JP3907040B2 - Hydraulic drive device for hydraulic excavator - Google Patents

Hydraulic drive device for hydraulic excavator Download PDF

Info

Publication number
JP3907040B2
JP3907040B2 JP2001304844A JP2001304844A JP3907040B2 JP 3907040 B2 JP3907040 B2 JP 3907040B2 JP 2001304844 A JP2001304844 A JP 2001304844A JP 2001304844 A JP2001304844 A JP 2001304844A JP 3907040 B2 JP3907040 B2 JP 3907040B2
Authority
JP
Japan
Prior art keywords
pressure
differential pressure
valve
hydraulic pump
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001304844A
Other languages
Japanese (ja)
Other versions
JP2003113804A (en
Inventor
靖貴 釣賀
純也 川本
究 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Hitachi Construction Machinery Co Ltd
Original Assignee
Nachi Fujikoshi Corp
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp, Hitachi Construction Machinery Co Ltd filed Critical Nachi Fujikoshi Corp
Priority to JP2001304844A priority Critical patent/JP3907040B2/en
Publication of JP2003113804A publication Critical patent/JP2003113804A/en
Application granted granted Critical
Publication of JP3907040B2 publication Critical patent/JP3907040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油圧ショベルに用いられるLS制御方式の油圧駆動装置に係わり、特に、油圧ポンプの吐出圧が複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるようロードセンシング制御しかつ複数の流量制御弁の前後差圧を制御する圧力補償弁のそれぞれの目標補償差圧を油圧ポンプの吐出圧と複数のアクチュエータの最高負荷圧との差圧により設定すると共に、ロードセンシング制御の目標差圧をエンジン回転数に依存する可変値として設定する油圧ショベルの油圧駆動装置に関する。
【0002】
【従来の技術】
油圧ポンプの吐出圧が複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるようロードセンシング制御する油圧駆動装置はロードセンシングシステム(以下、適宜LSシステムという)と呼ばれ、複数の流量制御弁の前後差圧をそれぞれ圧力補償弁により制御し、複数のアクチュエータを同時に駆動する複合操作時に負荷圧の大小に係わらず流量制御弁の開口面積に応じた比率で圧油を供給できるようにしている。
【0003】
このようなLSシステムでは、油圧ポンプの吐出圧と複数のアクチュエータの最高負荷圧との差圧(以下、LS差圧という)を圧力補償弁に導き、圧力補償弁のそれぞれの目標補償差圧をLS差圧により設定することが一般的に行われており、これにより複数のアクチュエータを同時に駆動する複合動作時に、油圧ポンプの吐出流量が複数の流量制御弁の要求する流量に満たないサチュレーション状態になったときでも、サチュレーションの程度に応じてLS差圧が低下し、これに伴って圧力補償弁の目標補償差圧も小さくなるため、油圧ポンプの吐出流量をそれぞれのアクチュエータが要求する流量の比に再分配することができる。
【0004】
このようなLSシステムにおいて、特開平10−89304号公報には、油圧ポンプの吐出圧と複数のアクチュエータの最高負荷圧との差圧を絶対圧として出力する差圧減圧弁を設け、この差圧減圧弁の出力圧を複数の圧力補償弁に導き、それぞれの目標補償差圧を設定するようにしたものが記載されている。
【0005】
また、特開平10−196604号公報には、油圧ポンプを駆動するエンジンの回転数に依存する圧力を絶対圧として出力する差圧減圧弁を設け、この差圧減圧弁の出力圧をLS制御レギュレータに導き、ロードセンシング制御の目標差圧(以下、目標LS差圧という)をエンジンの回転数に依存する可変値として設定した油圧駆動装置が記載されている。
【0006】
更に、特開2000−227103号公報には、旋回セクションの圧力補償弁に、旋回負加圧が上昇すると目標補償差圧が小さくなる負荷依存特性を持たせ旋回モータのスムーズな加速及び定常状態への移行を可能とすると共に、目標補償差圧が規定値以下にならないようにする下限設定バネ(旋回優先バネ)を設け、旋回複合操作での起動時にポンプ吐出流量がサチュレーション状態となっても、他のアクチュエータに比べ旋回速度が極端に遅くならないようにした油圧駆動装置が記載されている。
【0007】
【発明が解決しようとする課題】
しかしながら上記従来技術には、1つのアクチュエータを駆動する単独動作から複数のアクチュエータを同時に駆動する複合動作に移行する場合に、操作性の低下が発生するという問題がある。
【0008】
つまり、複数のアクチュエータを同時に駆動する複合動作で、動作している全てのアクチュエータの要求流量の総和が油圧ポンプの吐出可能な最大流量を越えた場合、サチュレーション状態が発生する。この状態では、サチュレーションの程度に応じてLS差圧が低下し、これに伴って圧力補償弁の目標補償差圧も小さくなるため、各流量制御弁では油圧ポンプの吐出流量をそれぞれのアクチュエータが要求する流量の比に再分配することができる。これにより各流量制御弁に対する操作レバーの入力比に応じて全体のアクチュエータスピードが低下することになり、複合動作時に、特定のアクチュエータが停止してしまうことなく、操作性を維持することが可能になる。
【0009】
しかし、この複合動作において、全てのアクチュエータの速度が均等に低下するため、操作性が低下する場合がある。
【0010】
例えば、油圧ショベルの旋回操作ではオペレータが速度変化を体感できるため、速度変化に敏感であり、他のアクチュエータに比べ速度変化を抑えた構成とする必要がある。また、吊り荷作業等でも、旋回中に速度変化が生じると、荷がオペレータの意図に反して揺れてしまう。
【0011】
特開2000−227103号公報のように、旋回優先バネを圧力補償弁に設定する方法も考えられる。しかし、この場合はエンジン回転数によって目標補償差圧が変化するため、全てのエンジン回転数において、同様の割合で優先性を維持することが不可能である。
【0012】
本発明の目的は、LSシステムを備えた油圧ショベルの油圧駆動装置において、ポンプ吐出流量のサチュレーション状態が生じても旋回モータに優先的に圧油を供給してその速度変化を抑えることができ、かつエンジン回転数の設定に係わらず同様に優先性を維持することができ、優れた操作性を実現できるようにしたものを提供することである。
【0013】
【課題を解決するための手段】
(1)上記目的を達成するために、本発明は、エンジンと、このエンジンにより駆動される可変容量型の油圧ポンプと、この油圧ポンプから吐出された圧油により駆動される旋回モータを含む複数のアクチュエータと、前記油圧ポンプから複数のアクチュエータに供給される圧油の流量を制御する複数の流量制御弁と、前記複数の流量制御弁の前後差圧をそれぞれ制御する複数の圧力補償弁と、前記油圧ポンプの吐出圧が前記複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるようロードセンシング制御するポンプ制御手段と、前記エンジンの回転数が低下するにしたがって低下するよう前記エンジンの回転数に依存する圧力を出力するエンジン回転数検出回路とを備え、このエンジン回転数検出回路の出力圧を前記ポンプ制御手段に導き、前記エンジン回転数検出回路の出力圧により前記ロードセンシング制御の目標差圧を設定することで、前記エンジンの回転数が低下するにしたがって前記ロードセンシング制御の目標差圧が低下するよう前記ロードセンシング制御の目標差圧を前記エンジンの回転数に依存する可変値として設定した油圧ショベルの油圧駆動装置において、前記旋回モータ以外のアクチュエータに係わる圧力補償弁のそれぞれの目標補償差圧を前記油圧ポンプの吐出圧と前記複数のアクチュエータの最高負荷圧との差圧により設定すると共に、前記旋回モータに係わる圧力補償弁に前記エンジン回転数検出回路の出力圧を導き、前記エンジン回転数検出回路の出力圧により目標補償差圧を設定し、前記ポンプ制御手段は、前記油圧ポンプの最少吐出流量が前記旋回モータに係わる流量制御弁の最大要求流量より小さくならないように前記油圧ポンプの傾転を制限するリミッタ手段を備えるポンプ傾転可変機構を有するものとする。
【0014】
このように旋回モータ以外のアクチュエータに係わる圧力補償弁のそれぞれの目標補償差圧をLS差圧により設定し、旋回モータに係わる圧力補償弁の目標補償差圧をエンジン回転数検出回路の出力圧(ロードセンシング制御の目標差圧)により設定することにより、旋回モータを含む複合動作時(サチュレーション状態)に、旋回モータ以外のアクチュエータでは、LS差圧の低下に応じて圧力補償弁の目標補償差圧が低下しアクチュエータスピードが低下するのに対して、旋回モータ側では圧力補償弁にサチュレーション情報が伝わらず、目標補償差圧はサチュレーション状態でないときと同じままであり、旋回モータに優先的に圧油が供給されそのスピードダウンを抑えることが可能になる。
【0015】
また、エンジン回転数を下げた場合は、エンジン回転数検出回路の出力圧(ロードセンシング制御の目標差圧)がそれに応じて低下し、それに伴い油圧ポンプの吐出圧と最高負荷圧の差圧も低下するよう制御され、旋回モータ以外のアクチュエータに係わる圧力補償弁の目標補償差圧が低下するだけでなく、旋回モータに係わる圧力補償弁の目標補償差圧も同様に低下する。その結果、旋回モータが速くなりすぎるというようなことが起こらず、エンジン回転数の設定によらず、旋回の適切な優先性を維持することができる。
【0016】
更に、ポンプ制御手段にポンプ傾転可変機構を設け、このポンプ傾転可変機構に、油圧ポンプの最少吐出流量が旋回モータに係わる流量制御弁の最大要求流量より小さくならないように油圧ポンプの傾転を制限するリミッタ手段を設けることにより、特定のアクチュエータの単独動作時に、アクチュエータ速度が目標速度に達し油圧ポンプの吐出流量が減るようにロードセンシング制御されるとき、油圧ポンプの吐出流量が最少吐出流量に達すると、それ以降は最少吐出流量に維持され、油圧ポンプのLS制御は動作しなくなる。つまり、油圧ポンプは最少吐出流量を容量とする固定ポンプであるかの如く動作する。その結果、油圧ポンプのLS制御と旋回圧力補償弁の干渉を回避することができ、システムの安定性を維持することが可能になる。
【0018】
)また、上記(1)において、好ましくは、前記エンジン回転数検出回路は、前記エンジンの回転数に依存する圧力を絶対圧として出力する第1差圧減圧弁を有し、前記旋回モータ以外のアクチュエータに係わる圧力補償弁に前記第1差圧減圧弁の出力圧を導きそれぞれの目標補償差圧を設定する。
【0019】
)更に、上記(1)において、好ましくは、前記油圧ポンプの吐出圧と前記複数のアクチュエータの最高負荷圧との差圧を絶対圧として出力する第2差圧減圧弁を更に備え、前記旋回モータに係わる圧力補償弁に前記第2差圧減圧弁の出力圧を導き、この第2差圧減圧弁の出力圧で当該圧力補償弁の目標補償差圧を設定する。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて説明する。
【0021】
図1は本発明の一実施の形態に係わる油圧駆動装置を示す図である。
【0022】
図1において、本実施の形態に係わる油圧駆動装置は、エンジン1と、このエンジン1により駆動されるメインポンプとしての可変容量型の油圧ポンプ2及び固定容量型のパイロットポンプ30と、メインの油圧ポンプ2から吐出された圧油により駆動される複数のアクチュエータ3a,3b,3cと、油圧ポンプ2の供給油路5に接続され、油圧ポンプ2からアクチュエータ3a,3b,3cに供給される圧油の流量と方向をそれぞれ制御する複数の流量制御弁(メインスプール)4a,4b,4c及び油圧ポンプ2の吐出圧と複数のアクチュエータ3a,3b,3cの最高負荷圧との差圧(LS差圧)を絶対圧として出力する差圧減圧弁11を含むコントロールバルブ4と、油圧ポンプ2の傾転(容量)を制御するポンプ傾転制御機構12と、エンジン回転数に依存する圧力を絶対圧として出力する差圧減圧弁51を含むエンジン回転数検出回路13とを備えている。
【0023】
本実施の形態に係わる油圧駆動装置は例えば油圧ショベルに搭載されるものであり、アクチュエータ3a,3b,3cは例えばそれぞれ油圧ショベルの旋回モータ、ブームシリンダ、アームシリンダである。油圧ショベルは下部走行体に旋回可能に搭載された上部旋回体と、上部旋回体に上下方向に回動可能に装備されたブーム、アーム、バケットからなるフロント作業機構を有し、旋回モータ3aは上部旋回体を旋回駆動し、ブームシリンダ3b及びアームシリンダ3cはそれぞれブーム及びアームを上下方向に回動駆動する。
【0024】
複数の流量制御弁4a,4b,4cは、それぞれ、クローズドセンタ型の複数の流量制御弁6a,6b,6cと、これら複数の流量制御弁6a,6b,6cのメータイン絞り部61,62の前後差圧を同じ値に制御する複数の圧力補償弁7a,7b,7cとで構成されている。
【0025】
流量制御弁6a,6b,6cはそれぞれ図示しない操作レバーの操作により切り換え操作され、その操作レバーの操作量に応じてメータイン絞り部61又は62の開口面積が決まる。
【0026】
複数の圧力補償弁7a,7b,7cは、それぞれ、流量制御弁6a,6b,6cのメータイン絞り部61,62の上流に設置された前置きタイプ(ビフォアオリフィスタイプ)であり、圧力補償弁7aは1対の対向する受圧部70a,70bと開方向作動の受圧部70cとを有し、受圧部70a,70bに流量制御弁6aの上流側及び下流側の圧力がそれぞれ導かれ、受圧部70cに差圧減圧弁51の出力圧が導かれ、その出力圧を目標補償差圧として流量制御弁6aの前後差圧を制御する。圧力補償弁7bは、1対の対向する受圧部71a,71bと開方向作動の受圧部71cとを有し、受圧部71a,71bに流量制御弁6bの上流側及び下流側の圧力がそれぞれ導かれ、受圧部71cに差圧減圧弁11の出力圧が導かれ、その出力圧を目標補償差圧として流量制御弁6bの前後差圧を制御する。圧力補償弁7cも圧力補償弁7bと同様であり、1対の対向する受圧部72a,72bと開方向作動の受圧部72cとを有し、受圧部72a,72bに流量制御弁6cの上流側及び下流側の圧力がそれぞれ導かれ、受圧部72cに差圧減圧弁11の出力圧が導かれ、その出力圧を目標補償差圧として流量制御弁6cの前後差圧を制御する。
複数の流量制御弁6a,6b,6cには、それぞれ、アクチュエータ3a,3b,3cの駆動時にそれらの負荷圧を取り出す負荷ポート60a,60b,…が設けられ、これら負荷ポート60a,60b,…に取り出された負荷圧のうちの最高の圧力が負荷ライン8a,8b,8c、8d及びシャトル弁9a,9bを介して信号ライン10に検出される。
【0027】
差圧減圧弁11は、出力圧を増やす側に位置する受圧部11aと出力圧を減らす側に位置する受圧部11b,11cを有し、受圧部11aに油圧ポンプ2の吐出圧が導かれ、受圧部11b,11cにそれぞれ信号ライン10に検出された最高負荷圧と自己の出力圧が導かれ、これらの圧力のバランスで油圧ポンプ2の吐出圧と最高負荷圧との差圧(LS差圧)を絶対圧として出力する。
【0028】
差圧減圧弁11の出力ポートは信号ライン21,22を介してポンプ傾転制御機構12に設けられたLS制御弁12bの受圧部12dに接続され、差圧減圧弁11の出力圧が受圧部12dに導かれる。また、差圧減圧弁11の出力ポートは、信号ライン21,24を介して圧力補償弁7bの受圧部71cに接続され、信号ライン21,25を介して圧力補償弁7cの受圧部72cに接続され、差圧減圧弁11の出力圧が上記のように目標補償差圧として受圧部71c,72cに導かれる。
【0029】
ポンプ傾転制御機構12は、油圧ポンプ2の吐出圧が高くなると油圧ポンプ2の傾転を減らす馬力制御傾転アクチュエータ12aと、油圧ポンプ2の吐出圧が複数のアクチュエータ3a,3b,3cの最高負荷圧より目標差圧だけ高くなるようロードセンシング制御するLS制御弁12b及びLS制御傾転アクチュエータ12cとを備えている。
【0030】
LS制御弁12bは、アクチュエータ12cを増圧し油圧ポンプ2の傾転を減らす側に位置する受圧部12dと、アクチュエータ12cを減圧し油圧ポンプ2の傾転を増やす側に位置する受圧部12eとを有し、受圧部12dには差圧減圧弁11の出力圧(油圧ポンプ2の吐出圧とアクチュエータ3a,3b,3cの最高負荷圧との差圧)が導かれ、受圧部12eにはエンジン回転数検出回路13の差圧減圧弁51の出力圧がロードセンシング制御の目標差圧(目標LS差圧)として導かれている。
【0031】
また、ポンプ傾転制御機構12はポンプ傾転可変機構90を備え、アクチュエータ12a,12cはこのポンプ傾転可変機構90を作動することで油圧ポンプ2の傾転を制御する。ポンプ傾転可変機構90は、油圧ポンプ2の最少吐出流量を旋回最大要求流量以上に設定するよう油圧ポンプ2の傾転を制限するリミッタ91を備えている(後述)。
【0032】
エンジン回転数検出回路13は、流量検出弁50と上記の差圧減圧弁51とを有し、流量検出弁50は可変の絞り部50aを有しかつその絞り部50aがパイロットポンプ30の吐出ライン31に配置されている。吐出ライン31は流量検出弁50の上流側のライン31aと下流側のライン31bを有し、下流側のライン31bには、パイロット油圧源としての元圧を規定するリリーフ弁32が接続され、ライン31bは、例えば流量制御弁6a,6b,6cを切換操作するためのパイロット圧を生成するリモコン弁(図示せず)へと接続されている。
【0033】
流量検出弁50は吐出ライン31を流れる圧油の流量を絞り部50aの前後差圧の変化として検出し、その前後差圧を目標LS差圧として用いるためのものである。ここで、吐出ライン31を流れる圧油の流量はパイロットポンプ30の吐出流量であり、この吐出流量はエンジン1の回転数によって変化するため、吐出ライン31を流れる圧油の流量を検出することはエンジン1の回転数を検出することである。例えば、エンジン1の回転数が低下すれば当該流量が減少し、絞り部50aの前後差圧は低下する。
【0034】
また、絞り部50aは開口面積が連続的に変化する可変絞り部として構成されており、流量検出弁50は更に開方向作動の受圧部50bと絞り方向作動の受圧部50c及びバネ50dを有し、受圧部50bに可変絞り部50aの上流側圧力(ライン31aの圧力)が導かれ、受圧部50cに可変絞り部50aの下流側圧力(ライン31bの圧力)が導かれ、可変絞り部51a自身の前後差圧に依存してその開口面積を変化させる構成となっている。このように流量検出弁50を構成し、可変絞り部50aの前後差圧を目標LS差圧として用いることにより、エンジン回転数に応じたサチュレーション現象の改善が図れ、エンジン回転数を低く設定した場合に良好な微操作性が得られる。なお、この点は特開平10−196604号公報に詳しい。
【0035】
差圧減圧弁51は、エンジン回転数に依存する圧力として可変絞り部50aの前後差圧を絶対圧として出力するエンジン回転数検出弁であり、出力圧を増やす側に位置する受圧部51aと出力圧を減らす側に位置する受圧部51b,51cを有し、受圧部51aに可変絞り部50aの上流側圧力が導かれ、受圧部51b,51cにそれぞれ可変絞り部50aの下流側圧力と自己の出力圧が導かれ、これらの圧力のバランスでライン31bの圧力を基に可変絞り部50aの前後差圧を絶対圧として出力する。
【0036】
差圧減圧弁51の出力ポートは信号ライン53を介してLS制御弁12bの受圧部12eに接続され、差圧減圧弁51の出力圧が目標LS差圧として受圧部12eに導かれる。その結果、エンジン回転数に応じたアクチュエータスピードの設定が可能となる。また、差圧減圧弁51の出力ポートは信号ライン53,54を介して圧力補償弁7aの受圧部70cに接続され、差圧減圧弁51の出力圧が上記のように目標補償差圧として受圧部70cに導かれる。
【0037】
図2はポンプ傾転制御機構12による油圧ポンプ2のPQ(圧力・流量)特性図である。横軸は油圧ポンプ2の吐出圧力、縦軸は油圧ポンプ2の吐出流量であり、特性線Hは馬力制御傾転アクチュエータ12aによるポンプ馬力制御線図である。また、Qminは油圧ポンプ2の最少吐出流量であり、Qsmaxは旋回最大要求流量である。旋回最大要求流量Qsmaxは、旋回流量制御弁6aのメータイン絞り部61又は62の最大開口面積をAmaxとすると、Qsmax=C・Amax√Pgr(Cは係数)で表される。つまり、一般的に要求流量は開口面積とその前後差圧の関数であり、流量制御弁6aの前後差圧は圧力補償弁7aによりその目標補償差圧に等しくなるよう制御され、圧力補償弁7aの受圧部70cには、その目標補償差圧として差圧減圧弁51の出力圧が導かれているので、差圧減圧弁51の出力圧をP gr とすると、Qsmax=C・Amax√Pgrとなる。
【0038】
上述したように、油圧ポンプ2は、リミッタ91により最少吐出流量Qminが旋回最大要求流量Qsmax以上になるように制限されている。このため、LS制御弁12b及びLS制御傾転アクチュエータ12cによるポンプLS制御領域は斜線部分となる。
【0039】
次に、本実施の形態の動作を比較例と対比して説明する。以下の説明では、油圧ポンプ2の吐出圧をPs、アクチュエータ3a,3b,3cの最高負荷圧をPLmax、油圧ポンプ2の吐出圧と最高負荷圧との差圧(LS差圧)をΔPLS、差圧減圧弁11の出力圧をPLS、差圧減圧弁51の出力圧をPgr、圧力補償弁7aの目標補償差圧をPc1、圧力補償弁7bの目標補償差圧をPc2、圧力補償弁7cの目標補償差圧をPc3とする。
【0040】
図3は、比較例1として、図1に示した旋回セクションの圧力補償弁7aの受圧部70cに差圧減圧弁51の出力圧でなく、他のセクションの圧力補償弁7b,7cと同様に差圧減圧弁11の出力圧を導くと共に、ポンプ傾転制御機構12Xのポンプ傾転可変機構90にリミッタ91を設けず、油圧ポンプ2の最少吐出流量を通常の値に設定したものである。この構成は、特開平10−196604号公報に記載の従来技術に差圧減圧弁11を付加し、圧力補償弁7a,7b,7cに油圧ポンプ2の吐出圧Psと複数のアクチュエータ3a,3b,3cの最高負荷圧PLmaxとの差圧ΔPLSを絶対圧(差圧減圧弁11の出力圧PLS)として導くようにした構成に相当する。
【0041】
図3の比較例1においては、1つのアクチュエータ、例えば旋回モータ3aを駆動する単独動作から複数のアクチュエータ、例えば旋回モータ3aとブームシリンダ3bを同時に駆動する複合動作に移行する場合に、操作性の低下が発生する。
【0042】
複数のアクチュエータ3a,3bを同時に駆動する複合動作において、駆動している全てのアクチュエータに対する要求流量の総和が油圧ポンプ2の吐出可能な最大流量を越えた場合、油圧ポンプ2の吐出流量が不足するサチュレーション状態が発生する。
【0043】
この場合、流量制御弁4a,4bにおいては、それぞれのアクチュエータ3a,3bヘの流量の再分配が行われる。つまり、アクチュエータ3a,3bに係わる圧力補償弁7a,7bの目標補償差圧Pc1,Pc2は油圧ポンプ2の吐出圧Psと最高負荷圧PLmaxの差圧(LS差圧)ΔPLS=Ps‐PLmaxで与えられる。そのLS差圧は差圧減圧弁11から絶対圧PLSとして供給される。サチュレーション状態では、LS差圧ΔPLSは供給不足の比率に応じて低下する。このため、その差圧により設定される圧力補償弁7a,7bの目標補償差圧Pc1,Pc2も、本来は目標LS差圧と同じになるべきものがそれよりも供給不足の比率分減少する。その結果、各アクチュエータには、油圧ポンプ2の吐出流量をそれぞれの要求流量比に分けた流量が供給される。これにより各流量制御弁6a,6bに対する操作レバーの入力比に応じて全体のアクチュエータスピードが低下することになる。この機能により、複合動作時に、特定のアクチュエータが停止してしまうことなく、操作性を維持することが可能になる。
【0044】
しかし、この複合動作において、全てのアクチュエータの速度が均等に低下するため、操作性が低下する場合がある。
【0045】
例えば、旋回操作ではオペレータが速度変化を体感できるため、速度変化に敏感であり、他のアクチュエータに比べ速度変化を抑えた構成とする必要がある。また、吊り荷作業等でも、旋回中に速度変化が生じると、荷がオペレータの意図に反して揺れてしまう。
【0046】
また、特開2000−227103号公報のように、旋回優先バネを圧力補償弁7aに設定する方法も考えられる。しかし、この場合はエンジン回転数によって目標補償差圧が変化するため、全てのエンジン回転数において、同じ割合で優先性を保持することが不可能である。
【0047】
そこで、旋回セクションの圧力補償弁7aの受圧部70cにLS制御の目標値(目標LS差圧)である差圧減圧弁51の出力圧Pgrを導き、その目標補償差圧Pc1を出力圧Pgrにより設定することで、サチュレーションの情報が旋回圧力補償弁7aに伝わらないようにする方法が考えられる。図4は、その場合の構成を比較例2として示すものである。
【0048】
しかし、上記構成では、旋回の単独動作時に、旋回セクションの圧力補償弁7aとポンプ傾転制御機構12が、共に旋回セクションのメインスプールである流量制御弁6aのメータイン絞り61又は62の前後差圧を差圧減圧弁51の出力圧Pgrに制御するよう動作し、両者が干渉してしまう。
【0049】
以下、そのメカニズムについて説明する。
【0050】
図5はポンプ傾転制御機構12Xによる、図2と同様な油圧ポンプ2のPQ(圧力・流量)特性図である。Qmin0はリミッタ91のない場合の通常の油圧ポンプ2の最少吐出流量である。この油圧ポンプ2の最少吐出流量Qmin0は旋回最大要求流量Qsmaxより少なく、LS制御弁12b及びLS制御傾転アクチュエータ12cによるポンプLS制御領域に旋回最大要求流量Qsmaxが包含されている。
【0051】
旋回の単独動作において、旋回の起動直後から加速し、目標速度に達し加速がなくなると、旋回負荷圧の低下により、油圧ポンプ2の吐出圧Psと最高負荷圧PLmaxの差圧ΔPLSが、上記LS制御の目標値である差圧減圧弁51の出力圧Pgrより大きくなる。その結果、ポンプ傾転制御機構12は、ポンプ供給油路5のポンプ吐出圧Psを下げる方向に制御し、油圧ポンプ2の傾転は小さくなり、吐出流量は減少する。これに対して、旋回セクションの圧力補償弁7aは流量制御弁6aのメータイン絞り61又は62の前後差圧を下げるために閉じる方向に動き、ポンプ供給油路5の圧油が閉じこめられポンプ吐出圧Psが下がりにくくなる。つまり、油圧ポンプ2のLS制御は吐出流量を減らしポンプ吐出圧Ps下げるように制御するのに対して、圧力補償弁7aが閉じ方向に動き、油圧ポンプ2の吐出圧Psを下がりにくくするように制御する。ここで、油圧ポンプ2の最少吐出流量Qmax0は旋回最大要求流量Qsmaxより少ない値である。その結果、油圧ポンプ2の吐出流量はLS制御により極端に低下する。このように油圧ポンプ2の動作と旋回圧力補償弁7aの動作は干渉し、油圧ポンプ2の吐出圧の制御性は低下する。
【0052】
また、その後、旋回モータ3aの回転により油圧ポンプ2の吐出流量が消費されると、油圧ポンプ2の吐出流量が極端に低下しているために供給不足になる。その結果、油圧ポンプ2の吐出圧Psと最高負荷圧PLmaxの差圧ΔPLSが上記LS制御の目標値であるPgrより低くなる。このとき、旋回セクションの圧力補償弁7aが全開となり機能しなくなる。これと同時にポンプ傾転制御機構12は、ポンプ吐出圧Psと最高負荷圧PLmaxの差圧ΔPLSがLS制御の目標値であるPgrより大きくなる方向、つまり油圧ポンプ2の吐出圧を上げる方向に制御し、油圧ポンプ2の傾転は大きくなり、吐出流量は増加する。その際、旋回セクションの圧力補償弁7aが全開しているため、油圧ポンプ2の吐出圧Psは上がり難く、制御の応答性が悪化し、油圧ポンプ2の吐出流量はLS制御により極端に上昇する。
【0053】
以上の現象の繰り返しにより、不連続な加速が生じ、操作性を著しく低下してしまう。この現象は、慣性負荷を伴う旋回に顕著に見られる。
【0054】
このような問題を解決するため、本実施の形態では、上記のように旋回セクションの圧力補償弁7aの受圧部70cに差圧減圧弁51の出力圧を導き、かつ油圧ポンプ2の最少吐出流量を旋回最大要求流量よりも高く設定したものである。
【0055】
図6は、本実施の形態における圧力補償弁7a,7b,7cの目標補償差圧Pc1,Pc2,Pc3の変化を示す図である。図中Aは旋回単独動作時(非サチュレーション状態)、Bは旋回複合動作時(サチュレーション状態)であり、共にエンジン1が定格の高回転数にあるときのもの、Cは旋回複合動作時(サチュレーション状態)でエンジン1が低速回転数にあるときのものである。
【0056】
旋回セクションの圧力補償弁7aの目標補償差圧Pc1は、LS制御の目標値である差圧減圧弁51の出力圧Pgrであり、それ以外の圧力補償弁7b,7cの目標補償差圧Pc2,Pc3は、差圧減圧弁11の出力圧PLS(LS差圧ΔPLSの絶対圧)となるよう制御される。
【0057】
まず、エンジン1が定格の高回転数に保たれる場合は、差圧減圧弁51の出力圧Pgrは変化せず、旋回単独動作時も複合動作時(サチュレーション状態)も旋回セクションの圧力補償弁7aの目標補償差圧Pc1は一定である(図6のA及びB)。このため、旋回単独動作時で油圧ポンプの吐出流量が足りているときは(図6のA)、差圧減圧弁11の出力圧PLSはPgrに等しくなるよう制御されるため(PLS=Pgr)、Pgrを目標補償差圧としている旋回と、PLSを目標としている他のアクチュエータとでは、コントロールバルブ4の圧力補償弁7a,7b,7cによる制御動作には基本的な差はない。
【0058】
旋回を含んだ複合操作(サチュレーション状態)では、コントロールバルブ4において、それぞれのアクチュエータヘの流量の再分配が行われる。
【0059】
まず、旋回セクション以外の圧力補償弁7b,7cの目標補償差圧Pc2,Pc3は、サチュレーション状態になるとポンプ吐出流量の供給不足の比率に応じて低下する。つまり、圧力補償弁7b,7cの目標補償差圧Pc2,Pc3は油圧ポンプ2の吐出圧Psと最高負荷圧PLmaxの差圧ΔPLS(=Ps−PLmax)で、差圧減圧弁11により絶対圧PLSとして与えられる。サチュレーション状態では、LS差圧ΔPLSは供給不足の比率に応じて低下する。このため、図6のBに示すように、その差圧により設定される圧力補償弁7b,7cの目標補償差圧Pc2,Pc3もそれに応じて減少する。その結果、旋回を除く各アクチュエータ3b,3cには、油圧ポンプ2の吐出流量をそれぞれの要求流量比に分けた流量が供給される。これにより各流量制御弁6b,6cに対する操作レバーの入力比に応じて全体のアクチュエータスピードが低下することになる。
【0060】
しかし、旋回に関しては、圧力補償弁7aの目標補償差圧Pc1をLS差圧でなく差圧減圧弁51の出力圧Pgrにより設定しており、このPgrはサチュレーション状態であってもエンジン回転数が定格の高回転数にある限り変わらず(図6のB)、サチュレーションの情報が圧力補償弁7aに伝わらない。その結果、サチュレーション状態でのPc1の低下が抑えられ、他のアクチュエータ3b,3cに比べ旋回モータ3aに優先的に圧油を供給し得るようになり、旋回を含んだ複合動作による旋回モータ3aのスピードダウンを抑えることが可能になる。
【0061】
また、エンジン回転数を低速に下げた場合は、差圧減圧弁51の出力圧Pgrがそれに応じて減少するため、圧力補償弁7aの目標補償差圧Pc1(=Pgr)も同様に減少する。旋回セクション以外の圧力補償弁7b,7cの目標補償差圧Pc2,Pc3も、エンジン1が低速回転数になると油圧ポンプ2の吐出圧Psと最高負荷圧PLmaxの差圧ΔPLS(=Ps−PLmax)が差圧減圧弁51の出力圧Pgrに応じて低下するよう制御されるため、目標補償差圧Pc2,Pc3も減少する。つまり、図6のCに示すように、エンジン回転数を低速にしたときの旋回複合操作(サチュレーション状態)では、圧力補償弁7aの目標補償差圧Pc1と圧力補償弁7b,7cの目標補償差圧Pc2,Pc3が共に減少する。このため旋回が速くなりすぎるというようなことが起こらず、エンジン回転数の設定によらず、適切な旋回の優先性を維持することができる。
【0062】
次に、旋回単独操作の起動時から定常状態に移行するときの動作について説明する。
【0063】
旋回起動時に、油圧ポンプ2の吐出圧Psと最高負荷圧PLmaxの差圧ΔPLSがLS制御の目標値であるPgrより小さくなる。したがって、油圧ポンプ2はポンプ供給油路5のポンプ吐出圧Psを上げる方向に制御し、ポンプ傾転は大きくなり、吐出流量は増加する。同時に旋回セクションの圧力補償弁7aは、メータイン絞り部61又は62の前後差圧(=ΔPLS)が目標補償差圧Pc1(=Pgr)より小さいため、全開となり機能しなくなる。
【0064】
旋回速度が目標値になり加速がなくなると、油圧ポンプ2の吐出圧Psと最高負荷圧P1maxの差圧ΔPLSがLS制御の目標値であるPgrより大きくなる。油圧ポンプ2はポンプ供給油路5のポンプ吐出圧Psを下げる方向に制御し、油圧ポンプ2の傾転は小さくなり、吐出流量は減少する。同時に旋回セクションの圧力補償弁7aは閉じる方向に動作し、メータイン絞り部61又は62の前後差圧を目標補償差圧Pc1(=Pgr)となるよう制御する。
【0065】
ここで、油圧ポンプ2は、リミッタ91により最少吐出流量Qminが旋回最大要求流量Qsmax以上になるように制限されている。このため、油圧ポンプ2の吐出流量が最少吐出流量Qminに達すると、それ以降はQminに維持され、油圧ポンプ2のLS制御は動作しなくなる。つまり、油圧ポンプ2は容量Qminの固定ポンプであるかの如く動作する。その結果、油圧ポンプ2のLS制御と旋回圧力補償弁7aの干渉はなくなる。
【0066】
図7及び図8は、以上の説明のうち、図4に示した比較例2と図1に示した本発明における旋回操作時にポンプと旋回圧力補償弁の動きを、図3に示した比較例1と対比し、LS差圧ΔPLS(=Ps−PLmax)がLS制御の目標値であるPgrより小さくなる場合と、大きくなる場合とについて表形式でまとめたものである。
【0067】
以上のように本実施の形態によれば、LSシステムを備えた油圧駆動装置において、ポンプ吐出流量のサチュレーション状態が生じても特定のアクチュエータ3aに優先的に圧油を供給してその速度変化を抑えることができ、かつエンジン回転数の設定に係わらず同様に優先性を維持することができ、優れた操作性を実現することができる。
【0068】
また、油圧ポンプ2のロードセンシング制御と圧力補償弁7a〜7cの動作の干渉を回避することができ、システムの安定性を維持することが可能になる。
【0069】
なお、本実施の形態では、油圧ポンプ2の吐出圧と最高負荷圧との差圧を差圧減圧弁11の出力圧により絶対圧として導き、エンジン検出回路13の可変絞り部50aの前後差圧を差圧減圧弁51の出力圧により絶対圧として導くようにしたが、油圧ポンプ2の吐出圧と最高負荷圧、可変絞り部50aの上流側圧力と下流側圧力をそれぞれ別々に導くようにしてもよい。
【0070】
【発明の効果】
本発明によれば、LSシステムを備えた油圧駆動装置において、ポンプ吐出流量のサチュレーション状態が生じても特定のアクチュエータに優先的に圧油を供給してその速度変化を抑えることができ、かつエンジン回転数の設定に係わらず同様に優先性を維持することができ、優れた操作性を実現することができる。
【0071】
また、油圧ポンプのロードセンシング制御と圧力補償弁の動作の干渉を回避することができ、システムの安定性を維持することが可能になる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係わる油圧駆動装置の全体構成を示す図である。
【図2】ポンプ傾転制御機構による油圧ポンプのPQ特性を示す図である。
【図3】従来技術に基づく構成を比較例1として示す図1と同様な図である。
【図4】比較例1の対策例を比較例2として示す図1と同様な図である。
【図5】比較例1及び2におけるポンプ傾転制御機構による油圧ポンプのPQ特性を示す図である。
【図6】図1に示した油圧駆動装置における目標補償差圧の変化を示す図である。
【図7】比較例2の旋回動作時のポンプと旋回圧力補償弁の動きを表形式で示す図である。
【図8】本実施の形態の旋回動作時のポンプと旋回圧力補償弁の動きを表形式で示す図である。
【符号の説明】
1 エンジン
2 メインの油圧ポンプ
3a アクチュエータ(旋回モータ9)
3b アクチュエータ(ブームシリンダ)
3c アクチュエータ(アームシリンダ)
4 コントロールバルブ
4a,4b,4c 流量制御弁
5 供給油路
6a,6b,6c 流量制御弁
7a,7b,7c 圧力補償弁
8a,8b,8c、8d 負荷ライン
9a,9b シャトル弁
10 信号ライン
11 差圧減圧弁
11a,11b,11c 受圧部
12 ポンプ傾転制御機構
12a 馬力制御傾転アクチュエータ
12b LS制御弁
12c LS制御傾転アクチュエータ
13 エンジン回転数検出回路
31 吐出ライン
32 リリーフ弁
50 流量検出弁
50a 絞り部
51 差圧減圧弁
51a,51b,51c 受圧部
53,54 信号ライン
60a,60b,60c 負荷ポート
61,62 メータイン可変絞り部
70a,70b,70c 受圧部
71a,71b,71c 受圧部
72a,72b,72c 受圧部
90 ポンプ傾転可変機構
91 リミッタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an LS control type hydraulic drive device used for a hydraulic excavator, and in particular, performs load sensing control so that a discharge pressure of a hydraulic pump is higher than a maximum load pressure of a plurality of actuators by a target differential pressure, and a plurality of flow rates. Each target compensation differential pressure of the pressure compensation valve that controls the differential pressure across the control valve is set by the differential pressure between the discharge pressure of the hydraulic pump and the maximum load pressure of multiple actuators, and the target differential pressure for load sensing control The present invention relates to a hydraulic drive device for a hydraulic excavator that is set as a variable value that depends on the engine speed.
[0002]
[Prior art]
A hydraulic drive device that performs load sensing control so that the discharge pressure of the hydraulic pump is higher than the maximum load pressure of a plurality of actuators by a target differential pressure is called a load sensing system (hereinafter referred to as LS system as appropriate). The front and rear differential pressures are controlled by pressure compensation valves, respectively, so that pressure oil can be supplied at a ratio corresponding to the opening area of the flow control valve regardless of the load pressure at the time of combined operation in which a plurality of actuators are driven simultaneously.
[0003]
In such an LS system, a differential pressure between the discharge pressure of the hydraulic pump and the maximum load pressure of a plurality of actuators (hereinafter referred to as LS differential pressure) is led to the pressure compensation valve, and each target compensation differential pressure of the pressure compensation valve is calculated. It is generally performed by setting the LS differential pressure. This makes it possible to maintain a saturation state in which the discharge flow rate of the hydraulic pump does not satisfy the flow rate required by the multiple flow control valves during the combined operation of simultaneously driving the multiple actuators. Even if the LS differential pressure decreases, the LS differential pressure decreases according to the degree of saturation, and the target compensation differential pressure of the pressure compensation valve also decreases accordingly. Therefore, the discharge flow rate of the hydraulic pump is the ratio of the flow rate required by each actuator. Can be redistributed.
[0004]
In such an LS system, Japanese Patent Application Laid-Open No. 10-89304 is provided with a differential pressure reducing valve that outputs a differential pressure between the discharge pressure of the hydraulic pump and the maximum load pressure of a plurality of actuators as an absolute pressure. There is a description in which the output pressure of the pressure reducing valve is guided to a plurality of pressure compensating valves, and each target compensating differential pressure is set.
[0005]
Japanese Patent Application Laid-Open No. 10-196604 is provided with a differential pressure reducing valve that outputs, as an absolute pressure, a pressure that depends on the number of revolutions of an engine that drives a hydraulic pump, and the output pressure of the differential pressure reducing valve is set as an LS control regulator. Thus, there is described a hydraulic drive apparatus in which a target differential pressure of load sensing control (hereinafter referred to as a target LS differential pressure) is set as a variable value depending on the engine speed.
[0006]
Further, Japanese Patent Laid-Open No. 2000-227103 discloses that the pressure compensation valve of the swing section has a load-dependent characteristic that reduces the target compensation differential pressure when the swing negative pressure increases, so that the swing motor can be smoothly accelerated and steady. The lower limit setting spring (swing priority spring) that prevents the target compensation differential pressure from falling below the specified value is provided, and even if the pump discharge flow rate is in a saturation state at the start of the swing combined operation, A hydraulic drive device is described in which the turning speed is not extremely slow compared to other actuators.
[0007]
[Problems to be solved by the invention]
However, the above-described conventional technique has a problem that operability is deteriorated when shifting from a single operation for driving one actuator to a composite operation for simultaneously driving a plurality of actuators.
[0008]
That is, in a combined operation in which a plurality of actuators are driven simultaneously, a saturation state occurs when the sum of the required flow rates of all the operating actuators exceeds the maximum flow rate that can be discharged by the hydraulic pump. In this state, the LS differential pressure decreases according to the degree of saturation, and the target compensation differential pressure of the pressure compensation valve decreases accordingly. Therefore, each actuator requires the discharge flow rate of the hydraulic pump in each flow control valve. Can be redistributed to the ratio of the flow rate to be. As a result, the overall actuator speed decreases according to the input ratio of the operation lever to each flow control valve, and it is possible to maintain operability without stopping specific actuators during combined operation. Become.
[0009]
However, in this combined operation, the speed of all the actuators is reduced uniformly, so that the operability may be reduced.
[0010]
For example, in a turning operation of a hydraulic excavator, an operator can feel a change in speed, so that the operator is sensitive to the change in speed and needs to have a configuration in which the change in speed is suppressed compared to other actuators. In addition, even in a suspended load operation or the like, if a speed change occurs during turning, the load will sway against the operator's intention.
[0011]
As disclosed in Japanese Patent Application Laid-Open No. 2000-227103, a method of setting the swing priority spring as a pressure compensation valve is also conceivable. However, in this case, since the target compensation differential pressure varies depending on the engine speed, it is impossible to maintain the priority at the same rate at all engine speeds.
[0012]
An object of the present invention is to provide a hydraulic drive device for a hydraulic excavator equipped with an LS system, so that even if a saturation state of the pump discharge flow rate occurs, pressure oil is preferentially supplied to the swing motor, and the speed change thereof can be suppressed. In addition, it is possible to provide a device that can maintain priority in the same manner regardless of the setting of the engine speed and can realize excellent operability.
[0013]
[Means for Solving the Problems]
  (1) In order to achieve the above object, the present invention includes a plurality of engines, a variable displacement hydraulic pump driven by the engine, and a swing motor driven by pressure oil discharged from the hydraulic pump. A plurality of flow rate control valves that control flow rates of pressure oil supplied from the hydraulic pump to the plurality of actuators, and a plurality of pressure compensation valves that respectively control the differential pressure across the plurality of flow rate control valves, A pump control means for performing load sensing control so that a discharge pressure of the hydraulic pump is higher than a maximum load pressure of the plurality of actuators by a target differential pressure;So that the engine speed decreases as the engine speed decreasesAn engine speed detection circuit that outputs a pressure depending on the engine speed, and the output pressure of the engine speed detection circuit is led to the pump control means,By setting the target differential pressure of the load sensing control by the output pressure of the engine speed detection circuit, the target differential pressure of the load sensing control decreases as the engine speed decreases.In the hydraulic drive device of a hydraulic excavator in which the target differential pressure of the load sensing control is set as a variable value that depends on the number of revolutions of the engine, the target compensated differential pressure of each pressure compensation valve related to an actuator other than the swing motor is The engine rotational speed detection circuit is set by the differential pressure between the discharge pressure of the hydraulic pump and the maximum load pressure of the plurality of actuators, and the output pressure of the engine rotational speed detection circuit is led to a pressure compensation valve related to the swing motor. The target compensation differential pressure is set by the output pressure of the pump, and the pump control means,in frontIt is assumed that the hydraulic pump has a variable pump tilt mechanism including a limiter means for limiting the tilt of the hydraulic pump so that the minimum discharge flow rate of the hydraulic pump does not become smaller than the maximum required flow rate of the flow control valve related to the swing motor.
[0014]
Thus, each target compensation differential pressure of the pressure compensation valve related to the actuator other than the swing motor is set by LS differential pressure, and the target compensation differential pressure of the pressure compensation valve related to the swing motor is set as the output pressure of the engine speed detection circuit ( In the combined operation including the swing motor (saturation state), in the actuator other than the swing motor, the target compensation differential pressure of the pressure compensation valve is set according to the decrease in the LS differential pressure. However, saturation information is not transmitted to the pressure compensation valve on the swing motor side, and the target compensation differential pressure remains the same as when the saturation state is not reached. Is supplied and it is possible to suppress the speed reduction.
[0015]
Also, when the engine speed is lowered, the output pressure of the engine speed detection circuit (target differential pressure for load sensing control) decreases accordingly, and the differential pressure between the discharge pressure of the hydraulic pump and the maximum load pressure is Not only the target compensation differential pressure of the pressure compensation valve related to the actuator other than the swing motor is reduced, but also the target compensation differential pressure of the pressure compensation valve related to the swing motor is similarly reduced. As a result, the turning motor does not become too fast, and appropriate turning priority can be maintained regardless of the setting of the engine speed.
[0016]
  Furthermore, a pump tilt variable mechanism is provided in the pump control means, and this pump tilt variable mechanism,oilBy providing a limiter means to limit the tilting of the hydraulic pump so that the minimum discharge flow rate of the pressure pump does not become smaller than the maximum required flow rate of the flow control valve related to the swing motor, the actuator speed can be set as the target when a specific actuator is operated independently. When load sensing control is performed to reach the speed and the hydraulic pump discharge flow rate decreases, when the hydraulic pump discharge flow rate reaches the minimum discharge flow rate, the minimum discharge flow rate is maintained thereafter, and the LS control of the hydraulic pump operates. Disappear. In other words, the hydraulic pump operates as if it were a fixed pump with the minimum discharge flow rate as the capacity. As a result, the interference between the LS control of the hydraulic pump and the swing pressure compensation valve can be avoided, and the stability of the system can be maintained.
[0018]
  (2In the above (1), preferably, the engine rotation speed detection circuit includes a first differential pressure reducing valve that outputs a pressure depending on the rotation speed of the engine as an absolute pressure,Slewing motorThe output pressure of the first differential pressure reducing valve is introduced to the pressure compensating valve related to the other actuators, and the respective target compensating differential pressures are set.
[0019]
  (3) Further, in the above (1), preferably further comprising a second differential pressure reducing valve that outputs a differential pressure between the discharge pressure of the hydraulic pump and the maximum load pressure of the plurality of actuators as an absolute pressure,Slewing motorThe output pressure of the second differential pressure reducing valve is led to the pressure compensation valve related to the output of the second differential pressure reducing valve.With pressureSet the target compensation differential pressure of the pressure compensation valve.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0021]
FIG. 1 is a view showing a hydraulic drive apparatus according to an embodiment of the present invention.
[0022]
In FIG. 1, a hydraulic drive apparatus according to the present embodiment includes an engine 1, a variable displacement hydraulic pump 2 and a fixed displacement pilot pump 30 as main pumps driven by the engine 1, and a main hydraulic pressure. Pressure oil connected to the plurality of actuators 3a, 3b, 3c driven by the pressure oil discharged from the pump 2 and the supply oil passage 5 of the hydraulic pump 2 and supplied from the hydraulic pump 2 to the actuators 3a, 3b, 3c The differential pressure (LS differential pressure) between the discharge pressure of the plurality of flow control valves (main spools) 4a, 4b, 4c and the hydraulic pump 2 and the maximum load pressure of the plurality of actuators 3a, 3b, 3c that respectively control the flow rate and direction of ), And a pump tilt control mechanism 1 that controls the tilt (capacity) of the hydraulic pump 2. If, and an engine rotation speed detection circuit 13 including the differential pressure reducing valve 51 to output a pressure that depends on the engine speed as an absolute pressure.
[0023]
The hydraulic drive apparatus according to the present embodiment is mounted on, for example, a hydraulic excavator, and the actuators 3a, 3b, 3c are, for example, a swing motor, a boom cylinder, and an arm cylinder of the hydraulic excavator, respectively. The hydraulic excavator has an upper swing body that is pivotably mounted on the lower traveling body, and a front working mechanism that includes a boom, an arm, and a bucket that is mounted on the upper swing body so as to be pivotable in the vertical direction. The upper swing body is driven to rotate, and the boom cylinder 3b and the arm cylinder 3c rotate the boom and arm in the vertical direction, respectively.
[0024]
The plurality of flow control valves 4a, 4b, and 4c are respectively a plurality of closed center type flow control valves 6a, 6b, and 6c and before and after meter-in throttle portions 61 and 62 of the plurality of flow control valves 6a, 6b, and 6c. It comprises a plurality of pressure compensating valves 7a, 7b, 7c that control the differential pressure to the same value.
[0025]
The flow rate control valves 6a, 6b, and 6c are each switched by operating an operation lever (not shown), and the opening area of the meter-in throttle 61 or 62 is determined according to the operation amount of the operation lever.
[0026]
The plurality of pressure compensation valves 7a, 7b, and 7c are the front type (before orifice type) installed upstream of the meter-in throttle portions 61 and 62 of the flow control valves 6a, 6b, and 6c, respectively. A pair of opposed pressure receiving portions 70a and 70b and an opening direction pressure receiving portion 70c are provided, and pressures on the upstream side and downstream side of the flow rate control valve 6a are guided to the pressure receiving portions 70a and 70b, respectively. The output pressure of the differential pressure reducing valve 51 is guided, and the differential pressure across the flow rate control valve 6a is controlled using the output pressure as the target compensation differential pressure. The pressure compensating valve 7b has a pair of opposed pressure receiving portions 71a and 71b and an opening direction pressure receiving portion 71c, and the pressures on the upstream side and the downstream side of the flow control valve 6b are respectively introduced to the pressure receiving portions 71a and 71b. Then, the output pressure of the differential pressure reducing valve 11 is guided to the pressure receiving portion 71c, and the front-rear differential pressure of the flow control valve 6b is controlled using the output pressure as the target compensation differential pressure. The pressure compensation valve 7c is the same as the pressure compensation valve 7b, and has a pair of opposed pressure receiving portions 72a and 72b and an opening direction pressure receiving portion 72c. The pressure receiving portions 72a and 72b are upstream of the flow rate control valve 6c. Then, the pressure on the downstream side is guided, the output pressure of the differential pressure reducing valve 11 is guided to the pressure receiving portion 72c, and the differential pressure across the flow control valve 6c is controlled using the output pressure as the target compensation differential pressure.
Each of the plurality of flow control valves 6a, 6b, 6c is provided with load ports 60a, 60b,... For taking out the load pressures when the actuators 3a, 3b, 3c are driven, and these load ports 60a, 60b,. The highest pressure among the extracted load pressures is detected on the signal line 10 via the load lines 8a, 8b, 8c, 8d and the shuttle valves 9a, 9b.
[0027]
The differential pressure reducing valve 11 has a pressure receiving portion 11a positioned on the side that increases the output pressure and pressure receiving portions 11b and 11c positioned on the side that decreases the output pressure, and the discharge pressure of the hydraulic pump 2 is guided to the pressure receiving portion 11a. The maximum load pressure detected in the signal line 10 and its own output pressure are guided to the pressure receiving portions 11b and 11c, respectively, and the differential pressure (LS differential pressure) between the discharge pressure of the hydraulic pump 2 and the maximum load pressure is balanced by these pressures. ) Is output as absolute pressure.
[0028]
The output port of the differential pressure reducing valve 11 is connected to the pressure receiving portion 12d of the LS control valve 12b provided in the pump tilt control mechanism 12 via the signal lines 21 and 22, and the output pressure of the differential pressure reducing valve 11 is the pressure receiving portion. 12d. The output port of the differential pressure reducing valve 11 is connected to the pressure receiving portion 71c of the pressure compensating valve 7b via the signal lines 21 and 24, and connected to the pressure receiving portion 72c of the pressure compensating valve 7c via the signal lines 21 and 25. Then, the output pressure of the differential pressure reducing valve 11 is guided to the pressure receiving portions 71c and 72c as the target compensation differential pressure as described above.
[0029]
The pump tilt control mechanism 12 includes a horsepower control tilt actuator 12a that reduces the tilt of the hydraulic pump 2 when the discharge pressure of the hydraulic pump 2 is increased, and the discharge pressure of the hydraulic pump 2 is the highest of the plurality of actuators 3a, 3b, and 3c. An LS control valve 12b and an LS control tilt actuator 12c that perform load sensing control so as to be higher than the load pressure by a target differential pressure are provided.
[0030]
The LS control valve 12b includes a pressure receiving portion 12d located on the side that increases the pressure of the actuator 12c and reduces the tilt of the hydraulic pump 2, and a pressure receiving portion 12e located on the side that reduces the pressure of the actuator 12c and increases the tilt of the hydraulic pump 2. The pressure receiving portion 12d is supplied with the output pressure of the differential pressure reducing valve 11 (the pressure difference between the discharge pressure of the hydraulic pump 2 and the maximum load pressure of the actuators 3a, 3b, 3c), and the pressure receiving portion 12e is rotated with the engine. The output pressure of the differential pressure reducing valve 51 of the number detection circuit 13 is guided as a target differential pressure (target LS differential pressure) for load sensing control.
[0031]
  The pump tilt control mechanism 12 includes a pump tilt variable mechanism 90, and the actuators 12a and 12c operate the pump tilt variable mechanism 90 to control the tilt of the hydraulic pump 2. The pump tilt variable mechanism 90 is,oilA limiter 91 that restricts the tilt of the hydraulic pump 2 so as to set the minimum discharge flow rate of the pressure pump 2 to be equal to or higher than the maximum required flow rate is provided (described later).
[0032]
The engine speed detection circuit 13 includes a flow rate detection valve 50 and the above-described differential pressure reducing valve 51. The flow rate detection valve 50 includes a variable throttle portion 50a, and the throttle portion 50a is a discharge line of the pilot pump 30. 31. The discharge line 31 includes an upstream line 31a and a downstream line 31b of the flow rate detection valve 50, and a relief valve 32 that defines a source pressure as a pilot hydraulic pressure source is connected to the downstream line 31b. 31b is connected to a remote control valve (not shown) that generates a pilot pressure for switching the flow control valves 6a, 6b, 6c, for example.
[0033]
The flow rate detection valve 50 detects the flow rate of the pressure oil flowing through the discharge line 31 as a change in the differential pressure across the throttle 50a, and uses the differential pressure before and after the target LS differential pressure. Here, the flow rate of the pressure oil flowing through the discharge line 31 is the discharge flow rate of the pilot pump 30, and this discharge flow rate varies depending on the number of revolutions of the engine 1. This is to detect the rotational speed of the engine 1. For example, if the rotational speed of the engine 1 is decreased, the flow rate is decreased, and the differential pressure across the throttle portion 50a is decreased.
[0034]
Further, the throttle portion 50a is configured as a variable throttle portion whose opening area continuously changes, and the flow rate detection valve 50 further includes a pressure receiving portion 50b for opening direction operation, a pressure receiving portion 50c for throttle direction operation, and a spring 50d. The upstream pressure of the variable throttle portion 50a (pressure in the line 31a) is guided to the pressure receiving portion 50b, and the downstream pressure (pressure in the line 31b) of the variable throttle portion 50a is guided to the pressure receiving portion 50c, and the variable throttle portion 51a itself The opening area is changed depending on the differential pressure before and after. When the flow rate detection valve 50 is configured in this way and the differential pressure across the variable throttle 50a is used as the target LS differential pressure, the saturation phenomenon can be improved according to the engine speed, and the engine speed is set low. In addition, good fine operability can be obtained. This point is detailed in Japanese Patent Laid-Open No. 10-196604.
[0035]
The differential pressure reducing valve 51 is an engine speed detection valve that outputs the differential pressure before and after the variable restrictor 50a as an absolute pressure as a pressure that depends on the engine speed. Pressure receiving portions 51b and 51c located on the pressure reducing side, and the upstream pressure of the variable throttle portion 50a is guided to the pressure receiving portion 51a, and the downstream pressure of the variable throttle portion 50a and its own pressure are respectively received by the pressure receiving portions 51b and 51c. The output pressure is guided, and the differential pressure across the variable throttle 50a is output as an absolute pressure based on the pressure in the line 31b based on the balance of these pressures.
[0036]
The output port of the differential pressure reducing valve 51 is connected to the pressure receiving portion 12e of the LS control valve 12b via the signal line 53, and the output pressure of the differential pressure reducing valve 51 is guided to the pressure receiving portion 12e as the target LS differential pressure. As a result, the actuator speed can be set according to the engine speed. The output port of the differential pressure reducing valve 51 is connected to the pressure receiving portion 70c of the pressure compensating valve 7a via the signal lines 53 and 54, and the output pressure of the differential pressure reducing valve 51 is received as the target compensated differential pressure as described above. Guided to part 70c.
[0037]
  FIG. 2 is a PQ (pressure / flow rate) characteristic diagram of the hydraulic pump 2 by the pump tilt control mechanism 12. The horizontal axis is the discharge pressure of the hydraulic pump 2, the vertical axis is the discharge flow rate of the hydraulic pump 2, and the characteristic line H is a pump horsepower control diagram by the horsepower control tilt actuator 12a. QminIs oilThis is the minimum discharge flow rate of the pressure pump 2, QsmaxIs turningThe maximum required flow rate. The required maximum turning flow rate Qsmax is expressed by Qsmax = C · Amax√Pgr (C is a coefficient), where Amax is the maximum opening area of the meter-in throttle 61 or 62 of the turning flow control valve 6a. That is, generally, the required flow rate is a function of the opening area and its differential pressure before and after, and the differential pressure across the flow control valve 6a is determined by the pressure compensation valve 7a.ThatTarget compensation differenceTo pressureControlled to be equal,In the pressure receiving part 70c of the pressure compensation valve 7a,The target compensation differential pressureSince the output pressure of the differential pressure reducing valve 51 is derived as follows, the output pressure of the differential pressure reducing valve 51 is set to P gr IfQsmax = C · Amax√Pgr.
[0038]
As described above, the hydraulic pump 2 is limited by the limiter 91 so that the minimum discharge flow rate Qmin is equal to or greater than the maximum turning required flow rate Qsmax. For this reason, the pump LS control region by the LS control valve 12b and the LS control tilt actuator 12c is a shaded portion.
[0039]
Next, the operation of the present embodiment will be described in comparison with a comparative example. In the following description, the discharge pressure of the hydraulic pump 2 is Ps, the maximum load pressure of the actuators 3a, 3b, and 3c is PLmax, and the differential pressure (LS differential pressure) between the discharge pressure of the hydraulic pump 2 and the maximum load pressure is ΔPLS. The output pressure of the pressure reducing valve 11 is PLS, the output pressure of the differential pressure reducing valve 51 is Pgr, the target compensating differential pressure of the pressure compensating valve 7a is Pc1, the target compensating differential pressure of the pressure compensating valve 7b is Pc2, and the pressure compensating valve 7c The target compensation differential pressure is Pc3.
[0040]
FIG. 3 shows, as Comparative Example 1, not the output pressure of the differential pressure reducing valve 51 but the pressure compensating valves 7b and 7c of other sections in the pressure receiving portion 70c of the pressure compensating valve 7a of the swing section shown in FIG. In addition to guiding the output pressure of the differential pressure reducing valve 11, the pump tilt variable mechanism 90 of the pump tilt control mechanism 12X is not provided with the limiter 91, and the minimum discharge flow rate of the hydraulic pump 2 is set to a normal value. In this configuration, a differential pressure reducing valve 11 is added to the prior art described in JP-A-10-196604, and the discharge pressure Ps of the hydraulic pump 2 and the plurality of actuators 3a, 3b, 7c are added to the pressure compensating valves 7a, 7b, 7c. This corresponds to a configuration in which the differential pressure ΔPLS with respect to the maximum load pressure PLmax of 3c is guided as an absolute pressure (the output pressure PLS of the differential pressure reducing valve 11).
[0041]
In the comparative example 1 of FIG. 3, when a single actuator, for example, a single operation for driving the swing motor 3a is shifted to a composite operation for simultaneously driving a plurality of actuators, for example, the swing motor 3a and the boom cylinder 3b, the operability is improved. A decrease occurs.
[0042]
In a combined operation in which a plurality of actuators 3a and 3b are driven simultaneously, when the sum of the required flow rates for all the driven actuators exceeds the maximum flow rate that can be discharged by the hydraulic pump 2, the discharge flow rate of the hydraulic pump 2 is insufficient. A saturation condition occurs.
[0043]
In this case, the flow rate control valves 4a and 4b redistribute the flow rates to the actuators 3a and 3b. That is, the target compensation differential pressures Pc1 and Pc2 of the pressure compensation valves 7a and 7b related to the actuators 3a and 3b are given by a differential pressure (LS differential pressure) ΔPLS = Ps−PLmax between the discharge pressure Ps of the hydraulic pump 2 and the maximum load pressure PLmax. It is done. The LS differential pressure is supplied from the differential pressure reducing valve 11 as an absolute pressure PLS. In the saturation state, the LS differential pressure ΔPLS decreases according to the supply shortage ratio. For this reason, the target compensation differential pressures Pc1 and Pc2 of the pressure compensation valves 7a and 7b set by the differential pressures, which should be the same as the target LS differential pressure, are reduced by the supply shortage ratio. As a result, each actuator is supplied with a flow rate obtained by dividing the discharge flow rate of the hydraulic pump 2 into the required flow rate ratio. As a result, the overall actuator speed is reduced in accordance with the input ratio of the operation lever to each flow control valve 6a, 6b. This function makes it possible to maintain operability without stopping a specific actuator during a combined operation.
[0044]
However, in this combined operation, the speed of all the actuators is reduced uniformly, so that the operability may be reduced.
[0045]
For example, in the turning operation, the operator can feel the speed change, so that it is sensitive to the speed change, and it is necessary to have a configuration in which the speed change is suppressed as compared with other actuators. In addition, even in a suspended load operation or the like, if a speed change occurs during turning, the load will sway against the operator's intention.
[0046]
Further, as disclosed in Japanese Patent Laid-Open No. 2000-227103, a method of setting the turning priority spring in the pressure compensation valve 7a is also conceivable. However, in this case, since the target compensation differential pressure changes depending on the engine speed, it is impossible to maintain the priority at the same rate at all engine speeds.
[0047]
Therefore, the output pressure Pgr of the differential pressure reducing valve 51 which is a target value (target LS differential pressure) of LS control is led to the pressure receiving part 70c of the pressure compensating valve 7a of the swing section, and the target compensated differential pressure Pc1 is derived from the output pressure Pgr. A method of preventing the saturation information from being transmitted to the swing pressure compensating valve 7a by setting can be considered. FIG. 4 shows the configuration in that case as Comparative Example 2.
[0048]
However, in the above-described configuration, the pressure compensation valve 7a in the swing section and the pump tilt control mechanism 12 are both differential pressures across the meter-in restrictor 61 or 62 of the flow control valve 6a, which is the main spool of the swing section, during the single swing operation. Is controlled to the output pressure Pgr of the differential pressure reducing valve 51, and both interfere with each other.
[0049]
Hereinafter, the mechanism will be described.
[0050]
FIG. 5 is a PQ (pressure / flow rate) characteristic diagram of the hydraulic pump 2 similar to FIG. 2 by the pump tilt control mechanism 12X. Qmin0 is the minimum discharge flow rate of the normal hydraulic pump 2 when the limiter 91 is not provided. The minimum discharge flow rate Qmin0 of the hydraulic pump 2 is smaller than the maximum turning required flow rate Qsmax, and the maximum turning required flow rate Qsmax is included in the pump LS control region by the LS control valve 12b and the LS control tilting actuator 12c.
[0051]
In the single operation of turning, when the acceleration is started immediately after the start of turning and reaches the target speed and the acceleration is stopped, the differential pressure ΔPLS between the discharge pressure Ps of the hydraulic pump 2 and the maximum load pressure PLmax is reduced due to the decrease of the turning load pressure. It becomes larger than the output pressure Pgr of the differential pressure reducing valve 51 which is a control target value. As a result, the pump tilt control mechanism 12 controls the pump discharge pressure Ps of the pump supply oil passage 5 to decrease, so that the tilt of the hydraulic pump 2 becomes small and the discharge flow rate decreases. On the other hand, the pressure compensation valve 7a in the swing section moves in the closing direction in order to lower the differential pressure across the meter-in throttle 61 or 62 of the flow control valve 6a, and the pressure oil in the pump supply oil passage 5 is confined so that the pump discharge pressure. Ps is difficult to decrease. That is, while the LS control of the hydraulic pump 2 is controlled to reduce the discharge flow rate and lower the pump discharge pressure Ps, the pressure compensation valve 7a moves in the closing direction so that the discharge pressure Ps of the hydraulic pump 2 is less likely to decrease. Control. Here, the minimum discharge flow rate Qmax0 of the hydraulic pump 2 is a value smaller than the turning maximum required flow rate Qsmax. As a result, the discharge flow rate of the hydraulic pump 2 is extremely reduced by the LS control. Thus, the operation of the hydraulic pump 2 and the operation of the swing pressure compensation valve 7a interfere with each other, and the controllability of the discharge pressure of the hydraulic pump 2 is lowered.
[0052]
After that, when the discharge flow rate of the hydraulic pump 2 is consumed by the rotation of the swing motor 3a, the supply flow rate becomes insufficient because the discharge flow rate of the hydraulic pump 2 is extremely reduced. As a result, the differential pressure ΔPLS between the discharge pressure Ps of the hydraulic pump 2 and the maximum load pressure PLmax becomes lower than Pgr, which is the target value for the LS control. At this time, the pressure compensating valve 7a in the swing section is fully opened and does not function. At the same time, the pump tilt control mechanism 12 performs control so that the differential pressure ΔPLS between the pump discharge pressure Ps and the maximum load pressure PLmax becomes larger than Pgr which is the target value of LS control, that is, the direction in which the discharge pressure of the hydraulic pump 2 is increased. However, the tilt of the hydraulic pump 2 increases and the discharge flow rate increases. At that time, since the pressure compensation valve 7a of the swing section is fully opened, the discharge pressure Ps of the hydraulic pump 2 is difficult to increase, the control responsiveness is deteriorated, and the discharge flow rate of the hydraulic pump 2 is extremely increased by the LS control. .
[0053]
By repeating the above phenomenon, discontinuous acceleration occurs, and the operability is significantly reduced. This phenomenon is remarkably seen in turning with inertial load.
[0054]
In order to solve such a problem, in the present embodiment, as described above, the output pressure of the differential pressure reducing valve 51 is guided to the pressure receiving portion 70c of the pressure compensating valve 7a of the swing section, and the minimum discharge flow rate of the hydraulic pump 2 is obtained. Is set higher than the maximum required flow rate for turning.
[0055]
FIG. 6 is a diagram showing changes in the target compensation differential pressures Pc1, Pc2, and Pc3 of the pressure compensation valves 7a, 7b, and 7c in the present embodiment. In the figure, A is a single turning operation (non-saturation state), B is a turning combined operation (saturation state), both when the engine 1 is at the rated high speed, and C is a turning combined operation (saturation). State) when the engine 1 is at a low speed.
[0056]
The target compensation differential pressure Pc1 of the pressure compensation valve 7a in the swing section is the output pressure Pgr of the differential pressure reduction valve 51, which is the target value of LS control, and the target compensation differential pressure Pc2, of the other pressure compensation valves 7b, 7c, Pc3 is controlled to be the output pressure PLS of the differential pressure reducing valve 11 (absolute pressure of LS differential pressure ΔPLS).
[0057]
First, when the engine 1 is maintained at the rated high rotation speed, the output pressure Pgr of the differential pressure reducing valve 51 does not change, and the pressure compensating valve for the swing section during both the single swing operation and the combined operation (saturation state). The target compensation differential pressure Pc1 of 7a is constant (A and B in FIG. 6). For this reason, when the discharge flow rate of the hydraulic pump is sufficient during the single swing operation (A in FIG. 6), the output pressure PLS of the differential pressure reducing valve 11 is controlled to be equal to Pgr (PLS = Pgr). There is no fundamental difference in the control operation by the pressure compensation valves 7a, 7b, and 7c of the control valve 4 between the turning using Pgr as the target compensation differential pressure and the other actuators targeting PLS.
[0058]
In the combined operation including the turning (saturation state), the control valve 4 redistributes the flow rate to each actuator.
[0059]
First, the target compensation differential pressures Pc2 and Pc3 of the pressure compensation valves 7b and 7c other than the swing section decrease according to the ratio of insufficient supply of the pump discharge flow rate when the saturation state is reached. That is, the target compensation differential pressures Pc2 and Pc3 of the pressure compensation valves 7b and 7c are the differential pressure ΔPLS (= Ps−PLmax) between the discharge pressure Ps of the hydraulic pump 2 and the maximum load pressure PLmax, and the absolute pressure PLS by the differential pressure reducing valve 11. As given. In the saturation state, the LS differential pressure ΔPLS decreases according to the supply shortage ratio. For this reason, as shown in FIG. 6B, the target compensation differential pressures Pc2 and Pc3 of the pressure compensation valves 7b and 7c set by the differential pressure also decrease accordingly. As a result, the flow rate obtained by dividing the discharge flow rate of the hydraulic pump 2 into the respective required flow rate ratios is supplied to the actuators 3b and 3c except for the turning. As a result, the overall actuator speed is reduced in accordance with the input ratio of the operation lever to each flow control valve 6b, 6c.
[0060]
However, for turning, the target compensation differential pressure Pc1 of the pressure compensation valve 7a is set not by the LS differential pressure but by the output pressure Pgr of the differential pressure reducing valve 51, and this Pgr is the engine speed even in the saturation state. As long as it is at the rated high speed (B in FIG. 6), the saturation information is not transmitted to the pressure compensation valve 7a. As a result, the decrease in Pc1 in the saturation state is suppressed, and the pressure oil can be preferentially supplied to the swing motor 3a as compared with the other actuators 3b and 3c, and the swing motor 3a by the combined operation including the swing can be performed. It becomes possible to suppress the speed down.
[0061]
Further, when the engine speed is lowered to a low speed, the output pressure Pgr of the differential pressure reducing valve 51 decreases accordingly, so that the target compensation differential pressure Pc1 (= Pgr) of the pressure compensating valve 7a also decreases. As for the target compensation differential pressures Pc2 and Pc3 of the pressure compensation valves 7b and 7c other than the swing section, the differential pressure ΔPLS (= Ps−PLmax) between the discharge pressure Ps of the hydraulic pump 2 and the maximum load pressure PLmax when the engine 1 reaches a low speed. Is controlled so as to decrease in accordance with the output pressure Pgr of the differential pressure reducing valve 51, the target compensation differential pressures Pc2 and Pc3 also decrease. That is, as shown in FIG. 6C, in the combined turning operation (saturation state) when the engine speed is reduced, the target compensation differential pressure Pc1 of the pressure compensation valve 7a and the target compensation difference of the pressure compensation valves 7b and 7c. Both the pressures Pc2 and Pc3 decrease. For this reason, it does not happen that the turn becomes too fast, and appropriate turning priority can be maintained regardless of the setting of the engine speed.
[0062]
Next, the operation when shifting to the steady state from the start of the turning single operation will be described.
[0063]
At the time of turning start, the differential pressure ΔPLS between the discharge pressure Ps of the hydraulic pump 2 and the maximum load pressure PLmax becomes smaller than Pgr which is a target value for LS control. Therefore, the hydraulic pump 2 is controlled to increase the pump discharge pressure Ps of the pump supply oil passage 5, the pump tilt increases, and the discharge flow rate increases. At the same time, the pressure compensation valve 7a in the swing section is fully opened and does not function because the differential pressure across the meter-in throttle 61 or 62 (= ΔPLS) is smaller than the target compensation differential pressure Pc1 (= Pgr).
[0064]
When the turning speed reaches the target value and acceleration is lost, the differential pressure ΔPLS between the discharge pressure Ps of the hydraulic pump 2 and the maximum load pressure P1max becomes larger than Pgr, which is the target value for LS control. The hydraulic pump 2 is controlled so as to lower the pump discharge pressure Ps of the pump supply oil passage 5, so that the tilt of the hydraulic pump 2 is reduced and the discharge flow rate is reduced. At the same time, the pressure compensation valve 7a in the swing section operates in the closing direction, and controls the differential pressure across the meter-in throttle 61 or 62 to be the target compensation differential pressure Pc1 (= Pgr).
[0065]
  Here, the hydraulic pump 2 is driven by a limiter 91.MostThe small discharge flow rate Qmin is limited to be equal to or greater than the turning maximum required flow rate Qsmax. For this reason, when the discharge flow rate of the hydraulic pump 2 reaches the minimum discharge flow rate Qmin, it is maintained at Qmin thereafter, and the LS control of the hydraulic pump 2 does not operate. That is, the hydraulic pump 2 operates as if it is a fixed pump with a capacity Qmin. As a result, there is no interference between the LS control of the hydraulic pump 2 and the swing pressure compensation valve 7a.
[0066]
7 and 8 show the movement of the pump and the swing pressure compensating valve during the swing operation in the comparative example 2 shown in FIG. 4 and the present invention shown in FIG. In contrast to FIG. 1, the LS differential pressure ΔPLS (= Ps−PLmax) is summarized in tabular form when it becomes smaller than Pgr which is the target value of LS control and when it becomes larger.
[0067]
As described above, according to the present embodiment, in a hydraulic drive device equipped with an LS system, even when a saturation state of the pump discharge flow rate occurs, pressure oil is preferentially supplied to a specific actuator 3a to change its speed. The priority can be maintained in the same manner regardless of the setting of the engine speed, and excellent operability can be realized.
[0068]
Further, interference between the load sensing control of the hydraulic pump 2 and the operation of the pressure compensation valves 7a to 7c can be avoided, and the stability of the system can be maintained.
[0069]
In the present embodiment, the differential pressure between the discharge pressure of the hydraulic pump 2 and the maximum load pressure is derived as an absolute pressure by the output pressure of the differential pressure reducing valve 11, and the differential pressure across the variable throttle 50a of the engine detection circuit 13 is derived. Is derived as an absolute pressure by the output pressure of the differential pressure reducing valve 51, but the discharge pressure and the maximum load pressure of the hydraulic pump 2, the upstream pressure and the downstream pressure of the variable restrictor 50a are separately guided, respectively. Also good.
[0070]
【The invention's effect】
According to the present invention, in a hydraulic drive apparatus equipped with an LS system, even when a saturation state of a pump discharge flow rate occurs, pressure oil can be preferentially supplied to a specific actuator to suppress a speed change thereof, and the engine Regardless of the setting of the number of rotations, the priority can be maintained in the same manner, and excellent operability can be realized.
[0071]
Further, interference between the load sensing control of the hydraulic pump and the operation of the pressure compensation valve can be avoided, and the stability of the system can be maintained.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of a hydraulic drive apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing a PQ characteristic of a hydraulic pump by a pump tilt control mechanism.
3 is a view similar to FIG. 1 showing a configuration based on the prior art as Comparative Example 1. FIG.
4 is a view similar to FIG. 1 showing a countermeasure example of Comparative Example 1 as Comparative Example 2. FIG.
5 is a graph showing PQ characteristics of a hydraulic pump by a pump tilt control mechanism in Comparative Examples 1 and 2. FIG.
FIG. 6 is a diagram showing a change in target compensation differential pressure in the hydraulic drive device shown in FIG. 1;
7 is a diagram showing, in a tabular form, movements of a pump and a swing pressure compensating valve during a swing operation in Comparative Example 2. FIG.
FIG. 8 is a table showing the movement of the pump and the swing pressure compensating valve during the swing operation of the present embodiment in a table format.
[Explanation of symbols]
1 engine
2 Main hydraulic pump
3a Actuator (swivel motor 9)
3b Actuator (boom cylinder)
3c Actuator (arm cylinder)
4 Control valve
4a, 4b, 4c Flow control valve
5 Supply oil passage
6a, 6b, 6c Flow control valve
7a, 7b, 7c Pressure compensation valve
8a, 8b, 8c, 8d Load line
9a, 9b Shuttle valve
10 signal lines
11 Differential pressure reducing valve
11a, 11b, 11c pressure receiving part
12 Pump tilt control mechanism
12a Horsepower control tilt actuator
12b LS control valve
12c LS control tilt actuator
13 Engine speed detection circuit
31 Discharge line
32 relief valve
50 Flow rate detection valve
50a Aperture part
51 Differential pressure reducing valve
51a, 51b, 51c pressure receiving part
53, 54 signal line
60a, 60b, 60c Load port
61, 62 Meter-in variable aperture
70a, 70b, 70c pressure receiving part
71a, 71b, 71c pressure receiving part
72a, 72b, 72c pressure receiving part
90 Pump tilt variable mechanism
91 Limiter

Claims (3)

エンジンと、このエンジンにより駆動される可変容量型の油圧ポンプと、この油圧ポンプから吐出された圧油により駆動される旋回モータを含む複数のアクチュエータと、前記油圧ポンプから複数のアクチュエータに供給される圧油の流量を制御する複数の流量制御弁と、前記複数の流量制御弁の前後差圧をそれぞれ制御する複数の圧力補償弁と、前記油圧ポンプの吐出圧が前記複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるようロードセンシング制御するポンプ制御手段と、前記エンジンの回転数が低下するにしたがって低下するよう前記エンジンの回転数に依存する圧力を出力するエンジン回転数検出回路とを備え、このエンジン回転数検出回路の出力圧を前記ポンプ制御手段に導き、前記エンジン回転数検出回路の出力圧により前記ロードセンシング制御の目標差圧を設定することで、前記エンジンの回転数が低下するにしたがって前記ロードセンシング制御の目標差圧が低下するよう前記ロードセンシング制御の目標差圧を前記エンジンの回転数に依存する可変値として設定した油圧ショベルの油圧駆動装置において、
前記旋回モータ以外のアクチュエータに係わる圧力補償弁のそれぞれの目標補償差圧を前記油圧ポンプの吐出圧と前記複数のアクチュエータの最高負荷圧との差圧により設定すると共に、前記旋回モータに係わる圧力補償弁に前記エンジン回転数検出回路の出力圧を導き、前記エンジン回転数検出回路の出力圧により目標補償差圧を設定し、
前記ポンプ制御手段は、前記油圧ポンプの最少吐出流量が前記旋回モータに係わる流量制御弁の最大要求流量より小さくならないように前記油圧ポンプの傾転を制限するリミッタ手段を備えるポンプ傾転可変機構を有することを特徴とする油圧ショベルの油圧駆動装置。
An engine, a variable displacement hydraulic pump driven by the engine, a plurality of actuators including a swing motor driven by pressure oil discharged from the hydraulic pump, and the hydraulic pump supplied to the plurality of actuators A plurality of flow control valves for controlling the flow of pressure oil, a plurality of pressure compensation valves for controlling the differential pressure across the plurality of flow control valves, respectively, and a discharge pressure of the hydraulic pump is a maximum load pressure of the plurality of actuators A pump control means for performing load sensing control so as to increase only by a target differential pressure, and an engine speed detection circuit for outputting a pressure depending on the engine speed so as to decrease as the engine speed decreases. direct the output pressure of the engine speed detecting circuit in the pump control means, the output of the engine speed detecting circuit Wherein by setting the target differential pressure of load sensing control, the rotation of the engine a target differential pressure of the load sensing control so that the target differential pressure of the load sensing control is reduced as the rotational speed of the engine is reduced by In the hydraulic drive device of a hydraulic excavator set as a variable value depending on the number,
Each target compensation differential pressure of the pressure compensation valve related to the actuator other than the swing motor is set by the differential pressure between the discharge pressure of the hydraulic pump and the maximum load pressure of the plurality of actuators, and the pressure compensation related to the swing motor An output pressure of the engine speed detection circuit is led to the valve, and a target compensation differential pressure is set by the output pressure of the engine speed detection circuit,
It said pump control means, the pump tilting variable mechanism comprising a limiter means minimum discharge flow rate to limit the tilting of the hydraulic pump so as not smaller than the maximum demanded flow rate of the flow control valve according to the swing motor before SL hydraulic pump A hydraulic drive device for a hydraulic excavator, comprising:
請求項1記載の油圧ショベルの油圧駆動装置において、前記エンジン回転数検出回路は、前記エンジンの回転数に依存する圧力を絶対圧として出力する第1差圧減圧弁を有し、前記旋回モータ以外のアクチュエータに係わる圧力補償弁に前記第1差圧減圧弁の出力圧を導きそれぞれの目標補償差圧を設定することを特徴とする油圧ショベルの油圧駆動装置。  2. The hydraulic drive device for a hydraulic excavator according to claim 1, wherein the engine rotation speed detection circuit includes a first differential pressure reducing valve that outputs, as an absolute pressure, a pressure depending on the rotation speed of the engine, and other than the swing motor. A hydraulic drive device for a hydraulic excavator, wherein an output pressure of the first differential pressure reducing valve is guided to a pressure compensating valve related to the actuator of the actuator, and each target compensated differential pressure is set. 請求項1記載の油圧ショベルの油圧駆動装置において、前記油圧ポンプの吐出圧と前記複数のアクチュエータの最高負荷圧との差圧を絶対圧として出力する第2差圧減圧弁を更に備え、前記旋回モータに係わる圧力補償弁に前記第2差圧減圧弁の出力圧を導き、この第2差圧減圧弁の出力圧で当該圧力補償弁の目標補償差圧を設定することを特徴とする油圧ショベルの油圧駆動装置。  2. The hydraulic drive device for a hydraulic excavator according to claim 1, further comprising a second differential pressure reducing valve that outputs, as an absolute pressure, a differential pressure between a discharge pressure of the hydraulic pump and a maximum load pressure of the plurality of actuators. A hydraulic excavator characterized in that an output pressure of the second differential pressure reducing valve is guided to a pressure compensating valve related to a motor, and a target compensated differential pressure of the pressure compensating valve is set by the output pressure of the second differential pressure reducing valve. Hydraulic drive device.
JP2001304844A 2001-10-01 2001-10-01 Hydraulic drive device for hydraulic excavator Expired - Fee Related JP3907040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001304844A JP3907040B2 (en) 2001-10-01 2001-10-01 Hydraulic drive device for hydraulic excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001304844A JP3907040B2 (en) 2001-10-01 2001-10-01 Hydraulic drive device for hydraulic excavator

Publications (2)

Publication Number Publication Date
JP2003113804A JP2003113804A (en) 2003-04-18
JP3907040B2 true JP3907040B2 (en) 2007-04-18

Family

ID=19124715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001304844A Expired - Fee Related JP3907040B2 (en) 2001-10-01 2001-10-01 Hydraulic drive device for hydraulic excavator

Country Status (1)

Country Link
JP (1) JP3907040B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3564911B2 (en) * 1996-01-08 2004-09-15 株式会社不二越 Hydraulic drive
JP3910280B2 (en) * 1996-11-15 2007-04-25 日立建機株式会社 Hydraulic drive
JP3647625B2 (en) * 1996-11-21 2005-05-18 日立建機株式会社 Hydraulic drive
JP3853123B2 (en) * 1998-12-03 2006-12-06 日立建機株式会社 Hydraulic drive

Also Published As

Publication number Publication date
JP2003113804A (en) 2003-04-18

Similar Documents

Publication Publication Date Title
US6584770B2 (en) Hydraulic drive system
EP1058010B1 (en) Hydraulic drive device
US5267440A (en) Hydraulic control system for construction machine
US6397591B1 (en) Hydraulic driving unit
JP3831222B2 (en) Hydraulic drive
JP3907040B2 (en) Hydraulic drive device for hydraulic excavator
JP2012002289A (en) Hydraulic driving device
JP6989548B2 (en) Construction machinery
JP3504434B2 (en) Hydraulic drive circuit
JP2005226678A (en) Hydraulic drive mechanism
JPH08239865A (en) Control device for construction machine
JP2003113803A (en) Hydraulic driving device
JP3980501B2 (en) Hydraulic drive unit for construction machinery
JP2003113805A (en) Hydraulic driving device
JP3974867B2 (en) Hydraulic drive unit for construction machinery
JP3321551B2 (en) Construction machine hydraulic circuit
JPH09273502A (en) Hunting prevention circuit for construction machine
JP2009256058A (en) Hydraulic shovel with crane function
JP4012495B2 (en) Hydraulic drive
JPH08232299A (en) Control device of construction machine
JP2000227103A (en) Hydraulic transmission
JPH11117906A (en) Hydraulic driving device
JP3732749B2 (en) Hydraulic drive
JPH11199178A (en) Turning control device for construction machinery
JP4450221B2 (en) Hydraulic drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees