JP3907036B2 - 金属コート光ファイバ、スリーブ付き金属コート光ファイバ、および光半導体モジュール - Google Patents
金属コート光ファイバ、スリーブ付き金属コート光ファイバ、および光半導体モジュール Download PDFInfo
- Publication number
- JP3907036B2 JP3907036B2 JP2001201529A JP2001201529A JP3907036B2 JP 3907036 B2 JP3907036 B2 JP 3907036B2 JP 2001201529 A JP2001201529 A JP 2001201529A JP 2001201529 A JP2001201529 A JP 2001201529A JP 3907036 B2 JP3907036 B2 JP 3907036B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- optical fiber
- layer
- melting point
- coated optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Description
【発明の属する技術分野】
本発明は、光ファイバ、スリーブ付き光ファイバ、光半導体モジュールに関する。更に詳しくは、金属コート光ファイバ、スリーブ付き金属コート光ファイバ、光半導体モジュールに関する。
【0002】
【従来の技術】
従来の光半導体モジュールとしては、レーザーダイオード(以下、LDと略記する)と光ファイバを光学的に結合させる光ファイバ付きピグテールタイプLDモジュール(以下、LDモジュールと略記する)がある。前記LDモジュールは、LDと光ファイバの光学的結合をレンズとアイソレータを介して行うものであり、光ファイバ通信の信号光源や光増幅器光源などに用いられている。また、前記LDモジュールに組み込まれる光ファイバの構造に関わる技術としては、特開平12-121886号公報記載の構造がある。即ち、0017段には「フェルール12は、光ファイバ10素線を内設し固定しているジルコニア部材(図示せず)と、光ファイバ被覆11を固定している金属部材とから構成されている。」とあり、また0018段には「フェルール12の先端に露出した光ファイバ10先端は、〜斜めに加工(図示せず)されている。」とある。
【0003】
図11に従来のLDモジュールの構造例を示す。
LDモジュール50の構造は、LDチップ41と第1レンズであるコリメートレンズ42は一つのペルチェ素子付き基板43に搭載され、LDチップ41とコリメートレンズ42の光軸調整によりコリメート光とし、またコリメートレンズ42でLDのケース44を封止し、不活性ガス注入により気密封止した後、LDケース44にアイソレータ45と焦光レンズ46を光軸に配置し、焦光レンズ46の焦光点へ、光ファイバ付きフェルール47の端面を光軸方向の前後の移動と回転により光学的結合効率が最大の位置でケース48のアダプタ49へYAGレーザ溶接等により固定した構造である。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来技術には以下の問題点がある。
すなわち、前記LDモジュールにおいて、LDを安定駆動させるためには、不活性ガスなどによる気密封止により、LDの出射端面とレンズ面の変質を防止すると同時に、光ファイバ端面、レンズ面や光ファイバ線路からの反射戻り光を低減し、戻り光のLDでの増幅によるS/N比の劣化を極力小さくする必要があった。また上記従来技術では組立調芯工数が多く、光ファイバ付ピグテールタイプLD相互間の光ファイバからの出射パワーのばらつきを小さくし、安定させるため光ファイバ付きフェルールの寸法精度の向上が求められ、価格向上の原因となっていた。特に、フェルールの外径精度とフェルール外径に対するファイバコアの偏芯は、いずれもサブミクロンの精度が要求され、更にファイバへの入射効率を向上させるため、フェルール端面の鏡面研磨を行い、フェルール外周に対してファイバの中心位置を2μm以内に調芯しておく必要があった。またフェルールとファイバは、高分子樹脂接着剤で接着固定しており、組立調芯後アダプタとフェルールをYAG溶接しようとすると、溶接熱による温度上昇の影響によりファイバが移動しやすく、LDからの入射パワーのばらつきが増大する原因となり、歩留が悪くコストアップの要因となっていた。そこで光ファイバ付きピグテールタイプLD製品相互間のばらつきが少なく、長期安定性のある製品を低コストで提供するためには、構成部品の精度の向上、調芯作業しやすい部品構造、ファイバ固定や封止等の工程中に発生する熱によるファイバの移動を防ぐ構造にする必要があった。
【0005】
本発明は、上記従来技術が有する各種問題点を解決するためになされたものであり、LDチップと光ファイバとの調芯作業工数の削減、光ファイバ付きフェルールに代わる安価で高精度の部品の提供、YAG溶接熱によるファイバの移動を防ぐことができ、光ファイバ付きピグテールタイプLD相互間のばらつきが縮小でき、アッセンブリの歩留改善ができ、結合効率の向上、組立工数の削減、部品点数の低減、高信頼性、および低価格化が可能な金属コート光ファイバ、スリーブ付き金属コート光ファイバ、光半導体モジュールを提供することを目的とする。
【0006】
【課題を解決するための手段】
第1の観点として本発明は、レーザーダイオードと光ファイバを光学的に結合させる光半導体モジュールに用いられる光ファイバであって、
レーザーダイオード出射光軸面と対向する側の光ファイバ表面の保護被覆層が剥離され、露出した裸ファイバの端部に、光軸に対して90°フラットに劈開切断されたフラット垂直劈開面が形成され、更にこの垂直劈開面の表面上に反射率0.1%以上のAR(Anti-reflection)(無反射)コーティングが施され、また露出した裸ファイバの外周に第一層として高融点金属の酸化物層が形成され、この外周に第二層として高融点金属層が形成され、更にこの外周に第三層としてはんだ付け可能低融点金属層が形成されている金属コート光ファイバにおいて、第一層の高融点金属酸化物層と第二層の高融点金属層の境界に、高融点金属酸化物と高融点金属の混在層を形成し、また第二層の高融点金属層と第三層の低融点金属層の境界に、これら二層の合金層を形成したことを特徴とする金属コート光ファイバにある。
上記第1観点の金属コート光ファイバでは、第一層の高融点金属酸化物層は、無機物光ファイバとの密着強度向上に寄与し、光ファイバ(石英ガラス)との良好な密着性を得ることができる。また第一層の高融点金属酸化物層および第二層の高融点金属層は、はんだ防蝕層として寄与する。さらに第三層は低温ではんだ付け可能とするための層で、第三層の低融点金属は、第一層および第二層の高融点金属より低融点であるので、低温ではんだ付けが可能となる。また、露出した裸ファイバの端部に、光軸に対して90°フラットに劈開切断された垂直劈開面が形成され、更に垂直劈開面の表面上に反射率0.1%以上のARコーティング(以下、ARコートと略記する)が施されているので、反射減衰量30dB以上を確保できる。
また本観点の金属コート光ファイバでは、第一層の高融点金属酸化物層と第二層の高融点金属層の境界に、高融点金属酸化物と高融点金属の混在層を形成させることにより、第一層と第二層の層間の密着強度を高めたはんだ防蝕層となり好ましい。
また本観点の金属コート光ファイバでは、第二層の高融点金属層と第三層の低融点金属層の境界に、これら二層の合金層を形成するので、低融点金属層のはんだくわれに起因する高融点金属層のはんだとの密着不良を防止できる。また、第三層の低融点金属がはんだにくわれても、合金層とはんだ層間の結合力が強いため、ファイバの鞘抜けは発生せず、ファイバ先端の位置の移動を防止でき、金属コート光ファイバのケースへの YAG 溶接後の特性劣化がなくなり歩留改善が可能となる。また、前記した各層の金属層を設けることで光ファイバ自身の強度にも効果を及ぼす。光ファイバは、その保護被覆を剥離し裸ファイバを露出させると強度が極端に低下するが、金属薄膜層を形成させることにより光ファイバ素線の強度を高めることができる。
従って、本観点の金属コート光ファイバは、光ファイバ通信の光源に用いられ、LDと光ファイバがレンズおよび光アイソレータ等を介して光学的に空間上で結合される光ファイバ付きピグテールタイプLD用モジュールに搭載する光ファイバとして好適となる。
【0007】
第2の観点として本発明は、第一層の高融点金属酸化物層として、第三層のはんだ付け可能低融点金属層より融点の高いクロムまたはチタンの酸化物を使用したことを特徴とする金属コート光ファイバにある。
上記第2観点の金属コート光ファイバでは、第一層の高融点金属酸化物層として、第三層のはんだ付け可能低融点金属層より融点の高いクロムまたはチタンの酸化物を好ましく使用することができる。
【0008】
第3の観点として本発明は、第二層の高融点金属層として、第三層のはんだ付け可能低融点金属層より融点の高いクロムまたはチタンを使用したことを特徴とする金属コート光ファイバにある。
上記第3観点の金属コート光ファイバでは、第二層の高融点金属層として、第三層のはんだ付け可能低融点金属層より融点の高いクロムまたはチタンを好ましく使用することができる。
【0009】
第4の観点として本発明は、第三層の低融点金属層として、第一層の高融点金属酸化物および第二層の高融点金属より低融点であり、低温ではんだ付け可能なニッケル、金、ニッケル−金合金、または金系合金を使用したことを特徴とする金属コート光ファイバにある。
上記第4観点の金属コート光ファイバでは、第一層および第二層の高融点金属よりも低融点であり、低温ではんだ付け可能なニッケル、金、ニッケル−金合金、または金系合金を好ましく使用することができる。このため、金属コート光ファイバと封止用金属スリーブの接着固定、および気密封止や金属コート光ファイバと光ファイバ付きピグテールタイプLDの実装基板に固定する際に使用するはんだとなじみが良く好ましい。
【0010】
第5の観点として本発明は、前記垂直劈開面が熱研磨され、残留傷が除去されて熱研磨垂直劈開面となっていることを特徴とする金属コート光ファイバにある。前記熱研磨としては、例えば火炎、電子ビームまたは高パワーレーザを用いることができる。
上記第5観点の金属コート光ファイバでは、熱研磨によって残留傷を除去された熱研磨垂直劈開面となっているので、光ファイバの劈開によるカット面の残留傷の成長によるクラック発生を防止することができる。
【0011】
第6の観点として本発明は、上記垂直劈開面或いは熱研磨垂直劈開面に紫外線硬化樹脂が塗布・硬化された保護樹脂が形成されていることを特徴とする金属コート光ファイバにある。
上記第6観点の金属コート光ファイバでは、上記垂直劈開面或いは熱研磨垂直劈開面に紫外線硬化樹脂が塗布・硬化された保護樹脂が形成されているので、必要時まで垂直劈開面を保護することができる。
【0012】
第7の観点として本発明は、上記金属コート光ファイバが封止用金属スリーブに挿入され、該スリーブと金属コート光ファイバが、はんだによって気密封止されていることを特徴とするスリーブ付き金属コート光ファイバにある。前記はんだとしては、通常のはんだでも良いが、高温はんだが好ましい。
上記第7観点のスリーブ付き金属コート光ファイバでは、封止用金属スリーブと金属コート光ファイバが、はんだによって気密封止されているので、光半導体モジュール用の部品として好ましく用いることができる。
【0013】
第8の観点として本発明は、光ファイバ通信の光源に用いられ、 LD と光ファイバがレンズおよび光アイソレータ等を介して光学的に空間上で結合される光半導体モジュールに、上記スリーブ付き金属コート光ファイバを用いたことを特徴とする光半導体モジュールにある。
上記第8観点の光半導体モジュールでは、上記スリーブ付き金属コート光ファイバを用いているので、特性の良い光半導体モジュールとなる。
【0014】
第9の観点として本発明は、上記光半導体モジュールにおいて、前記スリーブ付き金属コート光ファイバの金属コート光ファイバ部が、基板にはんだによって直接固定され、また金属コート光ファイバを内設した封止用金属スリーブはケースの一端とはんだまたは YAG レーザ溶接によって直接固定されていることを特徴とする光半導体モジュールにある。前記はんだとしては、通常のはんだでも良いが、高温はんだが好ましい。
上記第9観点の光半導体モジュールでは、例えば光ファイバ端面側のペルチェ素子付き基板への固定点から離れた LD ケース側面の位置に封止用金属スリーブが直接固定されるので好ましい。
【0015】
【発明の実施の形態】
以下、本発明の内容を、図に示す実施の形態により更に詳細に説明する。なお、これにより本発明が限定されるものではない。
図1は、本発明の金属コート光ファイバの一例を示す略図であり、同図(a)は正面図、また同図(b)は右側面図、また同図(c)は同図(a)のa−a部の断面図である。図2は、本発明の保護樹脂付き金属コート光ファイバの一例を示す正面図である。図3は、本発明のスリーブ付き光ファイバの一例を示す縦断面図である。図4は、ファイバ先端角度と反射減衰量の関係を示す図表である。図5は、LD光入射面の反射減衰量を示すチャート図である。図6は、熱研磨前後のファイバ劈開面の形状の変化を示す電子顕微鏡写真であり、同図( a )はファイバ先端角度0°劈開後で熱研磨前の状態、同図(b)は熱研磨として火炎熱研磨を行った状態,また同図(c)は熱研磨として電子ビーム熱研磨を行った状態である。図7は金属膜の材質および膜厚の違いによる密着強度を比較した図表である。図8は、密着強度のバラツキ(実施例1:高融点酸化物層あり)を示すグラフ図である。図9は、密着強度のバラツキ(比較例1:高融点酸化物層なし)を示すグラフ図である。図10は、本発明の光半導体モジュール(光ファイバ付きピグテールタイプ LD 用モジュール)の構成図である。
【0016】
これらの図において、1は裸ファイバ、1mは金属コート裸ファイバ部、2は保護被覆層、3は光ファイバ素線、4は高融点金属の酸化物層、4’は混合層、5は高融点金属層、5’は合金層、6ははんだ付け可能低融点金属層、7はARコート垂直劈開面(垂直劈開面)、10は金属コート光ファイバ、10jは保護樹脂付き金属コート光ファイバ、11は封止用金属スリーブ、12ははんだ封止部、20はスリーブ付き光ファイバ、21は LD チッフ゜、22は焦光レンズ、23は光アイソレータ、24は基板(ペルチェ素子付き基板)、25はケース、26はアダプター、27は高温はんだ付け部、30は光半導体モジュール(光ファイバ付きピグテールタイプ LD 用モジュール)、jは保護樹脂、またrはARコーティング(コート)である。
【0017】
−第1の実施の形態−(金属コート光ファイバ)
第1実施形態の金属コート光ファイバについて図1を用いて説明する。
本発明の金属コート光ファイバ10は、裸ファイバ1の外周に保護被覆層2を設けてなる光ファイバ素線3より、レーザーダイオード出射光軸面と対向する側の光ファイバ表面の保護被覆層が剥離され、露出した裸ファイバ2の端部が光軸に対して9 0 °フラットに劈開切断されたフラット垂直劈開面(以下、垂直劈開面と略記する)とし、更にこの垂直劈開面の表面上に反射率0.1%以上のARコートrが施されてARコート垂直劈開面7が形成され、また露出した裸ファイバ1の外周に第一層として高融点金属の酸化物層4が形成され、この外周に第二層として高融点金属層5が形成され、更にこの外周に第三層としてはんだ付け可能低融点金属層6が形成されている。また高融点金属酸化物層4と高融点金属層5の境界にはこれらの金属の混合層4’が形成され、また高融点金属層5とはんだ付け可能低融点金属層6の境界にはこれらの金属の合金層5’が形成されている。上記高融点金属の酸化物層4、高融点金属層5、はんだ付け可能低融点金属層6、混合層4’、合金層5’は、スパッタリング、或いは電気めっき等により形成することができる。
【0018】
前記第一層の高融点金属酸化物層4としては、例えば第三層のはんだ付け可能低融点金属6より融点の高いクロムまたはチタンの酸化物を使用することができる。また第二層の高融点金属5としては、第三層のはんだ付け可能低融点金属6より融点の高いクロムまたはチタンを使用することができる。またはんだ付け可能低融点金属6としては、第一層の高融点金属酸化物4および第二層の高融点金属5より低融点であり、低温ではんだ付け可能なニッケル、金、ニッケル−金合金、または金系合金を使用することができる。
更に詳しく説明すると、本発明の金属コート光ファイバ10では、光ファイバの保護被覆2を除去した裸ファイバ1の外周面に、第三層の低融点金属6より高融点の金属酸化物 層4として酸化クロムまたは酸化チタンの第一層を形成して裸ファイバ1表面と金属酸化物層4の結合力を強固にした後、第二層としてクロムまたはチタンの高融点金属層5を形成してある。更に第一層と第二層の境界には、高融点金属酸化物4と高融点金属5の混在層4’を設け、両層間の結合力を高めてあり、これによりはんだくわれを防ぐ。さらに第三層としてはんだ濡れ性が良好で第一層および第二層の高融点金属より低融点のニッケル、金、ニッケル−金合金、または金系合金のはんだ付け可能低融点金属層6を形成する。さらに第二層と第三層の境界には、両層の金属が混在する合金層5’を形成することにより、光半導体モジュールの製造時等に、第三層の低融点金属6がはんだにくわれても、合金層5’と低融点金属層6間の結合力が強いため、ファイバの鞘抜けは発生せず、ファイバ先端の位置の移動を防止でき、はんだ付けまたは溶接後の特性劣化が無くなり歩留改善が可能となる。
【0019】
−第2の実施の形態−(保護樹脂付き金属コート光ファイバ)
保護樹脂付き金属コート光ファイバの製造について、図 2 を用いて説明する。
前記実施形態1の金属コート光ファイバ10の製造の際、ARコート垂直劈開面7に紫外線硬化樹脂を塗布・硬化して保護樹脂jを形成することにより、図2に示す保護樹脂付き金属コート光ファイバ10jを得た。なお保護樹脂jの形成は高融点金属酸化物層4、高融点金属層5等を設ける前に行うとARコート垂直劈開面7に該酸化物層4が形成されないので好適となる。
また前記保護樹脂jは必要時迄はARコート垂直劈開面7に保持させることにより、該垂直劈開面7を保護することができる。また、光半導体モジュール等に組み込み、垂直劈開面7を保護する必要がなくなったときは、保護樹脂jを除去すればよい。
【0020】
−第3の実施の形態−(垂直劈開面、熱研磨垂直劈開面、ARコート、反射減衰量の詳細)
次に本発明の金属コート光ファイバの第3実施形態について説明する。
光ファイバ素線3を用い、 LD 出射光軸面と対向する側の光ファイバ表面の保護被覆層2を剥離して裸ファイバ1を露出させる。その露出部分の LD 出射光軸面と対向する先端部分の裸ファイバ表面にダイヤモンドカッターにより傷を付けて劈開させ、鏡面でフラットな垂直劈開面を得る。そして、この垂直劈開面を LD 光の入射面とすることにより、 LD から発振したレーザ光を安定して入射でき、今までの研磨剤によるファイバ先端の形成方法よりも加工工数が削減でき、部品のコストダウンが可能になる。
更に詳しく説明すると、光ファイバ(裸ファイバ1)に垂直劈開面を得る切断方法としては、非常に硬い刃、例えばダイヤモンドカッターの刃を光ファイバ軸に対して直角方向に直線駆動させて光ファイバ側面の一端に微少な初期傷を付けた後、この傷が曲げの外側になるように光ファイバに曲げ応力を付加すると、初期傷からファイバが劈開して垂直端面が得られる。この切断方法では、ファイバの側面の一端に傷を付け劈開させることにより簡単にカット端面の鏡面状態が得られるので、従来のような光ファイバ素線のフェルール挿入・接着・端面研磨といった工程を削減できる。
しかし、 LD 出射面と対向する光ファイバ先端端面が光軸に対して垂直の場合、反射戻り光が大きくなってしまう。図表4に、光ファイバ先端の傾斜面の角度と、光ファイバにレーザー光を入射したときの反射減衰量を示す。前記図表4より、光ファイバ先端角度が小さいと反射戻り光が大きくなり、先端角度が大きいと入射光率が悪くなることが分かる。
なお、ギガビットオーダーの伝送システムでは、反射減衰量を 50dB 以上にする必要があり、この対応が必要となる。
【0021】
図5に LD 光入射面の反射減衰量のチャート図を示す。同図(a)は、 LD への反射戻り光によって発生する 150Mbps のシグナル上に生じるノイズの状態を示した図である。反射減衰量が 35dB では、いずれもギガヘルツオーダーのノイズを発生する。また図(b)は、反射減衰量を 50dB 以上にしたときの同一のシグナルのノイズ発生状態を示し、ギガヘルツオ ーダーのノイズは消滅する。またアイソレータを中間に挿入する場合は、ファイバからの戻り光がアイソレータを通過して戻る反射減衰量が 40dB 以上確保できれば、同図(c)に示すようなノイズの小さいパルスが得られ、このときの組み合わせ反射減衰量は 55dB となる。またアイソレータの性能を 25dB とすれば、ファイバからの反射減衰量は 25dB 以上確保できればよいことになる。
【0022】
前記図表4より、 LD 出射面と対向する光ファイバ先端端面が光軸に対して垂直(ファイバ先端角度 0°)の場合、規定の反射減衰量が得られない。そこで、光ファイバ先端(垂直劈開面)に反射率 0.1% 以上のARコートrを形成してARコート垂直劈開面7とする。これにより反射減衰量 30dB 以上となり、規定の反射減衰量を確保できる。上記ARコートrの形成方法の一例としては、フラット垂直劈開面に2種類の物質(SiO 2 ,TiO 2 )を1/4波長の厚みで交互に積層して4層膜とする方法がある。
【0023】
また、ファイバ端面の劈開面を得るためにダイヤモンドカッターにより付けた傷は劈開後にも端面のエッジに残り、この傷からクラックが成長する恐れがある。そこで、ファイバ端面のエッジを火炎または電子ビームまたは高パワーレーザなどにより熱研磨を実施すればこの傷の除去は可能であり、長期信頼性が得られる。
図6に熱研磨前後のファイバ劈開面の電子顕微鏡写真を示す。同図( a )はファイバ先端角度0°劈開後(熱研磨前)、同図(b)は火炎熱研磨後,また同図(c)は電子ビーム熱研磨後の端面形状の変化を示しているが、これらの写真から、熱研磨することによって劈開時のエッジの傷(劈開傷)がきれいに除去されることが分かる。
【0024】
次に、前記熱研磨した状態でARコートrを形成してARコート垂直劈開面7とした後、裸ファイバ1の側面のみに第一層の高融点金属の酸化物層4、第二層の高融点金属層5、第三層の低融点金属層6、混在層4’、および合金層5’を順次形成させるが、この際裸ファイバ1の先端のARコート垂直劈開面7にこれらの金属薄膜層を形成させないために、この部分にあらかじめ紫外線硬化樹脂を塗布・硬化させ、図2に示すように保護樹脂jを設けておいた。
【0025】
表面に形成する前記各種の金属層は、高温はんだによる光ファイバの光ファイバ付きピグテールタイプ LD の実装基板への固定および封止を可能にするためと、裸ファイバの強度向上のために形成するものである。なお、裸ファイバに 1 μ m 以下の単一金属層を形成した場合は、はんだ溶接中に金属層がはんだにくわれてしまい、ファイバとはんだが界面で接触するため、界面での結合力が弱く鞘抜け状態になりやすく、ファイバ先端が移動しやすくなる。
【0026】
−第4の実施の形態−(金属膜の材質および膜厚の違いによる密着強度比較の実施例)(比較例付き)
図7は、金属膜の材質および膜厚の違いによる密着強度を比較した図表であり、光ファイバ(裸ファイバ)の外周に実施例1、比較例1〜3の異なる金属材質および膜厚で金属層を設けたときの密着強度を比較したものである。なお密着強度は、高温はんだを用いて実施例1、比較例1〜3の金属コート光ファイバを配線パターンにはんだ付け後、密着強度( N )を測定したものである。また、図8に実施例 1 の金属コート光ファイバの密着強度分布を示す。また、図9に比較例1の金属コート光ファイバの密着強度分布のグラフを示す。
これらの図表およびグラフ図より、良い密着強度を安定して得られる条件は実施例 1 の金属膜の材質および膜厚であるといえる。更に比較結果を示すと次のようになる。
実施例1:第 1 層の酸化クロム層のため平均 24.5N の強度が安定して得られた。
比較例1:酸化クロム層が無いため密着強度にばらつきが生じた。
比較例2:比較例1より若干劣る。
比較例3:ファイバの鞘抜けが生じた。
【0027】
−第5の実施の形態−(スリーブ付き光ファイバ)
本発明のスリーブ付き光ファイバの一例について、図3を用いて説明する。
上記実施例1により得られた金属コート光ファイバ10を封止用金属スリーブ11に挿入し、スリーブの端部において高温はんだを用いて封止し、はんだ封止部12を設けてスリーブ付き光ファイバを製造した。このスリーブ付き光ファイバは光半導体モジュールに好ましく用いることができる。
通常、光ファイバ外径に対するコア偏芯は 0.2 μ m 程度であり、例えば金属層を 1 μ m の肉厚で設けてもコア偏芯は 0.5 μ m 以内に収まるので、光ファイバ単体のコア偏芯は保たれ、光軸調芯が短時間で済み、コストダウンが可能になる。なお、従来用いられていた光ファイバ付きフェルールは複合された部品で、ファイバとフェルールの偏芯によりコア偏芯は大きくなってしまうので、高精度な高価なフェルールを必要とする。
【0028】
−第6の実施の形態−(光半導体モジュール)
本発明の光半導体モジュールの一例について、図10を用いて説明する。
本発明の光半導体モジュール(光ファイバ付きピグテールタイプ LD 用モジュール)30では、 LD チッフ゜21と、この LD チッフ゜21と光学的に結合され、レーザ光を内部伝送する金属コート光ファイバ10と、 LD チッフ゜21を搭載する基板(ペルチェ素子付き基板)24と、この基板24に LD チッフ゜21と一緒に搭載される図3に示すスリーブ付き光ファイバ20のはんだ封止部12で封止され、金属スリーブ11に挿入されている金属コート光ファイバ10とを光学的に結合させる焦光レンズ22と、このレンズ22と金属コート光ファイバ10間に設置された光アイソレータ23と、基板24を収納するケース25とで構成されている。またケース25壁面に設置されたアダプター26に金属スリーブ11が溶接されている。また LD チップ21の出射光軸面と対向する金属コート光ファイバ10の先端部分の金属コート裸ファイバ部は光学的結合率が最大となる位置で調芯され、基板24に高温はんだ付け部27で直接固定される。なお、封止用金属スリーブ11は、金属コート光ファイバ10の基板24への高温はんだ付け部27から離れたファイバの位置に設ける。更に、 LD 側のスリーブ端面と金属層を設けたファイバ表面間を高温はんだで固定する。なお、高温はんだとしては、例えば金−20%錫、または10%錫−90%鉛はんだを用いることができる。
【0029】
その結果、封止用金属スリーブ11と前記ケース25壁面に設置されたアダプター26間の溶接中に発生する熱によりファイバの固定位置がずれることが無く、調芯時と同一の特性が得られ、ピグテールタイプ LD 相互間のばらつきが少なくなり、歩留が改善できる。
更に詳しく説明すると、 LD チップ21の出射光軸面と対向する金属コート光ファイバ10の先端部分は裸ファイバ1表面に各種金属層を形成してあるので、光学的結合率が最大となる位置で調芯し、ペルチェ素子付き基板24に高温はんだで直接固定することができる。この結果、高温はんだ付け部27より離れたファイバの位置に封止用金属スリーブ11を設けてあるので、 LD チップ21側スリーブ端面と金属層を設けたファイバ表面間を高温はんだにより固定すれば、金属スリーブ11とケース25壁面に設置されたアダプター26間の溶接中に発生する熱によりファイバの固定位置がずれることなく、調芯時と同一の特性が得られ、ピグテールタイプ LD 相互間のばらつきが少なくなり、歩留が改善できる。
また、光ファイバ外径に対するコア偏芯は 0.2 μ m 程度であり、金属層を 1 μ m の肉厚で設けてもコア偏芯は 0.5 μ m 以下に収まるので、光軸調芯が短時間ですみ、コストダウンが可能となる。
なお、裸ファイバに 1 μ m 以下の単一金属層を形成した場合、はんだ接合時に金属層がはんだにくわれてしまい、ファイバとはんだが界面で接触するため、界面での結合力が弱く鞘抜け状態になりやすく、ファイバ先端位置が移動しやすくなる。
上記実施形態においては、 LD と光ファイバとの光学的結合をレンズと光アイソレータで行う光ファイバ付きピグテールタイプ LD において、光ファイバには本発明の金属コート光ファイバを使用した例を説明したが、金属コート光ファイバの使用形態はこれに限らない。すなわち、半導体素子として LD とフォトダイオードの両方を備えている光ファイバ付きピグテールタイプ LD や、レンズの数の異なる結合光学系でも、上記実施形態と同様の構成を適用することが出来るので、金属コート光ファイバを使用することによりこれらの場合も同様の効果を得ることが出来る。
【0030】
【発明の効果】
本発明によれば、 LD と光ファイバを光学的に結合させる光ファイバ付きピグテールタイプ LD 用モジュール( LD モジュール)において、 LD 出射光軸面と対向する側の光ファイバ表面の保護被覆層を剥離すると共に該裸ファイバ外周面接触層として第一層の高融点金属の酸化物層を形成し、第二層として高融点金属層を形成した後、第三層としてはんだ付け可能低融点金属を形成することにより、光ファイバ素線の強度を高めることができ、密着性に優れ、はんだ付け可能となる効果がある。前記第一層および第二層の高融点金属としては、第三層のはんだ付け金属層より融点の高いクロムまたはチタンを使用し、第一層の高融点金属酸化物層は無機物光ファイバと密着強度を向上させ、第二層の高融点金属層ははんだ防蝕層としての効果がある。
また、前記第一層の高融点金属酸化物層および第二層の高融点金属層において、第一層と第二層の境界は高融点金属酸化物と高融点金属を混在させることでこれら二層間の密着強度を高めることができる。また、前記第三層の低融点金属としては、第一層および第二層の高融点金属より低融点であるニッケル、金等を用いることにより、低温ではんだ付け可能となる。
また、前記第三層の低融点金属層と第二層の高融点金属層の境界は、これら二層の合金層を形成することにより、第三層の低融点金属層のはんだくわれによる第二層の高融点金属層のはんだとの密着不良を防止する効果がある。
従って、上記各種の金属層を形成することにより、はんだ付け中に金属層がはんだにくわれてファイバとはんだが界面で接触することによる、鞘抜け現象の発生を防止することができた。
また、前記光ファイバにおいて、光ファイバ端面を光軸に対し 90 °フラットに劈開切断し、さらにフラット表面上に反射率 0.1% 以上の A Rコートを施すことにより、反射減衰量 30dB 以上となる。さらに、先端の劈開切断のみで端面の鏡面状態を得ることが可能で、 AR コートすることで良好な反射減衰量を達成できるので、従来のような光ファイバ素線のフェルール挿入・接着・端面研磨による先端形成が不要であり、加工工数が削減でき、部品のコストダウンが可能となった。
また、前記光ファイバの劈開によるカット面の残留傷を、熱研磨、例えば火炎、電子ビームまたは高パワーレーザ光などによって除去することにより、残留傷の成長によるクラック発生を防止でき、長期信頼性のある LD モジュールが得られるようになった。
また、 LD モジュールにおいて、光ファイバ端面側のペルチェ素子付き基板への固定点から離れた LD ケースの位置に封止用金属スリーブを溶接固定することができ、更に金属コート光ファイバと封止用金属スリーブは、 LD 側スリーブ端面と金属層を設けたファイバ表面間を高温はんだによって気密封止することが出来るようになった。
そのため、 LD モジュールにおいて、これに搭載する光ファイバには前記金属コート光ファイバを用いることにより、装置全体の加工工数および部品点数を低減することができ、これにより LD モジュールの低コスト化と信頼性の向上を達成できるようになった。従って、本発明は産業上に寄与する効果が極めて大である。
【図面の簡単な説明】
【図1】 本発明の金属コート光ファイバの一例を示す略図であり、同図(a)は正面図、また同図(b)は右側面図、また同図(c)は同図(a)のa−a部の断面図である。
【図2】 本発明の保護樹脂付き金属コート光ファイバの一例を示す正面図である。
【図3】 本発明のスリーブ付き光ファイバの一例を示す縦断面図である。
【図4】 ファイバ先端角度と反射減衰量の関係を示す図表である。
【図5】 LD光入射面の反射減衰量を示すチャート図である。
【図6】 熱研磨前後のファイバ劈開面の形状の変化を示す電子顕微鏡写真であり、同図(a)はファイバ先端角度0°劈開後で熱研磨前の状態、同図(b)は熱研磨として火炎熱研磨を行った状態,また同図(c)は熱研磨として電子ビーム熱研磨を行った状態である。
【図7】 金属膜の材質および膜厚の違いによる密着強度を比較した図表である。
【図8】 密着強度のバラツキ(実施例1:高融点酸化物層あり)を示すグラフ図である。
【図9】 密着強度のバラツキ(比較例1:高融点酸化物層なし)を示すグラフ図である。
【図10】 本発明の光半導体モジュール(光ファイバ付きピグテールタイプLD用モジュール)の構成図である。
【図11】 従来のLDモジュールの構造例である。
【符号の説明】
1 裸ファイバ
1m 金属コート裸ファイバ部
2 保護被覆層
3 光ファイバ素線
4 高融点金属の酸化物層
4’ 混合層
5 高融点金属層
5’ 合金層
6 はんだ付け可能低融点金属層
7 ARコート垂直劈開面(垂直劈開面)
10 金属コート光ファイバ
10j 保護樹脂付き金属コート光ファイバ
11 封止用金属スリーブ
12 はんだ封止部
20 スリーブ付き光ファイバ
21 LDチッフ゜
22 焦光レンズ
23 光アイソレータ
24 基板(ペルチェ素子付き基板)
25 ケース
26 アダプター
27 高温はんだ付け部
30 光半導体モジュール(光ファイバ付きピグテールタイプLD用モジュール)
j 保護樹脂
r ARコーティング(コート)
Claims (9)
- レーザーダイオードと光ファイバを光学的に結合させる光半導体モジュールに用いられる光ファイバであって、
レーザーダイオード出射光軸面と対向する側の光ファイバ表面の保護被覆層が剥離され、露出した裸ファイバの端部に、光軸に対して90°フラットに劈開切断されたフラット垂直劈開面が形成され、更にこの垂直劈開面の表面上に反射率0.1%以上のAR(Anti-reflection)(無反射)コーティングが施され、また露出した裸ファイバの外周に第一層として高融点金属の酸化物層が形成され、この外周に第二層として高融点金属層が形成され、更にこの外周に第三層としてはんだ付け可能低融点金属層が形成されている金属コート光ファイバにおいて、
第一層の高融点金属酸化物層と第二層の高融点金属層の境界に、高融点金属酸化物と高融点金属の混在層を形成し、また第二層の高融点金属層と第三層の低融点金属層の境界に、これら二層の合金層を形成したことを特徴とする金属コート光ファイバ。 - 請求項1記載の第一層の高融点金属酸化物層として、第三層のはんだ付け可能低融点金属層より融点の高いクロムまたはチタンの酸化物を使用したことを特徴とする金属コート光ファイバ。
- 請求項1または2記載の第二層の高融点金属層として、第三層のはんだ付け可能低融点金属層より融点の高いクロムまたはチタンを使用したことを特徴とする金属コート光ファイバ。
- 請求項1、2または3記載の第三層の低融点金属層として、第一層の高融点金属酸化物および第二層の高融点金属より低融点であり、低温ではんだ付け可能なニッケル、金、ニッケル−金合金、または金系合金を使用したことを特徴とする金属コート光ファイバ。
- 請求項1、2、3または4記載の金属コート光ファイバにおいて、前記垂直劈開面が熱研磨され、残留傷が除去されて熱研磨垂直劈開面となっていることを特徴とする金属コート光ファイバ。
- 請求項1、2、3、4または5記載の金属コート光ファイバにおいて、前記垂直劈開面或いは熱研磨垂直劈開面に紫外線硬化樹脂が塗布・硬化された保護樹脂が形成されていることを特徴とする金属コート光ファイバ。
- 請求項1、2、3、4、5または6記載の金属コート光ファイバが封止用金属スリーブに挿入され、該スリーブと金属コート光ファイバが、はんだによって気密封止されていることを特徴とするスリーブ付き金属コート光ファイバ。
- 光ファイバ通信の光源に用いられ、レーザーダイオードと光ファイバがレンズおよび光アイソレータ等を介して光学的に空間上で結合される光半導体モジュールに、請求項7記載のスリーブ付き金属コート光ファイバを用いたことを特徴とする光半導体モジュール。
- 請求項8記載の光半導体モジュールにおいて、前記スリーブ付き金属コート光ファイバの金属コート光ファイバ部が、基板にはんだによって直接固定され、また金属コート光ファイバを内設した封止用金属スリーブはケースの一端とはんだまたは YAG レーザ溶接によって直接固定されていることを特徴とする光半導体モジュール。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001201529A JP3907036B2 (ja) | 2001-07-03 | 2001-07-03 | 金属コート光ファイバ、スリーブ付き金属コート光ファイバ、および光半導体モジュール |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001201529A JP3907036B2 (ja) | 2001-07-03 | 2001-07-03 | 金属コート光ファイバ、スリーブ付き金属コート光ファイバ、および光半導体モジュール |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003014999A JP2003014999A (ja) | 2003-01-15 |
JP3907036B2 true JP3907036B2 (ja) | 2007-04-18 |
Family
ID=19038473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001201529A Expired - Fee Related JP3907036B2 (ja) | 2001-07-03 | 2001-07-03 | 金属コート光ファイバ、スリーブ付き金属コート光ファイバ、および光半導体モジュール |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3907036B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005196100A (ja) * | 2003-12-31 | 2005-07-21 | Rohm & Haas Electronic Materials Llc | 非導電性基体を金属化する方法およびそれにより形成される金属化非導電性基体 |
JP4663482B2 (ja) * | 2005-10-28 | 2011-04-06 | 京セラ株式会社 | 受光モジュール |
US11007011B2 (en) * | 2017-11-10 | 2021-05-18 | Boston Scientific Scimed, Inc. | Medical laser fiber |
CN112179536B (zh) * | 2020-09-29 | 2022-06-10 | 中天科技光纤有限公司 | 光纤压力传感器及测试方法、金属保偏光纤制备方法 |
-
2001
- 2001-07-03 JP JP2001201529A patent/JP3907036B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003014999A (ja) | 2003-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3277573B2 (ja) | 半導体レーザモジュール | |
US8827572B2 (en) | Side coupling optical fiber assembly and fabrication method thereof | |
US8335415B2 (en) | Mirror-embedded light transmission medium and fabrication method of same | |
JP3907036B2 (ja) | 金属コート光ファイバ、スリーブ付き金属コート光ファイバ、および光半導体モジュール | |
EP1176440A1 (en) | Compression bonding method using laser assisted heating | |
JP3973072B2 (ja) | 金属コート光ファイバ、スリーブ付き金属コート光ファイバ、および光半導体モジュールの製造方法 | |
US20180246278A1 (en) | Coupling structure of optical components and coupling method of the same | |
US6892010B2 (en) | Photodetector/optical fiber apparatus with enhanced optical coupling efficiency and method for forming the same | |
WO2005036212A2 (en) | Photodetector/optical fiber apparatus with enhanced optical coupling efficiency and method for forming the same | |
US5297218A (en) | Optical semiconductor laser and optical waveguide alignment device | |
EP1369719A1 (en) | Integrated optical module featuring three wavelengths and three optical fibers | |
JP2008242423A (ja) | 光デバイス、及びそれを用いた光レセプタクル並びに光モジュール | |
JPH0588041A (ja) | 光フアイバの光学接続回路 | |
JP3877280B2 (ja) | 金属コート光ファイバ、保護樹脂付き金属コート光ファイバ、スリーブ付き金属コート光ファイバ、および光半導体モジュールの製造方法 | |
US6759132B2 (en) | Method for the manufacture of electromagnetic radiation reflecting devices | |
JP2002365490A (ja) | 金属コート光ファイバ、スリーブ付き金属コート光ファイバ、および光半導体モジュール | |
JP2004258387A (ja) | 先端斜めファイバ | |
US20030161595A1 (en) | Method of bonding optical devices | |
JP2006309190A (ja) | 光アイソレータおよびそれを用いた光モジュール | |
JP3881564B2 (ja) | 光ファイバ固定具の接続構造 | |
JP2003322774A (ja) | メタライズドポリイミドコート光ファイバおよび光ファイバ付き光学装置 | |
JP4628054B2 (ja) | 光アイソレータ | |
US20240288639A1 (en) | Methods for welding an optical fiber to a photonic integrated circuit | |
JP2004206068A (ja) | 光ファイバ及びその加工方法 | |
JP4480699B2 (ja) | ミラー構造体および平面光導波回路並びにその作製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050524 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061030 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070111 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110126 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110126 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120126 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130126 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140126 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |