multi-branch system according to the related art is configured as described above, but has the following problems.
First, considering an Internet connection as an example, a slave station installed in a company (here, for simplicity, only one path is set for one slave station, so hereinafter, only "slave station" will be expressed. ) Increases at daytime and decreases at night. Conversely, the upstream signal input to a slave station installed in a general home increases at night and decreases at noon. In addition, with respect to the fluctuation of the signal input in one week, there is a slave station that increases on the weekend and a slave station that decreases. As described above, the variation of the uplink signal input to the slave station has a temporal variation characteristic having an arbitrary period for each slave station.
[0005]
FIG. 6 shows, as an example, the temporal fluctuation of the uplink signal input to each of the four slave stations in one day. As an example, it is assumed that the slave stations 21 and 22 are installed in a company, and the slave stations 23 and 24 are installed in a general home. Note that both systems are normally operated, and for simplicity, it is assumed that the minimum guaranteed band, the maximum band, the set band, and the period (one day) of the temporal variation characteristic for each of the slave stations are equal to each other. In addition, the amount of uplink signal input to the slave station does not exceed the maximum bandwidth, and is directly used as the uplink transmission bandwidth by the DBA function.
[0006]
In the prior art, the criteria for distributing slave stations to system 0 or system 1 are the above-described criteria (1) to (5). In the case of FIG. The four slave stations are determined to be equivalent in the standard. As a result, the slave station 21 and the slave station 22 may be assigned to the 0 system, and the slave station 23 and the slave station 24 may be assigned to the 1 system. In such a case, the increase of the upstream signal concentrates on either the system 0 or the system 1 in the daytime or night time zone.
[0007]
Similarly, an example for one week is shown in FIG.
In the case of FIG. 7 as well, the slave stations 21 and 22 may be assigned to the 0 system, and the slave stations 23 and 24 may be assigned to the 1 system. In such a case, the increase of the upstream signal is concentrated on either the system 0 or the system 1 on Monday to Friday, Saturday, and Sunday.
[0008]
When the increase of the upstream signal is concentrated on one system, the excess band available to the other slave stations connected to the same system in the DBA function decreases in the concentrated system, and conversely, the increase of the signal is concentrated. In a system that does not perform this, the surplus bandwidth available to other slave stations in the DBA function increases. However, the change of the setting selection by the transmission line setting selection unit 7 in the prior art is caused by the failure of the slave station or the transmission line or the change in the number of slave stations or the number of paths. When the distribution balance to the system is lost, (2) when the sum of the minimum guaranteed bands is not substantially equal, (3) when the sum of the maximum bands is not substantially equal, (4) the maximum band and the minimum guaranteed band In the other cases, the sum of the differences is not substantially equal, and (5) it is limited to the case where the sum of the set bands is not substantially equal. In other cases, the system selected with the initial setting is fixed. Become. As a result, it is not possible to avoid the increase in the uplink signal that occurs periodically due to the temporal variation characteristic from being concentrated on one system.
[0009]
As described above, in the related art, the transmission path setting selection cannot be changed even when the upstream signal is concentrated on one system during a certain time zone, so that the surplus bandwidth of the other system cannot be effectively used, resulting in inefficiency. Was. That is, in the related art, since there is no function to consider the time variation characteristic of the uplink transmission band usage for each slave station or each path, slave stations or paths having similar time variation characteristics are biased toward the same system. Even if it is selected, the setting selection cannot be changed, and the increase in the amount of use of the upstream transmission band cannot be prevented from being concentrated on one system. As a result, there was a problem that the upstream band could not be used effectively.
[0010]
The present invention has as its main object to solve the problems of the prior art as described above, and has as its main object to effectively utilize a transmission band in consideration of a temporal variation characteristic of a transmission band usage. I do.
[0011]
[Means for Solving the Problems]
The communication device according to the present invention,
A communication that is connected to a plurality of transmission paths connected to each of a plurality of opposing devices, sets a transmission path for communication for each opposing device, and communicates with each opposing device using the set transmission path. A device,
A fluctuation characteristic learning unit that monitors the communication band usage for each of the opposing devices and learns the fluctuation characteristics of the communication band usage with respect to time for each of the opposing devices;
A transmission path setting selecting section for setting and selecting a transmission path to be used for communication with any of the opposing devices based on a result of learning of the fluctuation characteristic by the fluctuation characteristic learning section.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
[0013]
FIG. 1 shows a configuration diagram of a communication system according to the present embodiment.
Reference numeral 1 denotes a master station, which corresponds to an example of a communication device. Reference numeral 2 denotes a slave station, which corresponds to an opposing device. Although only one slave station 2 is shown in FIG. 1, a plurality of slave stations 2 are connected to the master station 1 via a duplicated transmission line. Further, each slave station may accommodate a plurality of paths.
In FIG. 1, as compared with FIG. 5, in the master station 1, an upstream transmission band use amount variation characteristic learning unit 12 is added, and a 0-system DBA function unit 51, a 1-system DBA function unit 52, and a transmission path setting selection unit 7, a function described later is added. The other parts are the same as those shown in FIG. Note that the upstream transmission band usage amount variation characteristic learning unit 12 corresponds to a variation characteristic learning unit.
The configuration of the slave station 2 is the same as that shown in FIG.
[0014]
The 0-system DBA function unit 51 and the 1-system DBA function unit 52 transmit upstream transmission band information (communication band usage) indicating the upstream transmission band usage (communication band usage) for each slave station or path set and selected for each system. A function to output to the band usage variation characteristic learning unit 12 is added.
The upstream transmission band usage variation characteristic learning unit 12 acquires from the 0-system DBA function unit 51 the uplink transmission band information for each slave station or path set and selected for system 0, and performs the upstream transmission for each slave station or path. The bandwidth usage is monitored and the upstream transmission bandwidth information for each slave station or path selected and set for the first system is obtained from the first system DBA function unit 52 to monitor the upstream transmission bandwidth usage for each slave station or each path. Then, based on them, the variation characteristics of the temporally used amount of the uplink transmission band are statistically learned for all slave stations or all paths for each slave station or path.
To learn is defined as "W n = f n (t), 0 ≦ t, where W is the amount of uplink transmission band used, N is the number of slave stations or paths, t is the time, and T is the cycle of the fluctuation characteristic to be learned. <T, n = 1, 2, 3,..., N ”so that the m-th order function f n (m: an integer) is approximated as much as possible to the temporal fluctuation of the actual uplink transmission band usage. That is, it is determined for each slave station or each pass. The order m of the function to be learned and the type of the function can be set, and the greater the order m, the higher the accuracy of the fluctuation characteristic that can be learned. Examples of the function f n include a linear function and a non-linear function, and a sine function “F (x) = A sin (Bx + C) + D: A, B, C, and D are arbitrary real numbers” and a sigmoid function “F (x ) = A / {B + exp (-Cx + D)} + E: A, B, C, D, and E are arbitrary real numbers. " . When the period of learning the function f n and T L, T L is an integral multiple (T L = PT, P: integer) of the T it is, can be arbitrarily set T and T L. For example, T can be one day, TL can be one week, T can be one week, and TL can be one month. In addition, trigger factors for starting re-learning (for example, occurrence of a failure in a slave station or a route or a command from a device manager), learning times Q (finite or infinite times), learning frequencies (for example, learning in the first week of every month) Or the learning interval L can be set arbitrarily.
[0015]
When the learning period TL ends, the uplink transmission band usage amount variation characteristic learning unit 12 outputs a learning result to the transmission path setting selection unit 7 as a learning result for all slave stations or all paths that have been learned for each slave station or path. It outputs characteristic information (function f n , cycle T, etc.) and a setting selection change request.
FIG. 2 shows a flowchart relating to learning.
[0016]
The learning of the function f n (t) for the slave station n or the path n will be described.
M-order function as an example of a function "f n (t) = a n , m t m + a n, m-1 t m-1 + ... + a n, 1 t + a n, 0 " when that, to learn the coefficients " an , m , an , m-1 ,..., an , 0 ". Using the least-squares error method for learning, assuming that the actual uplink transmission band usage at any sample time t = t x (0 ≦ t x <T) during the learning period is W nx , | f n ( t x ) −W nx | 2 The learning period TL ends with respect to the values of the coefficients “an , m , an , m−1 ,..., an , 0 ” so as to decrease the value of the learning period TL. Repeat the correction until you do.
[0017]
The transmission path setting selection unit 7 to which the setting selection change request has been input from the upstream transmission band usage variation characteristic learning unit 12 receives the parameters (minimum guaranteed band, maximum guaranteed band) set for every slave station or every path at the time of initial setting. The transmission path setting selection is changed based on the fluctuation characteristic information (function f n , cycle T, etc.) for each child station or path input from the upstream transmission band use amount fluctuation characteristic learning unit 12 and the band. .
The criteria for the distribution to the 0 system or 1 system for each slave station or each path are, for example, the criteria of the prior art; ▼ The sum of the minimum guaranteed bandwidths is substantially equal, criterion (3) The sum of the maximum bandwidths is substantially equal, and the criterion (4) The sum of the difference between the maximum bandwidth and the minimum guaranteed bandwidth is substantially equal. Judgment criterion (5) The sum of the set bandwidths is substantially equal, and the criterion (6) added in the present embodiment (6) The same slave station or path having a similar temporal variation characteristic of the amount of use of the upstream transmission band. It is not biased to the system.
When there is a time zone in which the transmission band usage is biased in one of the transmission lines of the 0 system and 1 system, that is, the transmission band usage of the 0 system transmission line and the transmission band usage of the 1 system transmission line When there is a variation with respect to, the transmission path setting selection unit 7 applies the criterion (6) to change the transmission path setting for any of the slave stations so as to suppress the variation with respect to time.
Note that arbitrary weights can be assigned to the judgment criteria (1) to (6), and the weights can also be set. If a failure occurs in the slave station or the transmission line or the number of slave stations or the number of paths changes, a setting selection change request is issued from the 0-system failure / change monitoring unit 61 or the 1-system failure / change monitoring unit 62. Is input, and the transmission path setting selection is changed according to the same criteria. However, if the learning of the fluctuation characteristics is not completed, the above criterion (6) is excluded.
[0018]
By adding the above-described functions, the setting of the learning-related parameters (the learning period TL , the number of learnings Q, the learning interval L, etc.) can be arbitrarily set to change the transmission path setting selection for each slave station or each path. Can be dynamically performed. In addition, by taking into account the temporal fluctuation characteristics, it is possible to avoid that the slave stations or paths having similar temporal fluctuation characteristics are intensively set and selected in the same system, and increase the use of the uplink transmission band to one system. Concentration can be avoided. As a result, a temporal statistical multiplexing effect is obtained with respect to the amount of use of the upstream transmission band in both systems, the excess band usable by the DBA function is not biased toward one system, and the use efficiency of the upstream transmission band is improved.
[0019]
As an example, the operation when the present embodiment is applied to the case of FIG. 6 will be described with reference to FIG.
For the sake of simplicity, the function to be learned is a quadratic function f n (t) = an , 2 t 2 + an , 1 t + an , 0 , and the cycle is one day. coefficients a n, 2 of 22 becomes a negative value, the slave station 23, the coefficient a n, 2 of the slave station 24 becomes a positive value (the graph of the characteristic function of FIG. 3, in response to these learning result There). Regarding the four slave stations, since the judgment criteria (1) to (5) are equivalent, the slave station 21 and the slave station 22 or the slave station 23 and the slave station 24 according to the judgment criteria (6) added in the present embodiment. Are set and selected separately. FIG. 3 shows a situation where the slave station 22 is changed from the system 0 to the system 1 and the slave station 24 is changed from the system 1 to the system 0 as an example. By changing the setting of the transmission path by the transmission path setting selection unit 7, as shown in the graph 301 of the upstream transmission band of the system 0 and the graph 302 of the upstream transmission band of the system 1 in FIG. Time-dependent fluctuations in the usage amount are suppressed.
As a result, a temporal statistical multiplexing effect is obtained in both systems with respect to an increase or decrease in the amount of use of the upstream transmission band, and the band can be effectively used.
[0020]
Next, the operation when the present embodiment is applied to the case of FIG. 7 will be described with reference to FIG.
Learning to function sigmoid function f n (t) = a a n / {b n + exp (-c n t + d n)} + e n, when the period one week, the learning results slave station 21, the coefficient of the child station 22 the product a n · c n a negative value, the slave station 23, the product a n · c n of the coefficients of the slave station 24 has a positive value (graphs of the characteristic function of FIG. 4, in these learning result Yes).
Therefore, the slave station 21 and the slave station 22 or the slave station 23 and the slave station 24 are separately set and selected as described above. FIG. 4 shows an example in which the slave station 22 is changed from the system 0 to the system 1 and the slave station 24 is changed from the system 1 to the system 0. By changing the setting of the transmission path by the transmission path setting selection unit 7, the transmission bandwidth of the transmission path of both systems is shown in the graph 401 of the upstream transmission band of the 0 system and the graph 402 of the upstream transmission band of the 1 system in FIG. Time-dependent fluctuations in the usage amount are suppressed.
As a result, a temporal statistical multiplexing effect is obtained in both systems with respect to an increase or decrease in the amount of use of the upstream transmission band, and the band can be effectively used.
[0021]
As described above, in the master station (communication device) according to the present embodiment, the transmission path in the PON section is duplicated, both systems can be used as the active system, and the systems can be switched for each slave station or for each path. A communication device having a DBA function of dynamically assigning a band for each slave station or each path in a system configuration capable of branch switching, wherein each of the slave stations or It is characterized in that a transmission path is dynamically set and selected for each slave station or for each path based on the temporal variation characteristics of the amount of uplink transmission band used for each path.
[0022]
As described above, conventionally, the transmission path for each slave station or each path is set and selected based on various setting parameters (minimum guaranteed band, maximum band, set band, etc.) at the time of initial setting. It was fixed as long as the number of stations or the number of paths did not fluctuate. However, the temporal variation in the amount of uplink transmission band used during actual operation has characteristics for each slave station or path, and when slave stations or paths having similar characteristics are set and selected in the same system, a certain The increase or decrease in the amount of use of the upstream transmission band concentrates on one system, resulting in inefficiency.
Therefore, the master station according to the present embodiment first learns the temporal variation characteristics of the uplink transmission bandwidth usage for each slave station or path, and based on the temporal variation characteristics and various setting parameters at the time of initial setting. It is characterized in that the transmission path is dynamically set and selected for each slave station or path, thereby preventing the increase or decrease in the amount of use of the upstream transmission band from being concentrated on one system. As a result, a temporal statistical multiplexing effect is obtained, and the bandwidth can be effectively used.
[0023]
【The invention's effect】
As described above, according to the present invention, the fluctuation characteristic of the communication band usage amount with respect to time is learned for each opposing device or path, and a transmission path used for communication is set for any opposing device or path based on the learning result. Since the selection is made, the increase or decrease of the communication band usage can be prevented from being concentrated on a specific transmission path, and the communication band can be effectively used.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration example of a communication system according to a first embodiment.
FIG. 2 is a flowchart illustrating an example of a learning process of a temporal variation characteristic according to the first embodiment;
FIG. 3 is a diagram showing an example of a transmission line change process according to the first embodiment;
FIG. 4 is a diagram showing an example of transmission line change processing according to the first embodiment;
FIG. 5 is a diagram illustrating a conventional technique.
FIG. 6 is a diagram illustrating a conventional technique.
FIG. 7 is a diagram illustrating a conventional technique.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 master station, 2 slave stations, 7 transmission path setting selection section, 8 selector switch section, 10 transmission path setting selection section, 11 selector switch section, 12 uplink transmission band usage fluctuation characteristic learning section, 310 optical coupler, 32 1 system optical coupler, 410 system PON terminal and upstream transmission band monitoring unit, 42 system 1 PON terminal and upstream transmission band monitoring unit, 510 system DBA function unit, 521 system DBA function unit, 610 system failure / change monitoring Unit, 62 system 1 fault / change monitoring unit, 910 system PON terminal unit, 921 system PON terminal unit.

Claims (7)

それぞれが複数の対向装置のそれぞれに接続している複数の伝送路に接続され、対向装置ごとに通信に用いる伝送路を設定し、設定した伝送路を用いてそれぞれの対向装置と通信を行う通信装置であって、
対向装置ごとに通信帯域使用量をモニターし、対向装置ごとに時間に対する通信帯域使用量の変動特性を学習する変動特性学習部と、
前記変動特性学習部による変動特性の学習結果に基づき、いずれかの対向装置について通信に用いる伝送路を設定選択する伝送路設定選択部とを有することを特徴とする通信装置。
A communication that is connected to a plurality of transmission paths connected to each of a plurality of opposing devices, sets a transmission path for communication for each opposing device, and communicates with each opposing device using the set transmission path. A device,
A fluctuation characteristic learning unit that monitors the communication band usage for each of the opposing devices and learns the fluctuation characteristics of the communication band usage with respect to time for each of the opposing devices;
A communication path setting selecting section for setting and selecting a transmission path to be used for communication with any of the opposing apparatuses based on a result of learning of the fluctuation characteristic by the fluctuation characteristic learning section.
前記伝送路設定選択部は、
前記変動特性学習部による変動特性の学習結果に基づき、それぞれの伝送路の時間に対する通信帯域使用量の変動が抑制されるように、いずれかの対向装置について通信に用いる伝送路を設定選択することを特徴とする請求項1に記載の通信装置。
The transmission path setting selection unit,
Based on the learning result of the fluctuation characteristic by the fluctuation characteristic learning unit, setting and selecting a transmission line to be used for communication with any one of the opposing devices so that a fluctuation of the communication band usage amount with respect to the time of each transmission line is suppressed. The communication device according to claim 1, wherein:
それぞれが複数の対向装置のそれぞれに接続している複数の伝送路に接続され、それぞれの対向装置に収容されているパスごとに通信に用いる伝送路を設定し、設定した伝送路を用いてそれぞれのパスについての通信を行う通信装置であって、
パスごとに通信帯域使用量をモニターし、パスごとに時間に対する通信帯域使用量の変動特性を学習する変動特性学習部と、
前記変動特性学習部による変動特性の学習結果に基づき、いずれかのパスについて通信に用いる伝送路を設定選択する伝送路設定選択部とを有することを特徴とする通信装置。
Each transmission path is connected to a plurality of transmission paths connected to each of the plurality of opposing apparatuses, and a transmission path used for communication is set for each path accommodated in each of the opposing apparatuses. A communication device that performs communication for the path of
A variation characteristic learning unit that monitors the communication bandwidth usage for each path and learns the variation characteristics of the communication bandwidth usage over time for each path;
A communication apparatus, comprising: a transmission path setting selection unit that sets and selects a transmission path to be used for communication for any one of the paths based on a result of learning of the fluctuation characteristic by the fluctuation characteristic learning unit.
前記伝送路設定選択部は、
前記変動特性学習部による変動特性の学習結果に基づき、それぞれの伝送路の時間に対する通信帯域使用量の変動が抑制されるように、いずれかのパスについて通信に用いる伝送路を設定選択することを特徴とする請求項1に記載の通信装置。
The transmission path setting selection unit,
Based on the learning result of the fluctuation characteristic by the fluctuation characteristic learning unit, setting and selecting a transmission line used for communication on any one of the paths so that the fluctuation of the communication band usage amount with respect to the time of each transmission line is suppressed. The communication device according to claim 1, wherein:
前記通信装置は、
複数の対向装置との間で光通信を行う光通信装置であることを特徴とする請求項1〜4のいずれかに記載の通信装置。
The communication device,
The communication device according to claim 1, wherein the communication device is an optical communication device that performs optical communication with a plurality of opposing devices.
それぞれが複数の対向装置のそれぞれに接続している複数の伝送路を介して複数の対向装置と通信が可能であり、対向装置ごとに通信に用いる伝送路を設定し、設定した伝送路を用いてそれぞれの対向装置と通信を行う通信方法であって、
対向装置ごとに通信帯域使用量をモニターし、対向装置ごとに時間に対する通信帯域使用量の変動特性を学習する変動特性学習ステップと、
前記変動特性学習ステップによる変動特性の学習結果に基づき、いずれかの対向装置について通信に用いる伝送路を設定選択する伝送路設定選択ステップとを有することを特徴とする通信方法。
It is possible to communicate with a plurality of opposing devices via a plurality of transmission paths, each of which is connected to each of the plurality of opposing devices, set a transmission path to be used for communication for each opposing apparatus, and use the set transmission path. A communication method for communicating with each of the opposing devices,
A variable characteristic learning step of monitoring the communication band usage for each of the opposing devices and learning the fluctuation characteristics of the communication band usage with respect to time for each of the opposing devices;
A communication path setting selecting step of setting and selecting a transmission path to be used for communication with any of the opposing devices based on a result of learning the fluctuation characteristic in the fluctuation characteristic learning step.
それぞれが複数の対向装置のそれぞれに接続している複数の伝送路を介して複数の対向装置と通信が可能であり、それぞれの対向装置に収容されているパスごとに通信に用いる伝送路を設定し、設定した伝送路を用いてそれぞれのパスについての通信を行う通信方法であって、
パスごとに通信帯域使用量をモニターし、パスごとに時間に対する通信帯域使用量の変動特性を学習する変動特性学習ステップと、
前記変動特性学習ステップによる変動特性の学習結果に基づき、いずれかのパスについて通信に用いる伝送路を設定選択する伝送路設定選択ステップとを有することを特徴とする通信方法。
It is possible to communicate with multiple opposing devices via multiple transmission paths that are connected to each of the multiple opposing devices, and set the transmission path used for communication for each path accommodated in each opposing device. A communication method for performing communication for each path using the set transmission path,
A variable characteristic learning step of monitoring a communication band usage for each path and learning a fluctuation characteristic of the communication band usage with respect to time for each path;
A communication path setting selecting step of setting and selecting a transmission path to be used for communication with respect to any one of the paths based on a learning result of the fluctuation characteristic in the fluctuation characteristic learning step.
JP2002361665A 2002-12-13 2002-12-13 Communication apparatus and communication method Expired - Fee Related JP3908655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002361665A JP3908655B2 (en) 2002-12-13 2002-12-13 Communication apparatus and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002361665A JP3908655B2 (en) 2002-12-13 2002-12-13 Communication apparatus and communication method

Publications (2)

Publication Number Publication Date
JP2004194141A true JP2004194141A (en) 2004-07-08
JP3908655B2 JP3908655B2 (en) 2007-04-25

Family

ID=32760315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002361665A Expired - Fee Related JP3908655B2 (en) 2002-12-13 2002-12-13 Communication apparatus and communication method

Country Status (1)

Country Link
JP (1) JP3908655B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187493A (en) * 2007-01-30 2008-08-14 Nippon Hoso Kyokai <Nhk> Station side device and subscriber side device
JP2010200104A (en) * 2009-02-26 2010-09-09 Kddi Corp Traffic flow distribution method and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187493A (en) * 2007-01-30 2008-08-14 Nippon Hoso Kyokai <Nhk> Station side device and subscriber side device
JP2010200104A (en) * 2009-02-26 2010-09-09 Kddi Corp Traffic flow distribution method and system

Also Published As

Publication number Publication date
JP3908655B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
Tsitsiklis et al. Distributed asynchronous optimal routing in data networks
Korilis et al. Avoiding the Braess paradox in non-cooperative networks
US6665262B1 (en) Distributed fault management architecture
Chlamtac et al. Optimizing the system of virtual paths
Wu et al. Survivable routing and spectrum allocation algorithm based on p-cycle protection in elastic optical networks
US20080232274A1 (en) Distributed synchronous batch reconfiguration of a network
Tanwir et al. Dynamic scheduling of network resources with advance reservations in optical grids
EP1561311A1 (en) Dynamic load distribution using local state information
Dikbiyik et al. Exploiting excess capacity to improve robustness of WDM mesh networks
Barpanda et al. QoS aware routing and wavelength allocation in optical burst switching networks using differential evolution optimization
Gkatzikis et al. Bandwidth calendaring: dynamic services scheduling over software defined networks
Shen et al. A two-phase approach for dynamic lightpath scheduling in WDM optical networks
Yadav RDRSA: A reactive defragmentation based on rerouting and spectrum assignment (RDRSA) for spectrum convertible elastic optical network
Hernández-Chulde et al. Assessment of a latency-aware routing and spectrum assignment mechanism based on deep reinforcement learning
JPH10334061A (en) Load dispersing system
Xia et al. A novel SLA framework for time-differentiated resilience in optical mesh networks
Constantinou et al. A load balancing technique for efficient survivable multicasting in mesh optical networks
JP2004194141A (en) Device and method for communication
CN102055657B (en) Load distributing method of fiber channel (FC) data message and FC exchanger system
Truong-Huu et al. Dynamic flow scheduling with uncertain flow duration in optical data centers
US7324750B2 (en) Protection scheme for a communication network
Ouyang et al. Service chain performance optimization based on middlebox deployment
JP3881610B2 (en) Subscriber transmission apparatus and dynamic bandwidth allocation method for subscriber transmission apparatus
Kuperman et al. Network protection with multiple availability guarantees
Gao et al. Spectrum-efficient multipath provisioning with content connectivity for the survivability of elastic optical datacenter networks

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040519

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees