JP3906091B2 - Semiconductor evaluation method and semiconductor evaluation apparatus - Google Patents

Semiconductor evaluation method and semiconductor evaluation apparatus Download PDF

Info

Publication number
JP3906091B2
JP3906091B2 JP2002030655A JP2002030655A JP3906091B2 JP 3906091 B2 JP3906091 B2 JP 3906091B2 JP 2002030655 A JP2002030655 A JP 2002030655A JP 2002030655 A JP2002030655 A JP 2002030655A JP 3906091 B2 JP3906091 B2 JP 3906091B2
Authority
JP
Japan
Prior art keywords
conductive film
impurity concentration
insulating film
extracted
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002030655A
Other languages
Japanese (ja)
Other versions
JP2003234469A (en
Inventor
辺 浩 志 渡
下 大 介 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002030655A priority Critical patent/JP3906091B2/en
Publication of JP2003234469A publication Critical patent/JP2003234469A/en
Application granted granted Critical
Publication of JP3906091B2 publication Critical patent/JP3906091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、MOSトランジスタやMOSキャパシタ等における絶縁膜の下部に位置する半導体表面の不純物濃度を評価する半導体評価方法および半導体評価装置に関する。
【0002】
【従来の技術】
半導体基板中の不純物濃度は深さ方向に分布しているが、半導体装置の電気特性は表面近傍での不純物濃度に敏感である。このため、表面不純物濃度を正確に測定する技術が半導体装置の設計および製造の面から不可欠である。
【0003】
【発明が解決しようとする課題】
しかしながら、従来は、基板深さ方向の不純物濃度を測定する際、半導体装置を削り取りながらSIMS(Secondary Ion Mass Spectrometry)という手法を使って測定するのが一般的であった。この手法では測定後の半導体装置を破壊してしまう上に、削り取る深さを非常に薄くし、しかもその幅を正確にしなければ十分な測定精度が得られないという問題がある。
【0004】
また、ウエハ表面を部分的に削り取るのは技術的に難しい上に、部分的に削り取るだけでは、ウエハ上の表面不純物濃度の全体的な分布を評価することはできない。さらに、ウエハ表面を削り取った個所では、不純物濃度が変化するおそれもある。
【0005】
本発明は、上記の問題点に鑑みてなされたもので、その目的は、半導体基板上に形成された半導体装置を破壊することなく、基板表面の不純物濃度の分布を精度よく測定可能な半導体評価方法および半導体評価装置を提供することにある。
【0006】
【課題を解決するための手段】
上述した課題を解決するために、本発明は、絶縁膜の上面に形成される不純物を含む半導体からなる第1導電性膜と、前記絶縁膜の下面に形成される不純物を含む半導体からなる第2導電性膜と、を有する半導体装置の電気的特性をシミュレータにより評価する半導体評価方法であって、前記第1および第2導電性膜間に、フラットバンド条件を満たす電圧を含む電圧区間内の電圧を印加し、各電圧ごとに前記絶縁膜を介して前記第1および第2導電性膜間を流れる電流、または前記第1および第2導電性膜間の容量を測定するステップと、前記測定された前記第1および第2の導電性膜間を流れる電流と、前記第1および第2導電性膜間の容量と、に基づいて、前記絶縁膜の厚さ、前記第1導電性膜の不純物濃度、前記第2導電性膜の基板不純物濃度、前記第2導電性膜の表面不純物濃度、および前記絶縁膜中の不純物濃度を計算するステップと、を備える。
【0007】
本発明では、第1および第2導電性膜間に絶縁破壊を起こさないほど低い電圧を印加して、第1および第2導電性膜間を流れる電流、または第1および第2導電性膜間の容量を測定するため、半導体装置を破壊することなく、半導体装置の絶縁膜の厚さ、第1導電性膜の不純物濃度、第2導電性膜の基板不純物濃度、第2導電性膜の表面不純物濃度、および絶縁膜中の不純物濃度を、種々に電圧を変化させながら精度よく評価できる。
【0008】
また、本発明は、絶縁膜の上面に形成される不純物を含む半導体からなる第1導電性膜と、前記絶縁膜の下面に形成されるp型不純物を含む半導体からなる第2導電性膜と、を有する半導体装置の電気的特性をシミュレータにより評価する半導体評価方法であって、前記第2導電性膜の表面が蓄積層になる程度の電圧を前記第1導電性膜に印加した状態で、前記シミュレータにより計算された前記第1および第2導電性膜間の容量が前記容量の測定値に一致するように前記絶縁膜の膜厚を調整して、前記絶縁膜の膜厚を逆抽出するステップと、前記第2導電性膜の表面が反転層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚を用いて前記シミュレータで計算された前記容量が前記容量の測定値に一致するように前記第1導電性膜の不純物濃度を調整して、前記第1導電性膜の不純物濃度を逆抽出するステップと、前記第2導電性膜の表面が空乏層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚および前記逆抽出された第1導電性膜の不純物濃度を用いて前記シミュレータで計算された前記容量の傾きが測定された前記容量の傾きに一致するように前記第2導電性膜の基板不純物濃度を調整して、前記第2導電性膜の基板不純物濃度を逆抽出するステップと、前記第2導電性膜の表面が空乏層になる電圧領域の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚、前記逆抽出された第1導電性膜の不純物濃度および前記逆抽出された第2導電性膜の基板不純物濃度を用いて前記シミュレータで計算された前記容量が前記容量の測定値に一致するように前記第2導電性膜の表面不純物濃度を調整して、前記第2導電性膜の表面不純物濃度を逆抽出するステップと、前記第2導電性膜の表面が空乏層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚、前記逆抽出された第1導電性膜の不純物濃度、前記逆抽出された第2導電性膜の基板不純物濃度および前記逆抽出された第2導電性膜の表面不純物濃度を用いて前記シミュレータで計算された前記電流が前記電流の測定値に一致するように前記絶縁膜の膜中不純物濃度を調整して、前記絶縁膜の膜中不純物濃度を逆抽出するステップと、を備える。
【0009】
また、本発明は、絶縁膜の上面に形成される不純物を含む半導体からなる第1導電性膜と、前記絶縁膜の下面に形成されるn型不純物を含む半導体からなる第2導電性膜と、を有する半導体装置の電気的特性をシミュレータにより評価する半導体評価方法であって、前記第2導電性膜の表面が反転層になる程度の電圧を前記第1導電性膜に印加した状態で、前記シミュレータにより計算された前記第1および第2導電性膜間の容量が前記容量の測定値に一致するように前記絶縁膜の膜厚を調整して、前記絶縁膜の膜厚を逆抽出するステップと、前記第2導電性膜の表面が蓄積層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚を用いて前記シミュレータで計算された前記容量が前記容量の測定値に一致するように前記第1導電性膜の不純物濃度を調整して、前記第1導電性膜の不純物濃度を逆抽出するステップと、前記第2導電性膜の表面が空乏層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚および前記逆抽出された第1導電性膜の不純物濃度を用いて前記シミュレータで計算された前記容量の傾きが測定された前記容量の傾きに一致するように前記第2導電性膜の基板不純物濃度を調整して、前記第2導電性膜の基板不純物濃度を逆抽出するステップと、前記第2導電性膜の表面が空乏層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚、前記逆抽出された第1導電性膜の不純物濃度および前記逆抽出された第2導電性膜の表面不純物濃度を用いて前記シミュレータで計算された前記容量が前記容量の測定値に一致するように前記第2導電性膜の表面不純物濃度を調整して、前記第2導電性膜の表面不純物濃度を逆抽出するステップと、前記第2導電性膜の表面が空乏層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚、前記逆抽出された第1導電性膜の不純物濃度、前記逆抽出された第2導電性膜の基板不純物濃度および前記逆抽出された第2導電性膜の表面不純物濃度を用いて前記シミュレータで計算された前記電流が前記電流の測定値に一致するように前記絶縁膜の膜中不純物濃度を調整して、前記絶縁膜の膜中不純物濃度を逆抽出するステップと、を備える。
【0010】
【発明の実施の形態】
以下、本発明に係る半導体評価方法および半導体評価装置について、図面を参照しながら具体的に説明する。
【0011】
図1は本発明に係る半導体評価装置の一実施形態の概略構成を示すブロック図である。図1の半導体評価装置は、MOSトランジスタやMOSキャパシタ内の絶縁膜とこの上部に形成される半導体の表面不純物濃度を決定するものである。以下では、n+/SiO2/p-Si構造のnMOSキャパシタを例に取って説明するが、pMOSキャパシタ、nMOSトランジスタおよびpMOSトランジスタでも同様の処理手順で電気的特性を評価できる。
【0012】
本明細書では、nMOSキャパシタ内の絶縁膜の上部に形成される導電膜を第1導電性膜、絶縁膜の下部の半導体を第2導電性膜と呼ぶ。第1導電性膜は例えばポリシリコンを材料として形成され、第2導電性膜は半導体基板上または半導体基板内の所望の領域に不純物イオンを注入して形成されるウェルである。
【0013】
図1の半導体評価装置は、絶縁膜厚逆抽出部1と、不純物濃度逆抽出部2と、基板濃度逆抽出部3と、表面濃度逆抽出部4と、絶縁膜中濃度逆抽出部5と、シミュレータ6とを備えている。
【0014】
絶縁膜厚逆抽出部1は、第2導電性膜の表面が蓄積層(pMOSキャパシタの場合は反転層)になるような電圧を第1導電性膜に印加した状態で、シミュレータ6により第1および第2導電性膜間の容量Cを計算し、その計算結果が容量Cの測定値に一致するように絶縁膜の膜厚を調整して、絶縁膜厚toxを逆抽出する。
【0015】
不純物濃度逆抽出部2は、第2導電性膜の表面が反転層(pMOSキャパシタの場合は蓄積層)になるような電圧を第1導電性膜に印加した状態で、逆抽出された絶縁膜厚toxを用いてシミュレータ6により容量Cを計算し、その計算結果が容量Cの測定値に一致するように第1導電性膜としてのポリシリコン中の不純物濃度(以下、ポリ濃度と呼ぶ)Npolyを調整して、ポリ濃度Npolyを逆抽出する。
【0016】
基板濃度逆抽出部3は、第2導電性膜の表面が反転層(pMOSキャパシタの場合は蓄積層)から空乏層になるような電圧と、空乏層から蓄積層(pMOSキャパシタの場合は反転層)になるような電圧と、をそれぞれ第1導電性膜に印加した状態で、逆抽出された絶縁膜厚toxと第1導電性膜のポリ濃度Npolyを用いてシミュレータ6により容量Cを計算し、その計算結果の傾きが容量Cの測定値の傾きに一致するように第2導電性膜の基板不純物濃度Nsubを調整して、第2導電性膜の基板不純物濃度Nsubを逆抽出する。
【0017】
表面濃度逆抽出部4は、第2導電性膜の表面が空乏層になるような電圧を第1導電性膜に印加した状態で、逆抽出された絶縁膜厚tox、第1導電性膜のポリ濃度Npolyおよび第2導電性膜の基板不純物濃度Nsubを用いてシミュレータ6により容量Cを計算し、その計算結果が容量Cの測定値に一致するように第2導電性膜の表面不純物濃度Nsrfを調整して、表面不純物濃度Nsrfを逆抽出する。
【0018】
絶縁膜中濃度逆抽出部5は、第2導電性膜の表面が空乏層になるような電圧を第1導電性膜に印加した状態で、逆抽出された絶縁膜厚tox、第1導電性膜のポリ濃度Npoly、第2導電性膜の基板不純物濃度Nsubおよび第2導電性膜の表面不純物濃度Nsrfを用いてシミュレータ6により容量Cを計算し、その計算結果が容量Cの測定値に一致するように絶縁膜の膜中不純物濃度を調整して、絶縁膜の膜中不純物濃度を逆抽出する。
【0019】
図2は図1の半導体評価装置の処理手順を示すフローチャートである。まず、準備段階として、nMOSキャパシタの電流J−電圧特性(JV特性)と容量C−電圧特性(CV特性)とを測定する(ステップS1)。
【0020】
続いて、合わせ込みの第1段階として、絶縁膜厚toxの合わせ込みを行う(ステップS2)。図3(a)はCV曲線の絶縁膜依存性を示し、図3(b)はJV曲線の絶縁膜依存性を示している。これらの図からわかるように、絶縁膜厚toxを変化させると、JV曲線とCV曲線がいずれも変化するのがわかる。特に、ゲート電圧VGが(-2)V付近で、CV曲線の変化の割合が大きい。このため、上述したステップS2では、ゲート電圧VGを例えば(-2)Vに設定した状態で、絶縁膜厚toxを調整しながらシミュレータ6により容量Cを計算し、容量Cの計算値を測定値に一致させる。これにより、絶縁膜厚toxが逆抽出される。
【0021】
ここで、CV曲線の一般式は、(1)式で表される。
C(VG)=f(VG,tox,Npoly,Nsrf,Nsub,Nins) …(1)
(1)式の具体例として、例えば(2)式が考えられる。
【数1】

Figure 0003906091
(2)式において、Qsは表面電荷密度、VGは第1導電性膜に印加される電圧である。
(2)式中のQsは(3)式で表される。
【数2】
Figure 0003906091
正孔濃度、nは電子濃度である。
【0022】
ND +とNA は、それぞれ(4)式および(5)式で表される。
ND +=rD×ND …(4)
NA =rA×NA …(5)
(4)式および(5)式において、rDはドナーイオン化率、rAはアクセプターイオン化率、NDはドナー濃度、NAはアクセプタ濃度である。
【0023】
シミュレータ6は、(2)式に基づいてシミュレーションを行い、絶縁膜厚toxを逆抽出する。
【0024】
続いて、合わせ込みの第2段階として、第1導電性膜のポリ濃度Npolyの合わせ込みを行う(ステップS3)。図4(a)はCV曲線のポリ濃度Npolyの依存性を示し、図4(b)はJV曲線のポリ濃度Npolyの依存性を示している。これらの図からわかるように、CV曲線はVG>0Vの範囲(半導体基板がp型であれば反転層領域、n型であれば蓄積層領域)でポリ濃度Npolyに依存して大きく変化し、JV曲線は-1<VG<0Vの範囲(空乏層領域)でポリ濃度Npolyに依存して大きく変化する。
【0025】
このため、上述したステップS3では、半導体基板がp型であれば基板表面が反転層になるような電圧(例えば、VG=1V)を第1導電性膜に印加した状態で、ステップS2で逆抽出した絶縁膜厚toxを用いてシミュレータ6により容量Cを計算し、その計算結果が容量Cの測定値に一致するように第1導電性膜のポリ濃度Npolyを調整して、ポリ濃度Npolyを逆抽出する。
【0026】
続いて、合わせ込みの第3段階として、第2導電性膜の基板不純物濃度Nsubの合わせ込みを行う(ステップS4)。図5(a)はCV曲線の基板濃度依存性を示し、図5(b)はJV曲線の基板濃度依存性を示している。これらの図からわかるように、CV曲線は、-1V<VG<0Vの範囲(空乏領域)で表面濃度に依存して大きく変化する。また、JV曲線は、-1<VG<0Vの範囲(空乏領域)で表面濃度に依存して大きく変化する。
【0027】
このため、上述したステップS4では、例えば、VG=-0.5Vを第1導電性膜に印加した状態で、ステップS2で逆抽出した絶縁膜厚toxとステップS3で逆抽出したポリ濃度Npolyとを用いてシミュレータ6により容量Cを計算し、その計算結果の傾きが容量Cの測定値の傾きに一致するように第2導電性膜の基板不純物濃度Nsubを調整して、基板不純物濃度Nsubを逆抽出する。
【0028】
続いて、合わせ込みの第4段階として、第2導電性膜の膜中不純物濃度(すなわち、表面不純物濃度Nsrf)の合わせ込みを行う(ステップS5)。図6(a)はCV曲線の表面不純物濃度Nsrf依存性を示し、図6(b)はJV曲線の表面不純物濃度依存性を示している。これらの図からわかるように、CV曲線もJV曲線も、-1V<VG<0Vの範囲(空乏層領域)で、表面不純物濃度Nsrfに依存して変化し、それ以外の電圧範囲ではほとんど変化しない。
【0029】
このため、上述したステップS5では、第1導電性膜に-1V<VG<0Vの範囲内の電圧(例えば、VG=-0.5V)を印加した状態で、ステップS2で逆抽出した絶縁膜厚toxと、ステップS3で逆抽出したポリ濃度Npolyと、ステップS4で逆抽出した基板不純物濃度Nsrfとを用いてシミュレータ6により第1および第2導電性膜間の容量Cを計算し、その計算結果がこの容量Cの測定値に一致するように表面不純物濃度Nsrfを調整して、表面不純物濃度Nsrfを逆抽出する。
【0030】
続いて、合わせ込みの第5段階として、絶縁膜の膜中不純物濃度Ninsの合わせ込みを行う(ステップS6)。図7(a)はCV曲線の絶縁膜中不純物濃度依存性を示し、図7(b)はJV曲線の絶縁膜中不純物濃度依存性を示している。これらの図からわかるように、CV曲線は第1導電性膜に印加する電圧を変えても変化せず、JV曲線は-1V<VG<0Vの範囲(空乏層領域)で、絶縁膜の膜中不純物濃度Ninsに依存して大きく変化し、それ以外の電圧範囲ではほとんど変化しない。
【0031】
このため、上述したステップS6では、第1導電性膜に-1<VG<0Vの範囲内の電圧(例えば、VG=-0.5V)を印加した状態で、ステップS2で逆抽出した絶縁膜厚toxと、ステップS3で逆抽出したポリ濃度Npolyと、ステップS4で逆抽出した基板不純物濃度Nsubと、ステップS5で逆抽出した表面不純物濃度Nsrfとを用いてシミュレータ6によりゲート電流を計算し、その計算結果がゲート電流の測定値に一致するように絶縁膜の膜中不純物濃度Ninsを調整して、膜中不純物濃度Ninsを逆抽出する。
【0032】
ここで、JV曲線の一般式は、(6)式で表される。
J(VG)=g(VG,tox,Npoly,Nsrf,Nsub,Nins) …(6)
(6)式の具体例として、例えば(7)式が考えられる。
【数3】
Figure 0003906091
(7)式において、mdeは有効状態密度電子質量、ECpolyはポリシリコンの伝導帯端、ECsubは基板シリコンの伝導帯端、toxは絶縁膜厚tox、q=1.6×10-19[C]、Mc=6である。
【0033】
(7)式中の関数fは、(8)式で表される。
【数4】
Figure 0003906091
(8)式において、EFはフェルミ準位、kB=1.38×10-23[J/K]、Tは絶対温度[K]である。
【0034】
(7)式中のκは、(9)式で表される。
【数5】
Figure 0003906091
(9)式において、ECoxは絶縁膜の伝導帯端である。
【0035】
(9)式中のmoxは、(10)式で表される。
【数6】
Figure 0003906091
(10)式において,EGoxは絶縁膜のエネルギーバンドギャップ、mpはパラボリック・トンネルマス、mFはフランツのトンネルマス、mcは伝導帯トンネルマス、mvは価電子帯トンネルマスである。
【0036】
(7)式中のΨspolyとΨssubとの間には、以下の関係が成り立つ。
【数7】
Figure 0003906091
(11)式中の関数Fは、(12)式で表される。
【数8】
Figure 0003906091
(12)式中のβとLDはそれぞれ(13)式および(14)式で表される。
【数9】
Figure 0003906091
【数10】
Figure 0003906091
(14)式において、εs=11.9×ε0で、ε0=8.85×10-12[F/m]である。
【0037】
図8および図9は上述した五段階逆抽出法をまとめた図であり、図8はCV曲線、図9はJV曲線を表している。図8において、VG=-2V近傍では、CV曲線は絶縁膜厚toxの変化にのみ依存する。CV曲線とJV曲線の全領域の中で、絶縁膜厚toxの変化のみに依存する領域は他には存在しない。このため、図2のステップS2では、合わせ込みの第1段階として、VG=-2V近傍で絶縁膜厚toxの逆抽出を行う。
【0038】
続いて、VG=1V近傍では、CV曲線は絶縁膜厚toxと第1導電性膜のポリ濃度Npolyの変化のみに依存している。絶縁膜厚toxはすでに逆抽出されているので、図2のステップS3では、合わせ込みの第2段階として、VG=1V近傍で第1導電性膜のポリ濃度Npolyの逆抽出を行う。
【0039】
続いて、-1V<VG<0V近傍では、CV曲線は絶縁膜厚tox、ポリ濃度Npoly、基板濃度Nsub、および表面不純物濃度Nsrfのみに依存している。このうち、絶縁膜厚toxとポリ濃度Npolyはすでに逆抽出されている。また、この領域でのNsub依存性は、CV曲線の傾きに表れるので、図2のステップS4では、合わせ込みの第3段階として、基板不純物濃度Nsubの逆抽出を行う。
【0040】
図2のステップS5では、合わせ込みの第4段階として、-1V<VG<0Vの電圧範囲で表面不純物濃度Nsrfの逆抽出を行う。
【0041】
続いて、-1V<VG<0Vでは、JV曲線は絶縁膜の膜中不純物濃度Ninsに依存している。そこで、図2のステップS6では、合わせ込みの第5段階として、-1V<VG<0Vの電圧範囲で絶縁膜の膜中不純物濃度Ninsの逆抽出を行う。
【0042】
このように、本実施形態では、第1導電性膜に印加する電圧を複数通りに切り替え、各電圧ごとに、CV曲線やJV曲線の変化に対して支配的な電気的特性因子tox,Npoly,Nsub,Nsrf,Ninsの逆抽出を行うため、各電気的特性因子を精度よく評価できる。
【0043】
また、本実施形態では、ウエハ上に形成された半導体デバイスを壊さずに、各電気的特性因子を計算できるため、実際の製品の出荷前検査に適用可能である。
特に、絶縁膜厚toxは酸化工程の検査に、第1導電性膜のポリ濃度NpolyはCVD工程の検査に、表面不純物濃度Nsrfや基板不純物濃度は熱工程の検査に、それぞれ適用可能である。
【0044】
さらに、上述した5段階の逆抽出法による非破壊測定は、拡散層がチャネル電界に与える影響が小さくなるほど長いゲートをもつMOSFETを用いても可能である。また、保護素子部のライン・アンド・スペースパターンを利用してもよいし、予め選択的にウエハ上に配置されたMOSキャパシタやMOSFETを用いて測定を行ってもよい。
【0045】
上述した実施形態では、5段階の逆抽出を行って5種類の電気的特性因子tox,Npoly,Nsub,Nsrf,Ninsを評価する手法を説明したが、他の電気的特性因子を併せて逆抽出してもよい。例えば、絶縁膜の膜中の不純物の位置Zinsを、上述した5種類のパラメータとともに逆抽出してもよい。この場合のCV曲線とJV曲線の一般式は、それぞれ(15)式および(16)式のようになる。
C(VG)=f(VG,tox,Npoly,Nsrf,Nsub,Nins,Zins) …(15)
J(VG)=g(VG,tox,Npoly,Nsrf,Nsub,Nins,Zins) …(16)
【0046】
上述した実施形態で説明した半導体評価装置は、ハードウェアで構成してもよいし、ソフトウェアで構成してもよい。ソフトウェアで構成する場合には、半導体評価装置の機能を実現するプログラムをフロッピーディスクやCD−ROM等の記録媒体に収納し、コンピュータに読み込ませて実行させてもよい。記録媒体は、磁気ディスクや光ディスク等の携帯可能なものに限定されず、ハードディスク装置やメモリなどの固定型の記録媒体でもよい。
【0047】
また、半導体評価装置の機能を実現するプログラムを、インターネット等の通信回線(無線通信も含む)を介して頒布してもよい。さらに、同プログラムを暗号化したり、変調をかけたり、圧縮した状態で、インターネット等の有線回線や無線回線を介して、あるいは記録媒体に収納して頒布してもよい。
【0048】
【発明の効果】
以上詳細に説明したように、本発明によれば、第1および第2導電性膜間に絶縁破壊が生じない程度の低い電圧を印加して、各電圧ごとに第1および第2導電性膜間を流れる電流、または第1および第2導電性膜間の容量を測定するため、半導体装置を破壊することなく、半導体装置の絶縁膜の厚さ、第1導電性膜の不純物濃度、第2導電性膜の表面不純物濃度、第2導電性膜の膜中不純物濃度、および絶縁膜中の不純物濃度を、精度よく評価できる。
【図面の簡単な説明】
【図1】本発明に係る半導体評価装置の一実施形態の概略構成を示すブロック図。
【図2】図1の半導体評価装置の処理手順を示すフローチャート。
【図3】(a)はCV曲線の絶縁膜厚依存性を示す図、(b)はJV曲線の絶縁膜厚依存性を示す図。
【図4】(a)はCV曲線のポリ濃度依存性を示す図、(b)はJV曲線のポリ濃度依存性を示す図。
【図5】(a)はCV曲線の基板濃度依存性を示す図、(b)はJV曲線の基板濃度依存性を示す図。
【図6】(a)はCV曲線の表面不純物濃度依存性を示す図、(b)はJV曲線の表面不純物濃度依存性を示す図。
【図7】(a)はCV曲線の絶縁膜中不純物濃度依存性を示す図、(b)はJV曲線の絶縁膜中不純物濃度依存性を示す図。
【図8】五段階逆抽出法を説明するためのCV曲線を示す図。
【図9】五段階逆抽出法を説明するためのJV曲線を示す図。
【符号の説明】
1 絶縁膜厚逆抽出部
2 不純物濃度逆抽出部
3 基板濃度逆抽出部
4 表面濃度逆抽出部
5 絶縁膜中濃度逆抽出部
6 シミュレータ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor evaluation method and a semiconductor evaluation apparatus for evaluating the impurity concentration of a semiconductor surface located below an insulating film in a MOS transistor, a MOS capacitor, or the like.
[0002]
[Prior art]
Although the impurity concentration in the semiconductor substrate is distributed in the depth direction, the electrical characteristics of the semiconductor device are sensitive to the impurity concentration in the vicinity of the surface. For this reason, a technique for accurately measuring the surface impurity concentration is indispensable from the viewpoint of designing and manufacturing a semiconductor device.
[0003]
[Problems to be solved by the invention]
However, conventionally, when measuring the impurity concentration in the substrate depth direction, it is common to use a technique called SIMS (Secondary Ion Mass Spectrometry) while scraping the semiconductor device. In this method, there is a problem that the semiconductor device after the measurement is destroyed, and further, the depth to be scraped is made very thin and the width is not accurate, so that sufficient measurement accuracy cannot be obtained.
[0004]
In addition, it is technically difficult to partially scrape the wafer surface, and it is impossible to evaluate the overall distribution of the surface impurity concentration on the wafer only by partially scraping. Furthermore, there is a possibility that the impurity concentration changes at the location where the wafer surface is scraped.
[0005]
The present invention has been made in view of the above problems, and its purpose is to evaluate a semiconductor that can accurately measure the distribution of impurity concentration on the surface of the substrate without destroying the semiconductor device formed on the semiconductor substrate. A method and a semiconductor evaluation apparatus are provided.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problem, the present invention provides a first conductive film made of a semiconductor containing an impurity formed on an upper surface of an insulating film and a first conductive film made of a semiconductor containing an impurity formed on the lower surface of the insulating film. A semiconductor evaluation method for evaluating, using a simulator, electrical characteristics of a semiconductor device having two conductive films, wherein the first and second conductive films are within a voltage section including a voltage that satisfies a flat band condition. Applying a voltage and measuring a current flowing between the first and second conductive films via the insulating film or a capacitance between the first and second conductive films for each voltage; and the measurement The thickness of the insulating film, the thickness of the first conductive film based on the current flowing between the first and second conductive films and the capacitance between the first and second conductive films Impurity concentration, substrate of the second conductive film Net objects concentration, and a step of calculating the surface impurity concentration of the second conductive film, and the impurity concentration in the insulating film.
[0007]
In the present invention, a current that flows between the first and second conductive films by applying a low voltage that does not cause dielectric breakdown between the first and second conductive films, or between the first and second conductive films. In order to measure the capacitance of the semiconductor device, the thickness of the insulating film of the semiconductor device, the impurity concentration of the first conductive film, the substrate impurity concentration of the second conductive film, the surface of the second conductive film without destroying the semiconductor device The impurity concentration and the impurity concentration in the insulating film can be accurately evaluated while varying the voltage.
[0008]
The present invention also provides a first conductive film made of a semiconductor containing an impurity formed on an upper surface of an insulating film, and a second conductive film made of a semiconductor containing a p-type impurity formed on the lower surface of the insulating film; A semiconductor evaluation method for evaluating the electrical characteristics of a semiconductor device having a simulator with a voltage applied to the first conductive film so that the surface of the second conductive film becomes a storage layer. The thickness of the insulating film is adjusted so that the capacitance between the first and second conductive films calculated by the simulator matches the measured value of the capacitance, and the thickness of the insulating film is back-extracted. Step, and with the voltage applied to the first conductive film applied to the first conductive film with a voltage that causes the surface of the second conductive film to be an inversion layer. The capacity matches the measured value of the capacity Adjusting the impurity concentration of the first conductive film so that the impurity concentration of the first conductive film is back-extracted, and a voltage at which the surface of the second conductive film becomes a depletion layer. When applied to the first conductive film, the slope of the capacitance calculated by the simulator using the thickness of the back-extracted insulating film and the impurity concentration of the back-extracted first conductive film is Back-extracting the substrate impurity concentration of the second conductive film by adjusting the substrate impurity concentration of the second conductive film so as to match the measured slope of the capacitance; and the second conductive film In the state where the voltage in the voltage region where the surface of the first electrode is a depletion layer is applied to the first conductive film, the thickness of the back-extracted insulating film, the impurity concentration of the back-extracted first conductive film, and the Before using the substrate impurity concentration of the back-extracted second conductive film Back-extracting the surface impurity concentration of the second conductive film by adjusting the surface impurity concentration of the second conductive film so that the capacitance calculated by the simulator matches the measured value of the capacitance; The back-extracted insulating film thickness and the back-extracted first conductive film in a state in which a voltage to the extent that the surface of the second conductive film becomes a depletion layer is applied to the first conductive film. The current calculated by the simulator using the impurity concentration of the substrate, the substrate impurity concentration of the back-extracted second conductive film and the surface impurity concentration of the back-extracted second conductive film is the measured value of the current Adjusting the impurity concentration in the film of the insulating film so as to match, and back extracting the impurity concentration in the film of the insulating film.
[0009]
The present invention also provides a first conductive film made of a semiconductor containing impurities formed on the upper surface of an insulating film, and a second conductive film made of a semiconductor containing n-type impurities formed on the lower surface of the insulating film; A semiconductor evaluation method for evaluating electrical characteristics of a semiconductor device having a simulator with a voltage applied to the first conductive film so that the surface of the second conductive film becomes an inversion layer. The thickness of the insulating film is adjusted so that the capacitance between the first and second conductive films calculated by the simulator matches the measured value of the capacitance, and the thickness of the insulating film is back-extracted. In the state where a voltage is applied to the first conductive film so that the surface of the second conductive film becomes a storage layer, the simulator calculates the thickness of the back-extracted insulating film. The capacity matches the measured value of the capacity Adjusting the impurity concentration of the first conductive film so that the impurity concentration of the first conductive film is back-extracted, and a voltage at which the surface of the second conductive film becomes a depletion layer. When applied to the first conductive film, the slope of the capacitance calculated by the simulator using the thickness of the back-extracted insulating film and the impurity concentration of the back-extracted first conductive film is Back-extracting the substrate impurity concentration of the second conductive film by adjusting the substrate impurity concentration of the second conductive film so as to match the measured slope of the capacitance; and the second conductive film In a state where a voltage is applied to the first conductive film so that the surface of the first conductive film becomes a depletion layer, the thickness of the back-extracted insulating film, the impurity concentration of the back-extracted first conductive film, and the reverse Using the extracted surface impurity concentration of the second conductive film, Back-extracting the surface impurity concentration of the second conductive film by adjusting the surface impurity concentration of the second conductive film so that the capacitance calculated by the regulator matches the measured value of the capacitance; The back-extracted insulating film thickness and the back-extracted first conductive film in a state in which a voltage to the extent that the surface of the second conductive film becomes a depletion layer is applied to the first conductive film. The current calculated by the simulator using the impurity concentration of the substrate, the substrate impurity concentration of the back-extracted second conductive film and the surface impurity concentration of the back-extracted second conductive film is the measured value of the current Adjusting the impurity concentration in the film of the insulating film so as to match, and back extracting the impurity concentration in the film of the insulating film.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a semiconductor evaluation method and a semiconductor evaluation apparatus according to the present invention will be specifically described with reference to the drawings.
[0011]
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of a semiconductor evaluation apparatus according to the present invention. The semiconductor evaluation apparatus shown in FIG. 1 determines the surface impurity concentration of an insulating film in a MOS transistor or MOS capacitor and a semiconductor formed thereon. In the following, an nMOS capacitor having an n + / SiO 2 / p-Si structure will be described as an example, but electrical characteristics can be evaluated by a similar processing procedure for a pMOS capacitor, an nMOS transistor, and a pMOS transistor.
[0012]
In this specification, the conductive film formed on the insulating film in the nMOS capacitor is referred to as a first conductive film, and the semiconductor below the insulating film is referred to as a second conductive film. The first conductive film is formed of, for example, polysilicon, and the second conductive film is a well formed by implanting impurity ions on a semiconductor substrate or a desired region in the semiconductor substrate.
[0013]
The semiconductor evaluation apparatus of FIG. 1 includes an insulating film thickness reverse extraction unit 1, an impurity concentration reverse extraction unit 2, a substrate concentration reverse extraction unit 3, a surface concentration reverse extraction unit 4, and an insulating film concentration reverse extraction unit 5. The simulator 6 is provided.
[0014]
The insulation film thickness reverse extraction unit 1 applies the first conductive film to the first conductive film in a state where a voltage is applied to the first conductive film so that the surface of the second conductive film becomes a storage layer (an inversion layer in the case of a pMOS capacitor). The capacitance C between the second conductive films is calculated, the thickness of the insulating film is adjusted so that the calculation result matches the measured value of the capacitance C, and the insulating thickness tox is back-extracted.
[0015]
The impurity concentration back extraction unit 2 applies the back extracted insulating film in a state where a voltage is applied to the first conductive film such that the surface of the second conductive film becomes an inversion layer (storage layer in the case of a pMOS capacitor). The capacitance C is calculated by the simulator 6 using the thickness tox, and the impurity concentration in the polysilicon as the first conductive film (hereinafter referred to as poly concentration) Npoly so that the calculation result coincides with the measured value of the capacitance C. Is adjusted and the poly concentration Npoly is back-extracted.
[0016]
The substrate concentration reverse extraction unit 3 is configured such that the surface of the second conductive film becomes a depletion layer from an inversion layer (storage layer in the case of a pMOS capacitor) and a depletion layer to an accumulation layer (in the case of a pMOS capacitor, an inversion layer). ) Is applied to the first conductive film, and the capacitance C is calculated by the simulator 6 using the back-extracted insulating film thickness tox and the polyconcentration Npoly of the first conductive film. Then, the substrate impurity concentration Nsub of the second conductive film is adjusted so that the slope of the calculation result matches the slope of the measured value of the capacitance C, and the substrate impurity concentration Nsub of the second conductive film is back-extracted.
[0017]
The surface concentration back extraction unit 4 applies the back extracted insulating film thickness tox and the first conductive film in a state where a voltage is applied to the first conductive film so that the surface of the second conductive film becomes a depletion layer. The capacitance C is calculated by the simulator 6 using the poly concentration Npoly and the substrate impurity concentration Nsub of the second conductive film, and the surface impurity concentration Nsrf of the second conductive film is set so that the calculation result matches the measured value of the capacitance C. And the surface impurity concentration Nsrf is back-extracted.
[0018]
The insulating film concentration back-extraction unit 5 applies the back-extracted insulating film thickness tox and the first conductivity in a state where a voltage is applied to the first conductive film so that the surface of the second conductive film becomes a depletion layer. The capacitance C is calculated by the simulator 6 using the poly concentration Npoly of the film, the substrate impurity concentration Nsub of the second conductive film, and the surface impurity concentration Nsrf of the second conductive film, and the calculation result matches the measured value of the capacitance C In this way, the impurity concentration in the insulating film is adjusted, and the impurity concentration in the insulating film is back-extracted.
[0019]
FIG. 2 is a flowchart showing a processing procedure of the semiconductor evaluation apparatus of FIG. First, as a preparation stage, the current J-voltage characteristic (JV characteristic) and the capacitance C-voltage characteristic (CV characteristic) of the nMOS capacitor are measured (step S1).
[0020]
Subsequently, as the first stage of matching, matching of the insulating film thickness tox is performed (step S2). FIG. 3A shows the dependency of the CV curve on the insulating film, and FIG. 3B shows the dependency of the JV curve on the insulating film. As can be seen from these figures, when the insulating film thickness tox is changed, both the JV curve and the CV curve change. In particular, when the gate voltage VG is around (-2) V, the rate of change of the CV curve is large. Therefore, in step S2 described above, the capacity C is calculated by the simulator 6 while adjusting the insulating film thickness tox while the gate voltage VG is set to (−2) V, for example, and the calculated value of the capacity C is measured. To match. Thereby, the insulating film thickness tox is back-extracted.
[0021]
Here, the general formula of the CV curve is expressed by formula (1).
C (VG) = f (VG, tox, Npoly, Nsrf, Nsub, Nins) (1)
As a specific example of the expression (1), for example, the expression (2) can be considered.
[Expression 1]
Figure 0003906091
(2) In the formula, Qs is the surface charge density, the V G is the voltage applied to the first conductive film.
Q s in the formula (2) is represented by the formula (3).
[Expression 2]
Figure 0003906091
The hole concentration, n is the electron concentration.
[0022]
N D + and N A are represented by formulas (4) and (5), respectively.
N D + = r D × N D (4)
N A = r A × N A (5)
In the formulas (4) and (5), r D is the donor ionization rate, r A is the acceptor ionization rate, N D is the donor concentration, and N A is the acceptor concentration.
[0023]
The simulator 6 performs a simulation based on the equation (2) and back-extracts the insulating film thickness tox.
[0024]
Subsequently, as a second stage of alignment, alignment of the polyconcentration Npoly of the first conductive film is performed (step S3). FIG. 4A shows the dependency of the CV curve on the poly concentration Npoly, and FIG. 4B shows the dependency of the JV curve on the poly concentration Npoly. As can be seen from these figures, the CV curve varies greatly depending on the polyconcentration Npoly in the range of VG> 0 V (inversion layer region if the semiconductor substrate is p-type, accumulation layer region if the semiconductor substrate is n-type), The JV curve varies greatly depending on the poly concentration Npoly in the range of -1 <VG <0V (depletion layer region).
[0025]
For this reason, in step S3 described above, if the semiconductor substrate is p-type, a voltage (for example, VG = 1V) is applied to the first conductive film so that the substrate surface becomes an inversion layer, and the reverse is performed in step S2. The capacitance C is calculated by the simulator 6 using the extracted insulating film thickness tox, and the polyconcentration Npoly of the first conductive film is adjusted so that the calculation result matches the measured value of the capacitance C. Back-extract.
[0026]
Subsequently, as a third stage of alignment, alignment of the substrate impurity concentration Nsub of the second conductive film is performed (step S4). FIG. 5A shows the substrate concentration dependency of the CV curve, and FIG. 5B shows the substrate concentration dependency of the JV curve. As can be seen from these figures, the CV curve varies greatly depending on the surface concentration in the range of -1V <VG <0V (depletion region). Also, the JV curve changes greatly depending on the surface concentration in the range of -1 <VG <0V (depletion region).
[0027]
Therefore, in step S4 described above, for example, with VG = −0.5V applied to the first conductive film, the insulating film thickness tox back-extracted in step S2 and the poly-concentration Npoly back-extracted in step S3 are obtained. Then, the capacitance C is calculated by the simulator 6 and the substrate impurity concentration Nsub of the second conductive film is adjusted so that the inclination of the calculation result coincides with the inclination of the measured value of the capacitance C, and the substrate impurity concentration Nsub is reversed. Extract.
[0028]
Subsequently, as a fourth stage of alignment, the concentration of impurities in the second conductive film (that is, the surface impurity concentration Nsrf) is adjusted (step S5). 6A shows the surface impurity concentration Nsrf dependency of the CV curve, and FIG. 6B shows the surface impurity concentration dependency of the JV curve. As can be seen from these figures, both the CV curve and the JV curve change depending on the surface impurity concentration Nsrf in the range of -1V <VG <0V (depletion layer region), and hardly change in other voltage ranges. .
[0029]
Therefore, in step S5 described above, the insulation film thickness back-extracted in step S2 in a state where a voltage (for example, VG = −0.5V) within the range of −1V <VG <0V is applied to the first conductive film. The capacitance C between the first and second conductive films is calculated by the simulator 6 using tox, the poly concentration Npoly back-extracted in step S3, and the substrate impurity concentration Nsrf back-extracted in step S4. The surface impurity concentration Nsrf is adjusted to match the measured value of the capacitance C, and the surface impurity concentration Nsrf is back-extracted.
[0030]
Subsequently, as a fifth stage of matching, matching of the impurity concentration Nins in the insulating film is performed (step S6). 7A shows the dependency of the CV curve on the impurity concentration in the insulating film, and FIG. 7B shows the dependency of the JV curve on the impurity concentration in the insulating film. As can be seen from these figures, the CV curve does not change even when the voltage applied to the first conductive film is changed, and the JV curve is in the range of -1V <VG <0V (depletion layer region). It varies greatly depending on the medium impurity concentration Nins, and hardly changes in other voltage ranges.
[0031]
Therefore, in step S6 described above, the insulating film thickness back-extracted in step S2 in a state where a voltage (for example, VG = −0.5V) within the range of −1 <VG <0V is applied to the first conductive film. The gate current is calculated by the simulator 6 using tox, the poly concentration Npoly back-extracted in step S3, the substrate impurity concentration Nsub back-extracted in step S4, and the surface impurity concentration Nsrf back-extracted in step S5. The in-film impurity concentration Nins is back-extracted by adjusting the in-film impurity concentration Nins so that the calculation result matches the measured value of the gate current.
[0032]
Here, the general formula of the JV curve is expressed by formula (6).
J (VG) = g (VG, tox, Npoly, Nsrf, Nsub, Nins) (6)
As a specific example of the formula (6), for example, the formula (7) can be considered.
[Equation 3]
Figure 0003906091
In equation (7), m de is the effective state density electron mass, EC poly is the conduction band edge of polysilicon, EC sub is the conduction band edge of the substrate silicon, t ox is the insulating film thickness tox, and q = 1.6 × 10 −19 [C], M c = 6.
[0033]
The function f in the equation (7) is expressed by the equation (8).
[Expression 4]
Figure 0003906091
In the equation (8), E F is the Fermi level, k B = 1.38 × 10 −23 [J / K], and T is the absolute temperature [K].
[0034]
Κ in the equation (7) is expressed by the equation (9).
[Equation 5]
Figure 0003906091
In the equation (9), EC ox is the conduction band edge of the insulating film.
[0035]
M ox in the formula (9) is represented by the formula (10).
[Formula 6]
Figure 0003906091
(10) In the formula, EG ox is the energy band gap, m p are parabolic tunnel mass, m F Franz tunnel mass, m c is the conduction band tunneling mass, m v is the valence band tunnel mass of the insulating film .
[0036]
The following relationship holds between Ψs poly and Ψs sub in the equation (7).
[Expression 7]
Figure 0003906091
The function F in the equation (11) is expressed by the equation (12).
[Equation 8]
Figure 0003906091
Β and L D in the formula (12) are represented by the formula (13) and the formula (14), respectively.
[Equation 9]
Figure 0003906091
[Expression 10]
Figure 0003906091
In the equation (14), ε s = 11.9 × ε 0 and ε 0 = 8.85 × 10 −12 [F / m].
[0037]
8 and 9 are diagrams summarizing the above-described five-stage back extraction method. FIG. 8 shows a CV curve and FIG. 9 shows a JV curve. In FIG. 8, in the vicinity of VG = -2V, the CV curve depends only on the change in the insulating film thickness tox. There is no other region that depends only on the change in the insulation film thickness tox in the entire region of the CV curve and the JV curve. For this reason, in step S2 of FIG. 2, as the first stage of fitting, the insulating film thickness tox is back-extracted in the vicinity of VG = -2V.
[0038]
Subsequently, in the vicinity of VG = 1V, the CV curve depends only on the change in the insulating film thickness tox and the polyconcentration Npoly of the first conductive film. Since the insulating film thickness tox has already been back-extracted, in step S3 in FIG. 2, the polyconcentration Npoly of the first conductive film is back-extracted in the vicinity of VG = 1V as the second stage of fitting.
[0039]
Subsequently, in the vicinity of -1V <VG <0V, the CV curve depends only on the insulating film thickness tox, the poly concentration Npoly, the substrate concentration Nsub, and the surface impurity concentration Nsrf. Of these, the insulating film thickness tox and the poly concentration Npoly have already been back-extracted. Further, since the Nsub dependence in this region appears in the slope of the CV curve, in step S4 in FIG. 2, the substrate impurity concentration Nsub is back-extracted as the third stage of matching.
[0040]
In step S5 of FIG. 2, as the fourth stage of matching, back extraction of the surface impurity concentration Nsrf is performed in the voltage range of -1V <VG <0V.
[0041]
Subsequently, when -1V <VG <0V, the JV curve depends on the impurity concentration Nins in the insulating film. Therefore, in step S6 of FIG. 2, as the fifth stage of matching, back extraction of the impurity concentration Nins in the insulating film is performed in the voltage range of -1V <VG <0V.
[0042]
As described above, in this embodiment, the voltage applied to the first conductive film is switched in a plurality of ways, and for each voltage, the electrical characteristic factors tox, Npoly, which are dominant with respect to the change in the CV curve and JV curve. Since Nsub, Nsrf, and Nins are back-extracted, each electrical characteristic factor can be evaluated with high accuracy.
[0043]
Moreover, in this embodiment, since each electrical characteristic factor can be calculated without destroying the semiconductor device formed on the wafer, it can be applied to an actual product pre-shipment inspection.
In particular, the insulating film thickness tox can be applied to the inspection of the oxidation process, the polyconcentration Npoly of the first conductive film can be applied to the inspection of the CVD process, and the surface impurity concentration Nsrf and the substrate impurity concentration can be applied to the inspection of the thermal process.
[0044]
Furthermore, the non-destructive measurement by the five-step back-extraction method described above can be performed using a MOSFET having a gate that is long enough to reduce the influence of the diffusion layer on the channel electric field. Further, a line and space pattern of the protection element portion may be used, or measurement may be performed using a MOS capacitor or a MOSFET that is selectively placed on the wafer in advance.
[0045]
In the above-described embodiment, the method of evaluating five types of electrical characteristic factors tox, Npoly, Nsub, Nsrf, and Nins by performing five stages of back extraction has been described, but back extraction is performed together with other electrical characteristic factors. May be. For example, the position Zins of the impurities in the insulating film may be back-extracted together with the above five types of parameters. In this case, general formulas of the CV curve and the JV curve are respectively expressed by the equations (15) and (16).
C (VG) = f (VG, tox, Npoly, Nsrf, Nsub, Nins, Zins) (15)
J (VG) = g (VG, tox, Npoly, Nsrf, Nsub, Nins, Zins) (16)
[0046]
The semiconductor evaluation apparatus described in the above-described embodiment may be configured by hardware or software. When configured by software, a program for realizing the function of the semiconductor evaluation apparatus may be stored in a recording medium such as a floppy disk or a CD-ROM and read and executed by a computer. The recording medium is not limited to a portable medium such as a magnetic disk or an optical disk, but may be a fixed recording medium such as a hard disk device or a memory.
[0047]
Further, a program for realizing the function of the semiconductor evaluation apparatus may be distributed via a communication line (including wireless communication) such as the Internet. Further, the program may be distributed in a state where the program is encrypted, modulated or compressed, and stored in a recording medium via a wired line such as the Internet or a wireless line.
[0048]
【The invention's effect】
As described above in detail, according to the present invention, the first and second conductive films are applied for each voltage by applying a low voltage that does not cause dielectric breakdown between the first and second conductive films. In order to measure the current flowing between them or the capacitance between the first and second conductive films, the thickness of the insulating film of the semiconductor device, the impurity concentration of the first conductive film, and the second without destroying the semiconductor device. The surface impurity concentration of the conductive film, the impurity concentration in the second conductive film, and the impurity concentration in the insulating film can be accurately evaluated.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of a semiconductor evaluation apparatus according to the present invention.
FIG. 2 is a flowchart showing a processing procedure of the semiconductor evaluation apparatus in FIG. 1;
3A is a diagram showing the dependency of the CV curve on the insulation film thickness, and FIG. 3B is a diagram showing the dependency of the JV curve on the insulation film thickness.
4A is a diagram showing the poly concentration dependency of a CV curve, and FIG. 4B is a diagram showing the poly concentration dependency of a JV curve.
5A is a diagram showing the substrate concentration dependency of a CV curve, and FIG. 5B is a diagram showing the substrate concentration dependency of a JV curve.
6A is a diagram showing the surface impurity concentration dependency of a CV curve, and FIG. 6B is a diagram showing the surface impurity concentration dependency of a JV curve.
7A is a diagram showing the dependency of the CV curve on the impurity concentration in the insulating film; FIG. 7B is a diagram showing the dependency of the JV curve on the impurity concentration in the insulating film.
FIG. 8 is a diagram showing a CV curve for explaining a five-stage back extraction method.
FIG. 9 is a diagram showing a JV curve for explaining a five-stage back extraction method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insulation film thickness reverse extraction part 2 Impurity density | concentration reverse extraction part 3 Substrate density | concentration reverse extraction part 4 Surface concentration reverse extraction part 5 Insulating film concentration reverse extraction part 6 Simulator

Claims (9)

絶縁膜の上面に形成される不純物を含む半導体からなる第1導電性膜と、前記絶縁膜の下面に形成される不純物を含む半導体からなる第2導電性膜と、を有する半導体装置の電気的特性をシミュレータにより評価する半導体評価方法であって、
前記第1および第2導電性膜間に、フラットバンド条件を満たす電圧を含む電圧区間内の電圧を印加し、各電圧ごとに前記絶縁膜を介して前記第1および第2導電性膜間を流れる電流、または前記第1および第2導電性膜間の容量を測定するステップと、
前記測定された前記第1および第2の導電性膜間を流れる電流と、前記第1および第2導電性膜間の容量と、に基づいて、前記絶縁膜の厚さ、前記第1導電性膜の不純物濃度、前記第2導電性膜の基板不純物濃度、前記第2導電性膜の表面不純物濃度、および前記絶縁膜中の不純物濃度を計算するステップと、を備えることを特徴とする半導体評価方法。
Electrical of a semiconductor device having a first conductive film made of a semiconductor containing an impurity formed on an upper surface of an insulating film and a second conductive film made of a semiconductor containing an impurity formed on a lower surface of the insulating film A semiconductor evaluation method for evaluating characteristics with a simulator,
A voltage within a voltage interval including a voltage satisfying a flat band condition is applied between the first and second conductive films, and the first and second conductive films are interposed between the first and second conductive films for each voltage via the insulating film. Measuring a flowing current, or a capacitance between the first and second conductive films;
Based on the measured current flowing between the first and second conductive films and the capacitance between the first and second conductive films, the thickness of the insulating film, the first conductivity A step of calculating an impurity concentration of the film, a substrate impurity concentration of the second conductive film, a surface impurity concentration of the second conductive film, and an impurity concentration in the insulating film. Method.
絶縁膜の上面に形成される不純物を含む半導体からなる第1導電性膜と、前記絶縁膜の下面に形成されるp型不純物を含む半導体からなる第2導電性膜と、を有する半導体装置の電気的特性をシミュレータにより評価する半導体評価方法であって、
前記第2導電性膜の表面が蓄積層になる程度の電圧を前記第1導電性膜に印加した状態で、前記シミュレータにより計算された前記第1および第2導電性膜間の容量が前記容量の測定値に一致するように前記絶縁膜の膜厚を調整して、前記絶縁膜の膜厚を逆抽出するステップと、
前記第2導電性膜の表面が反転層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚を用いて前記シミュレータで計算された前記容量が前記容量の測定値に一致するように前記第1導電性膜の不純物濃度を調整して、前記第1導電性膜の不純物濃度を逆抽出するステップと、
前記第2導電性膜の表面が空乏層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚および前記逆抽出された第1導電性膜の不純物濃度を用いて前記シミュレータで計算された前記容量の傾きが測定された前記容量の傾きに一致するように前記第2導電性膜の基板不純物濃度を調整して、前記第2導電性膜の基板不純物濃度を逆抽出するステップと、
前記第2導電性膜の表面が空乏層になる電圧領域の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚、前記逆抽出された第1導電性膜の不純物濃度および前記逆抽出された第2導電性膜の基板不純物濃度を用いて前記シミュレータで計算された前記容量が前記容量の測定値に一致するように前記第2導電性膜の表面不純物濃度を調整して、前記第2導電性膜の表面不純物濃度を逆抽出するステップと、
前記第2導電性膜の表面が空乏層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚、前記逆抽出された第1導電性膜の不純物濃度、前記逆抽出された第2導電性膜の基板不純物濃度および前記逆抽出された第2導電性膜の表面不純物濃度を用いて前記シミュレータで計算された前記電流が前記電流の測定値に一致するように前記絶縁膜の膜中不純物濃度を調整して、前記絶縁膜の膜中不純物濃度を逆抽出するステップと、を備えることを特徴とする半導体評価方法。
A semiconductor device comprising: a first conductive film made of a semiconductor containing an impurity formed on an upper surface of an insulating film; and a second conductive film made of a semiconductor containing a p-type impurity formed on a lower surface of the insulating film. A semiconductor evaluation method for evaluating electrical characteristics with a simulator,
The capacitance between the first and second conductive films calculated by the simulator in a state where a voltage is applied to the first conductive film so that the surface of the second conductive film becomes a storage layer. Adjusting the film thickness of the insulating film to match the measured value, and back-extracting the film thickness of the insulating film;
The capacitance calculated by the simulator using the thickness of the back-extracted insulating film in a state in which a voltage to the extent that the surface of the second conductive film becomes an inversion layer is applied to the first conductive film. Adjusting the impurity concentration of the first conductive film so as to match the measured value of the capacitance, and back extracting the impurity concentration of the first conductive film;
The thickness of the back-extracted insulating film and the back-extracted first conductive film in a state where a voltage is applied to the first conductive film so that the surface of the second conductive film becomes a depletion layer. And adjusting the substrate impurity concentration of the second conductive film so that the slope of the capacitance calculated by the simulator matches the measured slope of the capacitance using the impurity concentration of the second conductive film. Back-extracting the substrate impurity concentration of
With the voltage in the voltage region where the surface of the second conductive film becomes a depletion layer being applied to the first conductive film, the thickness of the back-extracted insulating film and the back-extracted first conductivity Surface impurities of the second conductive film so that the capacitance calculated by the simulator matches the measured value of the capacitance using the impurity concentration of the film and the substrate impurity concentration of the back-extracted second conductive film Back-extracting the surface impurity concentration of the second conductive film by adjusting the concentration; and
The back-extracted insulating film thickness and the back-extracted first conductive film in a state in which a voltage to the extent that the surface of the second conductive film becomes a depletion layer is applied to the first conductive film. The current calculated by the simulator using the impurity concentration of the substrate, the substrate impurity concentration of the back-extracted second conductive film and the surface impurity concentration of the back-extracted second conductive film is the measured value of the current Adjusting the impurity concentration in the film of the insulating film so as to match, and back extracting the impurity concentration in the film of the insulating film.
絶縁膜の上面に形成される不純物を含む半導体からなる第1導電性膜と、前記絶縁膜の下面に形成されるn型不純物を含む半導体からなる第2導電性膜と、を有する半導体装置の電気的特性をシミュレータにより評価する半導体評価方法であって、
前記第2導電性膜の表面が反転層になる程度の電圧を前記第1導電性膜に印加した状態で、前記シミュレータにより計算された前記第1および第2導電性膜間の容量が前記容量の測定値に一致するように前記絶縁膜の膜厚を調整して、前記絶縁膜の膜厚を逆抽出するステップと、
前記第2導電性膜の表面が蓄積層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚を用いて前記シミュレータで計算された前記容量が前記容量の測定値に一致するように前記第1導電性膜の不純物濃度を調整して、前記第1導電性膜の不純物濃度を逆抽出するステップと、
前記第2導電性膜の表面が空乏層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚および前記逆抽出された第1導電性膜の不純物濃度を用いて前記シミュレータで計算された前記容量の傾きが測定された前記容量の傾きに一致するように前記第2導電性膜の基板不純物濃度を調整して、前記第2導電性膜の基板不純物濃度を逆抽出するステップと、
前記第2導電性膜の表面が空乏層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚、前記逆抽出された第1導電性膜の不純物濃度および前記逆抽出された第2導電性膜の表面不純物濃度を用いて前記シミュレータで計算された前記容量が前記容量の測定値に一致するように前記第2導電性膜の表面不純物濃度を調整して、前記第2導電性膜の表面不純物濃度を逆抽出するステップと、
前記第2導電性膜の表面が空乏層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚、前記逆抽出された第1導電性膜の不純物濃度、前記逆抽出された第2導電性膜の基板不純物濃度および前記逆抽出された第2導電性膜の表面不純物濃度を用いて前記シミュレータで計算された前記電流が前記電流の測定値に一致するように前記絶縁膜の膜中不純物濃度を調整して、前記絶縁膜の膜中不純物濃度を逆抽出するステップと、を備えることを特徴とする半導体評価方法。
A semiconductor device comprising: a first conductive film made of a semiconductor containing impurities formed on an upper surface of an insulating film; and a second conductive film made of a semiconductor containing n-type impurities formed on a lower surface of the insulating film. A semiconductor evaluation method for evaluating electrical characteristics with a simulator,
The capacitance between the first and second conductive films calculated by the simulator in a state where a voltage is applied to the first conductive film so that the surface of the second conductive film becomes an inversion layer. Adjusting the film thickness of the insulating film to match the measured value, and back-extracting the film thickness of the insulating film;
The capacitance calculated by the simulator using the thickness of the back-extracted insulating film in a state where a voltage is applied to the first conductive film so that the surface of the second conductive film becomes a storage layer. Adjusting the impurity concentration of the first conductive film so as to match the measured value of the capacitance, and back extracting the impurity concentration of the first conductive film;
The thickness of the back-extracted insulating film and the back-extracted first conductive film in a state where a voltage is applied to the first conductive film so that the surface of the second conductive film becomes a depletion layer. And adjusting the substrate impurity concentration of the second conductive film so that the slope of the capacitance calculated by the simulator matches the measured slope of the capacitance using the impurity concentration of the second conductive film. Back-extracting the substrate impurity concentration of
The back-extracted insulating film thickness and the back-extracted first conductive film in a state in which a voltage to the extent that the surface of the second conductive film becomes a depletion layer is applied to the first conductive film. And the back-extracted surface impurity concentration of the second conductive film so that the capacitance calculated by the simulator matches the measured value of the capacitance. Adjusting the surface impurity concentration of the second conductive film by adjusting
The back-extracted insulating film thickness and the back-extracted first conductive film in a state in which a voltage to the extent that the surface of the second conductive film becomes a depletion layer is applied to the first conductive film. The current calculated by the simulator using the impurity concentration of the substrate, the substrate impurity concentration of the back-extracted second conductive film and the surface impurity concentration of the back-extracted second conductive film is the measured value of the current Adjusting the impurity concentration in the film of the insulating film so as to match, and back extracting the impurity concentration in the film of the insulating film.
前記第2導電性膜は、半導体基板そのものか、あるいは半導体基板内にウェル領域として形成されることを特徴とする請求項1〜3のいずれかに記載の半導体評価方法。The semiconductor evaluation method according to claim 1, wherein the second conductive film is formed as a well region in the semiconductor substrate itself or in the semiconductor substrate. 前記半導体装置は、MOSトランジスタまたはMOSキャパシタの少なくとも一方であることを特徴とする請求項1〜4のいずれかに記載の半導体評価方法。The semiconductor evaluation method according to claim 1, wherein the semiconductor device is at least one of a MOS transistor and a MOS capacitor. 前記各ステップの処理は、ウエハ上に形成された複数のMOSトランジスタまたはMOSキャパシタのうち、任意に選択された各デバイスごとに行われ、選択された各デバイスごとにそれぞれ個別に前記容量と前記第1および第2導電性膜間を流れる電流とを検出可能であることを特徴とする請求項5に記載の半導体評価方法。The processing of each step is performed for each arbitrarily selected device among a plurality of MOS transistors or MOS capacitors formed on the wafer, and the capacitance and the first are individually determined for each selected device. 6. The semiconductor evaluation method according to claim 5, wherein a current flowing between the first and second conductive films can be detected. 前記半導体装置の電気的特性を評価する際に前記第2導電性膜に印加される電圧は、前記絶縁膜を破壊しない程度の電圧であることを特徴とする請求項1〜6のいずれかに記載の半導体評価方法。7. The voltage applied to the second conductive film when evaluating electrical characteristics of the semiconductor device is a voltage that does not destroy the insulating film. The semiconductor evaluation method of description. 絶縁膜の上面に形成される不純物を含む半導体からなる第1導電性膜と、前記絶縁膜の下面に形成されるp型不純物を含む半導体からなる第2導電性膜と、を有する半導体装置の電気的特性をシミュレータにより評価する半導体評価装置であって、
前記第2導電性膜の表面が蓄積層になる程度の電圧を前記第1導電性膜に印加した状態で、前記シミュレータにより計算された前記第1および第2導電性膜間の容量が前記容量の測定値に一致するように前記絶縁膜の膜厚を調整して、前記絶縁膜の膜厚を逆抽出する絶縁膜厚逆抽出部と、
前記第2導電性膜の表面が反転層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚を用いて前記シミュレータで計算された前記容量が前記容量の測定値に一致するように前記第1導電性膜の不純物濃度を調整して、前記第1導電性膜の不純物濃度を逆抽出する不純物濃度逆抽出部と、
前記第2導電性膜の表面が空乏層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚および前記逆抽出された第1導電性膜の不純物濃度を用いて前記シミュレータで計算された前記容量の傾きが測定された前記容量の傾きに一致するように前記第2導電性膜の基板不純物濃度を調整して、前記第2導電性膜の基板不純物濃度を逆抽出する基板濃度逆抽出部と、
前記第2導電性膜の表面が空乏層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚、前記逆抽出された第1導電性膜の不純物濃度および前記逆抽出された第2導電性膜の表面不純物濃度を用いて前記シミュレータで計算された前記容量が前記容量の測定値に一致するように前記第2導電性膜の表面不純物濃度を調整して、前記第2導電性膜の表面不純物濃度を逆抽出する表面濃度逆抽出部と、
前記第2導電性膜の表面が空乏層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚、前記逆抽出された第1導電性膜の不純物濃度、前記逆抽出された第2導電性膜の基板不純物濃度および前記逆抽出された第2導電性膜の表面不純物濃度を用いて前記シミュレータで計算された前記電流が前記電流の測定値に一致するように前記絶縁膜の膜中不純物濃度を調整して、前記絶縁膜の膜中不純物濃度を逆抽出する絶縁膜中濃度逆抽出部と、を備えることを特徴とする半導体評価装置。
A semiconductor device comprising: a first conductive film made of a semiconductor containing an impurity formed on an upper surface of an insulating film; and a second conductive film made of a semiconductor containing a p-type impurity formed on a lower surface of the insulating film. A semiconductor evaluation device for evaluating electrical characteristics by a simulator,
The capacitance between the first and second conductive films calculated by the simulator in a state where a voltage is applied to the first conductive film so that the surface of the second conductive film becomes a storage layer. Adjusting the film thickness of the insulating film so as to match the measured value of the insulating film, and an insulating film thickness reverse extraction unit for back extracting the film thickness of the insulating film;
The capacitance calculated by the simulator using the thickness of the back-extracted insulating film in a state in which a voltage to the extent that the surface of the second conductive film becomes an inversion layer is applied to the first conductive film. Adjusting the impurity concentration of the first conductive film so as to match the measured value of the capacitance, and back-extracting the impurity concentration of the first conductive film;
The thickness of the back-extracted insulating film and the back-extracted first conductive film in a state where a voltage is applied to the first conductive film so that the surface of the second conductive film becomes a depletion layer. And adjusting the substrate impurity concentration of the second conductive film so that the slope of the capacitance calculated by the simulator matches the measured slope of the capacitance using the impurity concentration of the second conductive film. A substrate concentration back extraction unit for back extracting the substrate impurity concentration of
The back-extracted insulating film thickness and the back-extracted first conductive film in a state in which a voltage to the extent that the surface of the second conductive film becomes a depletion layer is applied to the first conductive film. And the back-extracted surface impurity concentration of the second conductive film so that the capacitance calculated by the simulator matches the measured value of the capacitance. And a surface concentration back extraction unit for back extracting the surface impurity concentration of the second conductive film;
The back-extracted insulating film thickness and the back-extracted first conductive film in a state in which a voltage to the extent that the surface of the second conductive film becomes a depletion layer is applied to the first conductive film. The current calculated by the simulator using the impurity concentration of the substrate, the substrate impurity concentration of the back-extracted second conductive film and the surface impurity concentration of the back-extracted second conductive film is the measured value of the current And an insulating film concentration reverse extraction section that adjusts the impurity concentration in the insulating film so as to match the above and reversely extracts the impurity concentration in the insulating film.
絶縁膜の上面に形成される不純物を含む半導体からなる第1導電性膜と、前記絶縁膜の下面に形成されるn型不純物を含む半導体からなる第2導電性膜と、を有する半導体装置の電気的特性をシミュレータにより評価する半導体評価装置であって、
前記第2導電性膜の表面が反転層になる程度の電圧を前記第1導電性膜に印加した状態で、前記シミュレータにより計算された前記第1および第2導電性膜間の容量が前記容量の測定値に一致するように前記絶縁膜の膜厚を調整して、前記絶縁膜の膜厚を逆抽出する絶縁膜厚逆抽出部と、
前記第2導電性膜の表面が蓄積層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚を用いて前記シミュレータで計算された前記容量が前記容量の測定値に一致するように前記第1導電性膜の不純物濃度を調整して、前記第1導電性膜の不純物濃度を逆抽出する不純物濃度逆抽出部と、
前記第2導電性膜の表面が空乏層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚および前記逆抽出された第1導電性膜の不純物濃度を用いて前記シミュレータで計算された前記容量の傾きが測定された前記容量の傾きに一致するように前記第2導電性膜の基板不純物濃度を調整して、前記第2導電性膜の基板不純物濃度を逆抽出する基板濃度逆抽出部と、
前記第2導電性膜の表面が空乏層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚、前記逆抽出された第1導電性膜の不純物濃度および前記逆抽出された第2導電性膜の表面不純物濃度を用いて前記シミュレータで計算された前記容量が前記容量の測定値に一致するように前記第2導電性膜の表面不純物濃度を調整して、前記第2導電性膜の表面不純物濃度を逆抽出する表面濃度逆抽出部と、
前記第2導電性膜の表面が空乏層になる程度の電圧を前記第1導電性膜に印加した状態で、前記逆抽出された絶縁膜の膜厚、前記逆抽出された第1導電性膜の不純物濃度、前記逆抽出された第2導電性膜の基板不純物濃度および前記逆抽出された第2導電性膜の表面不純物濃度を用いて前記シミュレータで計算された前記電流が前記電流の測定値に一致するように前記絶縁膜の膜中不純物濃度を調整して、前記絶縁膜の膜中不純物濃度を逆抽出する絶縁膜中濃度逆抽出部と、を備えることを特徴とする半導体評価装置。
A semiconductor device comprising: a first conductive film made of a semiconductor containing impurities formed on an upper surface of an insulating film; and a second conductive film made of a semiconductor containing n-type impurities formed on a lower surface of the insulating film. A semiconductor evaluation device for evaluating electrical characteristics by a simulator,
The capacitance between the first and second conductive films calculated by the simulator in a state where a voltage is applied to the first conductive film so that the surface of the second conductive film becomes an inversion layer. Adjusting the film thickness of the insulating film so as to match the measured value of the insulating film, and an insulating film thickness reverse extraction unit for back extracting the film thickness of the insulating film;
The capacitance calculated by the simulator using the thickness of the back-extracted insulating film in a state where a voltage is applied to the first conductive film so that the surface of the second conductive film becomes a storage layer. Adjusting the impurity concentration of the first conductive film so as to match the measured value of the capacitance, and back-extracting the impurity concentration of the first conductive film;
The thickness of the back-extracted insulating film and the back-extracted first conductive film in a state where a voltage is applied to the first conductive film so that the surface of the second conductive film becomes a depletion layer. And adjusting the substrate impurity concentration of the second conductive film so that the slope of the capacitance calculated by the simulator matches the measured slope of the capacitance using the impurity concentration of the second conductive film. A substrate concentration back extraction unit for back extracting the substrate impurity concentration of
The back-extracted insulating film thickness and the back-extracted first conductive film in a state in which a voltage to the extent that the surface of the second conductive film becomes a depletion layer is applied to the first conductive film. And the back-extracted surface impurity concentration of the second conductive film so that the capacitance calculated by the simulator matches the measured value of the capacitance. And a surface concentration back extraction unit for back extracting the surface impurity concentration of the second conductive film;
The back-extracted insulating film thickness and the back-extracted first conductive film in a state in which a voltage to the extent that the surface of the second conductive film becomes a depletion layer is applied to the first conductive film. The current calculated by the simulator using the impurity concentration of the substrate, the substrate impurity concentration of the back-extracted second conductive film and the surface impurity concentration of the back-extracted second conductive film is the measured value of the current And an insulating film concentration reverse extraction section that adjusts the impurity concentration in the insulating film so as to match the above and reversely extracts the impurity concentration in the insulating film.
JP2002030655A 2002-02-07 2002-02-07 Semiconductor evaluation method and semiconductor evaluation apparatus Expired - Fee Related JP3906091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002030655A JP3906091B2 (en) 2002-02-07 2002-02-07 Semiconductor evaluation method and semiconductor evaluation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002030655A JP3906091B2 (en) 2002-02-07 2002-02-07 Semiconductor evaluation method and semiconductor evaluation apparatus

Publications (2)

Publication Number Publication Date
JP2003234469A JP2003234469A (en) 2003-08-22
JP3906091B2 true JP3906091B2 (en) 2007-04-18

Family

ID=27774328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002030655A Expired - Fee Related JP3906091B2 (en) 2002-02-07 2002-02-07 Semiconductor evaluation method and semiconductor evaluation apparatus

Country Status (1)

Country Link
JP (1) JP3906091B2 (en)

Also Published As

Publication number Publication date
JP2003234469A (en) 2003-08-22

Similar Documents

Publication Publication Date Title
TWI466211B (en) Resistive test structure, semiconductor device, and method performed using a resistive device
Anderson et al. Evaluation of Si: HfO 2 ferroelectric properties in MFM and MFIS structures
US8193824B2 (en) Monitoring plasma induced damage during semiconductor wafer processes
JP3931153B2 (en) Semiconductor device
US6714027B1 (en) Method and apparatus for calculating the electrical characteristics of materials of thin film transistors
US6069485A (en) C-V method to extract lateral channel doping profiles of MOSFETs
US6885214B1 (en) Method for measuring capacitance-voltage curves for transistors
CN101022105B (en) Semiconductor device testing device and substrate for producing tester
Wakam et al. Doping profile extraction in thin SOI films: Application to A2RAM
JP3906091B2 (en) Semiconductor evaluation method and semiconductor evaluation apparatus
CN109300878B (en) Forming method of interface defect characterization structure
JP2005142304A (en) Transistor evaluation method
CN113257790B (en) Electric leakage test structure and electric leakage test method
US20050260776A1 (en) Structure and method for extraction of parasitic junction capacitance in deep submicron technology
JP3827983B2 (en) Semiconductor evaluation method and semiconductor evaluation apparatus
US9209167B2 (en) Determining threshold voltage variations in field effect transistors
Galy et al. In-situ thermal assist recovery thanks to active silicide source on NMOS transistor in FD-SOI technology
JP2006234403A (en) Characteristic evaluation method for semiconductor element
CN107293589B (en) Semiconductor structure and forming method and detection method thereof
JP2002184829A (en) Insulating film capacity evaluation device
JP2007258488A (en) Method of estimating dielectric breakdown life time of insulating film
JP4302287B2 (en) Semiconductor device evaluation method and evaluation apparatus
KR101684149B1 (en) Method for extracting accurate mobility by using conductive length factor based on effective inversion charges of metal-oxide-semiconductor transistor and apparatus thereof
US6403979B1 (en) Test structure for measuring effective channel length of a transistor
Liou et al. Influence of polysilicon-gate depletion on the subthreshold behavior of submicron MOSFETs

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees