JP3905446B2 - ピン型ファスナ付き耐熱構造体とその製造方法及びその耐熱構造体に用いるピン型ファスナ - Google Patents

ピン型ファスナ付き耐熱構造体とその製造方法及びその耐熱構造体に用いるピン型ファスナ Download PDF

Info

Publication number
JP3905446B2
JP3905446B2 JP2002276405A JP2002276405A JP3905446B2 JP 3905446 B2 JP3905446 B2 JP 3905446B2 JP 2002276405 A JP2002276405 A JP 2002276405A JP 2002276405 A JP2002276405 A JP 2002276405A JP 3905446 B2 JP3905446 B2 JP 3905446B2
Authority
JP
Japan
Prior art keywords
heat
ceramic
type fastener
pin
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002276405A
Other languages
English (en)
Other versions
JP2004114708A (ja
Inventor
輝臣 中谷
正道 松嶋
修 岡本
誠三 鈴木
博徳 野口
好康 梁瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Japan Aerospace Exploration Agency JAXA
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Japan Aerospace Exploration Agency JAXA
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Japan Aerospace Exploration Agency JAXA, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002276405A priority Critical patent/JP3905446B2/ja
Publication of JP2004114708A publication Critical patent/JP2004114708A/ja
Application granted granted Critical
Publication of JP3905446B2 publication Critical patent/JP3905446B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Plates (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、熱防御材としての耐火パネル、耐火タイル又は耐火レンガ等の耐熱構造体、特に構造物の装着面に着脱自在に装着することができるピン型ファスナ付き耐熱構造体とその製造方法、及びその耐熱構造体に用いるピン型ファスナに関する。
【0002】
【従来の技術】
従来、耐熱タイル、耐熱レンガ等の耐熱構造体は、断熱性を発揮する構成部分としてセラミックス部分を有している。セラミックスは強度が金属よりも低下するのが避けられないので、セラミックスの部分自体をボルトやナット等の固着具を用いて構造物に装着することができない。そこで、セラミックスから金属まで、両者の組成成分が順次段階的に変化する、所謂、傾斜機能材料を製作し、金属の部分において構造物に装着することが提案されている。耐熱構造体を構造物に取り付ける技術としては、接着による技術、又はファスナによる技術が存在する。かしながら、高温向きの耐熱構造体についてファスナとの一体化の提案は限られており、そうした耐熱構造体に関する技術として、着脱可能な耐熱二次元ファスナ部と傾斜機能材料の耐熱タイルとを一体成形し、更にその後、一体焼成して製品化する「金属製耐熱二次元ファスナを備えた耐熱構造体及びその製造方法」が挙げられる程度である(特許文献1参照)。
【0003】
着脱可能な金属製耐熱二次元ファスナ部は、耐熱線材を用いたループ形状に構成した網構造と、それに噛み合うフック形状の網構造とに加工されている。そうした網構造のため、二次元ファスナは複雑な形状とならざるを得ない。また、硬度が高い線材を高密度で平面状に編み上げるには、一旦鈍した後、編み加工し、再焼き入れ等の処理を行うことができる特殊な加工機の開発が必要であり、現状では量産化が困難である。更に、編み加工した二次元ファスナを傾斜機能材から成る耐熱タイル成形枠内に係着する技術、及び一体焼成等の一連の量産化技術が確立されていないという問題がある。
【0004】
一方、既設の焼却炉や転炉等の高温炉においては、炉壁を構成する耐火レンガの施工方式としては、殆ど、下からの積重ね方式が採用されている。そのため、炉壁の一部に老朽化や損傷が生じた場合、その老朽化部分や損傷部分についてのみの部分改修が困難であり、通常、炉壁全体を解体し再度作り直すことが行なわれている。炉壁の解体作業は崩落事故の危険の可能性が皆無とは言えず、環境を汚染する等の問題点が指摘されることもある。更に、積重ね方式であるため、下方の耐火レンガは上方に積まれた耐火レンガの重量を支える必要があるため、自身の大きさや重量も小型化・軽量化についても限界がある。
【0005】
従来の耐火レンガの積層組立てによって建設される高温焼却炉では、上部燃焼空間の内壁形状には燃焼上の制約条件がある。特に、上部コーナー部の内壁においては凹凸が生じるのが避け難く、この部分における燃焼には不完全燃焼を無くすことが困難である。上部コーナー部は、オーバーハング状態に取り付ける必要があり、耐火レンガの構造物への取付けは非常に困難な作業となっている。
【0006】
【特許文献1】
特公平7−103887号公報
【0007】
【発明が解決しようとする課題】
そこで、傾斜機能材料を用いた耐熱構造体において、傾斜機能材料の一部を構成する金属部と構造の簡単なピン型ファスナとを組み合わせることで、耐熱構造体を構造物の表側から容易に且つ確実に装着可能にする点で解決すべき課題がある。この発明の一つの目的は、構造物の表面を敷き詰めて覆うことができ、また表面側からの作業のみで構造物の表面に施工することも可能にし、更に、特定の耐熱構造体のみを交換、補充する等の部分的な補修をも可能にするピン型ファスナ付き耐熱構造体を提供することである。
【0008】
また、傾斜機能材料を用いた耐熱構造体について、傾斜機能材料を製作する工程の中で、傾斜機能材料の一部を構成することになる金属部にピン型ファスナを結合させることで、耐熱構造体を構造物の表側から容易に且つ確実に装着可能とするピン型ファスナ付き耐熱構造体を製造可能にする点で解決すべき課題がある。この発明の別の目的は、傾斜機能材料を製作する工程を利用して、傾斜機能材料の一部を構成することになる金属部にピン型ファスナを結合させることで、ピン型ファスナ付き耐熱構造体を簡単に且つ的確に製造することを可能にするピン型ファスナ付き耐熱構造体の製造方法を提供することである。
【0009】
また、傾斜機能材料を用いた耐熱構造体において、傾斜機能材料の一部を構成することになる金属部に強固に結合可能なピン型ファスナを得る点で解決すべき課題がある。この発明の他の目的は、それ自身が堅牢であり、傾斜機能材本体と強固に結合可能であり、既存の工作機械を用いて量産化することが可能な、耐熱構造体に用いるピン型ファスナを提供することである。
【0010】
【課題を解決するための手段】
上記の耐熱構造体についての課題を解決するため、この発明によるピン型ファスナ付き耐熱構造体は、耐熱セラミックスから成るセラミックス部、構造物への取付け側となる金属部、及び前記セラミックス部と前記金属部との間に前記耐熱セラミックスと金属との組成比率が段階的又は連続的に変化した組成遷移部が一体的に結合された傾斜機能材本体と、一端側で前記金属部に埋設状態に融着一体結合され他端側で前記構造物への取付けに適用され熱的に隔離されたピン型ファスナとを備えており、前記傾斜機能材本体は該ピン型ファスナと、前記構造物に配設された他のファスナとの螺合により又は該構造物の孔へのアダプタを介しての差込結合により該構造物の表面に敷き詰められ且つ前記螺合または前記差込結合を解くことにより容易に交換することが可能なように構成されていることから成っている。
【0011】
このピン型ファスナ付き耐熱構造体によれば、金属とセラミックスとの組成比率が段階的又は連続的に変化した組成遷移部が、耐熱セラミックスから成るセラミックス部と構造物への取付け側となる金属部とに一体的に結合されて耐熱構造体の傾斜機能材本体を構成しており、金属部にピン型ファスナを埋設状態に結合することで傾斜機能材本体とピン型ファスナとを一体化しているので、耐熱構造体は傾斜機能材本体とピン型ファスナとを一体化したものとして取り扱うことができ、ピン型ファスナを構造物に取り付けることによって、熱に曝されるセラミックス部を表側に向けた状態で耐熱構造体が構造物に取り付けられる。金属部と金属製のピン型ファスナとの結合は、一体焼成することで金属同士が融着した堅固な結合とすることができる。また、耐熱構造体には、一つ又は複数のピン型ファスナを設けることが可能である。
【0012】
このピン型ファスナ付き耐熱構造体において、前記傾斜機能材本体は、前記セラミックス部の表面を平面とし前記傾斜機能材本体の側面を矩形平面とした角柱体形状に形成することができる。複数のピン型ファスナ付き耐熱構造体を構造物の表面に沿って平面的に並べたとき、角柱体形状に形成されている各耐熱構造体は、隣接する耐熱構造体と隙間なく密集可能である。角柱体形状は、直方体が最も製作し易く且つ構造物への敷き詰めも容易であるが、それに限らず、三角柱状、四角柱状、或いは六角柱状であっても周囲に隣接する耐熱構造体と隙間なく密集可能に配置することが可能である。
【0013】
このピン型ファスナ付き耐熱構造体において、前記傾斜機能材本体を、前記セラミックス部の表面として凸面を有し、周囲側面として前記セラミックス部側が拡がり前記セラミックス部の前記凸面と交叉する稜線が外側に凸となった曲線である扇形面を有する立体形状に形成することができる。傾斜機能材本体をこのような立体形状に形成した耐熱構造体は、凸曲面から成る任意表面を持つ構造物に沿って並設したとき、セラミックス部の凸面は互いに接続して上記任意表面に沿った凸球面のような連続凸曲面を与えることができる。
【0014】
このピン型ファスナ付き耐熱構造体において、前記傾斜機能材本体を、前記セラミックス部の表面として凸面を有し、互いに反対方向を向いた一方の対の周囲側面として前記セラミックス部側が拡がり前記セラミックス部の前記凸面と交叉する稜線が外側に凸となった曲線である互いに平行な扇形面を有し、他方の対の周囲側面として前記扇形面と繋がる平行四辺形面をする立体形状に形成することができる。傾斜機能材本体をこのような立体形状に形成した耐熱構造体は、凸面から成る円筒表面を持つ構造物に沿って並設したとき、セラミックス部の凸面は互いに連なって円筒表面に沿った凸円筒面を与えることができる。これらのピン型ファスナ付き耐熱構造体において、セラミックス部の外側の凸面は、滑らかな凸曲面とすることが好ましい。複数の耐熱構造体を並べるときに、耐熱構造体の扇形面又は平行四辺形面が隣接する耐熱構造体の扇形面又は平行四辺形面との間で隙間なく密集可能であり、セラミックス部の外側面同士は、滑らかに接続して凸球面又は凸円筒面のような連続凸曲面を形成することができる。
【0015】
このピン型ファスナ付き耐熱構造体において、前記傾斜機能材本体を、前記セラミックス部の表面として凹面を有し、周囲側面として前記セラミックス部側が窄み前記セラミックス部の前記凹面と交叉する稜線が外側に凹となった曲線である逆扇形面を有する立体形状に形成することができる。傾斜機能材本体をこのような立体形状に形成した耐熱構造体は、凹曲面から成る任意表面を持つ構造物に沿って並設したとき、セラミックス部の凹面は互いに接続して上記任意表面に沿った凹球面のような連続凹曲面を与えることができる。
【0016】
このピン型ファスナ付き耐熱構造体において、前記傾斜機能材本体を、前記セラミックス部の表面として凹面を有し、互いに反対方向を向いた一方の対の周囲側面として前記セラミックス部側が窄み前記セラミックス部の前記凹面と交叉する稜線が外側に凹となった曲線である互いに平行な逆扇形面を有し、他方の対の周囲側面として前記逆扇形面と繋がる平行四辺形面をする立体形状に形成することができる。傾斜機能材本体をこのような立体形状に形成した耐熱構造体は、凹曲面から成る円筒表面を持つ構造物に沿って並設したとき、セラミックス部の凹面は互いに連なって窪んだ円筒表面に沿った凹円筒面を与えることができる。セラミックス部の外側の凹面は、滑らかな凹曲面とすることが好ましい。複数の耐熱構造体を並べるときに、耐熱構造体の逆扇形面又は平行四辺形面が隣接する耐熱構造体の逆扇形面又は平行四辺形面との間で隙間なく密集可能であり、セラミックス部の外側面同士は、滑らかに接続して凹球面又は凹円筒面のような連続凹曲面を形成することができる。
【0017】
このピン型ファスナ付き耐熱構造体において、前記傾斜機能材本体を粒子状の前記耐熱セラミックスと前記金属との焼結体とし、前記ピン型ファスナは前記金属が焼結されて形成された前記金属部の中に埋設状態で結合させることができる。即ち、傾斜機能材本体を粒子状の耐熱セラミックスと金属との焼結体とすることで、金属粒子の中に埋め込んだ状態で焼結によって金属部を形成するときに、ピン型ファスナは取付け部に一体焼結されて埋設状態に結合される。このように、ピン型ファスナは、傾斜機能材本体との一体焼成のため、耐熱構造体の金属部へ確実に融着・一体化し、堅固なピン型ファスナ付き耐熱構造体が得られる。
【0018】
このピン型ファスナ付き耐熱構造体は、表面側が高温に曝される環境下、例えば、宇宙往復機の機体表面に貼着される耐熱パネル、若しくは加熱炉、焼却炉又は精錬用転炉の耐火レンガに適用可能である。一部の耐熱構造体が損傷を受けた場合であっても、全部の耐熱構造体を解体・再構築することなく、その耐熱構造体のみを補充したり取り換えたりする部分的な補修にも対応可能である。
【0019】
このピン型ファスナ付き耐熱構造体において、前記セラミックス部にダイヤモンド粒子を混合させて超耐熱機能を備えさせることができる。ダイヤモンド粒子は、炭素原子間の結合が強いため、硬度と耐摩耗性と共に耐熱性にも優れており、セラミックス部に混合させることにより、セラミックス部の耐熱機能を更に高めることができる。
【0020】
このピン型ファスナ付き耐熱構造体において、前記セラミックス部、前記金属部及び前記組成遷移部がカーボンナノチューブ混合物を積層させて成形されており、各積層間の剥離の防止と耐熱性とを備えさせることができる。カーボンナノチューブは、熱に対して安定な物質であると同時に、混合物の焼成状態では積層間において材料同士の結合を高める作用があるので、剥離の防止と耐熱性を向上させることができる。
【0021】
上記の課題を解決するため、この発明によるピン型ファスナ付き耐熱構造体の製造方法は、型枠内の一つ又は複数の装着穴に対しピン型ファスナの雌ねじ部に合する軸部を持った保護キャップを介して該ピン型ファスナを装着するピン型ファスナ装着工程と、前記型枠内に金属粒子とセラミックス粒子との組成比率が異なる複数のスラリーを順次鋳込み、前記金属粒子によって前記装着穴に装着された前記ピン型ファスナの一部を浸漬する金属層、前記金属粒子と前記セラミックス粒子の組成比率が異なる組成遷移層、及び前記セラミックス粒子から成るセラミックス層を沈積して成るピン型ファスナ付き成形体を形成する成形工程と、前記ピン型ファスナ付き成形体を乾燥し形状を整えてピン型ファスナ付き整形体を成形する整形工程と、前記ピン型ファスナ付き整形体を焼成して、前記金属粒子を前記ピン型ファスナと一体焼成して成る金属部、前記組成遷移層を焼成して成る組成遷移部、及び前記セラミックス層を焼成して成るセラミックス部を形成する焼成工程とから成っている。
【0022】
このピン型ファスナ付き耐熱構造体の製造方法によれば、構造物に係合可能なピン型ファスナが用意され、ピン型ファスナ装着工程において型枠内の底部に形成された一つ又は複数の装着穴にピン型ファスナが装着される。次の成形工程では、型枠内に金属粒子とセラミックス粒子とを含むスラリーが鋳込まれる。装着穴に装着されたピン型ファスナの一部を金属粒子が浸漬する態様で金属層が形成され、金属層の上に金属粒子とセラミックス粒子の組成比率が異なる組成遷移層が積層され、更にその上にセラミックス粒子から成るセラミックス層が沈積して、ピン型ファスナ付き成形体が形成される。次の整形工程では、ピン型ファスナ付き成形体は乾燥し形状を整えられて、最終製品形状に実質的に同じ形状を有するピン型ファスナ付き整形体に整形される。更に、焼成工程において、ピン型ファスナ付き整形体は焼成され、金属層をピン型ファスナと一体焼成して成る金属部、組成遷移層を焼成して成る組成遷移部、及びセラミックス層を焼成して成るセラミックス部が連続的且つ一体的に形成される。成形体が形成された段階で乾燥させる中間乾燥工程を設けること、成形体の成形工程において乾燥加圧成形する過程を設けることもできる。なお、スラリーは、2種類以上の金属固体粒子とセラミックス固体粒子に複数の中間材配合粒子が加えられ、分散剤液で流動化された混合物として形成される。
【0023】
このピン型ファスナ付き耐熱構造体の製造方法において、前記成形工程は、前記型枠内に前記金属粒子を含む金属スラリーを鋳込んで前記金属層を形成し、次に前記型枠内に前記金属粒子と前記セラミックス粒子とを含み前記セラミックスの組成比率が順次増加する中間スラリーを順に鋳込んで組成比率が階段状に変化した前記組成遷移層を形成し、更に前記セラミックス粒子を含むセラミックススラリーを鋳込んで前記セラミックス層を形成することから成っている。組成遷移層を形成するためのこの方式は、鋳込み(積層)方式であり、型枠内に、まず金属粒子を流動化させた金属スラリーをピン型ファスナの一部を被い埋設する状態に鋳込み、次に順次、金属粒子とセラミックス粒子とを含む混合物を流動化させて成りセラミックスの組成比率が順次増加する複数(十種類)の中間スラリーを鋳込んで多積層し、最後にセラミックス粒子を流動化させて成る高耐熱用セラミック・スラリーが鋳込まれる。
【0024】
このピン型ファスナ付き耐熱構造体の製造方法において、前記成形工程は、前記型枠内に前記金属粒子と前記セラミックス粒子とを含む混合スラリーを鋳込み、前記型枠を遠心分離機で回転させるときに作用する遠心力によって、前記混合スラリーから前記金属層、前記金属粒子と前記セラミックス粒子とを含み前記セラミックスの組成比率が連続的に変化した前記組成遷移層、及び前記セラミックス層を前記型枠内に強制沈降させることから成っている。即ち、成形工程には、型枠を回転させるときに作用する遠心力によって、一度に注入された混合物スラリーを、遠心力の大きい底側から順にピン型ファスナの一部が浸漬された実質的に金属粒子のみを含む金属層、セラミックスと金属との組成比率が金属からセラミックスまで連続的に変化した組成遷移層、及び実質的にセラミックス粒子のみを含むセラミックス層から成る沈積物として強制沈降させる遠心沈降工程を含むことができる。沈殿物は水分等の液体成分を含んでいるので排液・乾燥させてピン型ファスナ付き成形体とされるが、この場合、液体窒素等の極低温流体を注ぐことによって内部に含まれる液体成分を表面に滲み出させて急速凍結し、凍結成分を真空環境下に置いて昇華させて取り除く凍結乾燥工程を含むことが好ましい。高温焼結することにより、金属層はピン型ファスナの一部が内部に埋設される状態で一体焼結された金属部に、セラミックス層はセラミックス部に、組成遷移層は組成遷移部として焼成され、全体は耐熱傾斜機能材本体として形成される。
【0025】
このピン型ファスナ付き耐熱構造体の製造方法において、前記ピン型ファスナは、耐熱性の保護キャップを被せた状態で前記装着穴内に装着することが好ましい。ピン型ファスナは、ステンレス材等の金属製とされるが、ピン型ファスナの金属部との一体結合部分以外の部分に存在する構造物への固定のためにねじ加工を施した凹凸部は、高温焼成時に高熱から保護される必要がある。そこで、セラミックス(ジリコニア材等)焼結温度での焼成時には、ピン型ファスナの内外形状を耐熱材(カーボン粒子等)で円筒状に被った状態として、ピン型ファスナの下部形状を保持することが好ましい。
【0026】
このピン型ファスナ付き耐熱構造体の製造方法において、前記ピン型ファスナ装着工程に代えて、ピン型ファスナ用鋳型を型枠に装着する鋳型装着工程を有し、前記成形工程において、前記型枠内に前記金属粒子を含む金属スラリーを鋳込むことで、前記金属層を形成するとともに、前記ピン型ファスナ用鋳型に鋳込まれる前記金属スラリーによって前記金属層と一体成形される前記ピン型ファスナを形成することから成っている。この製造方法によれば、ピン型ファスナ用鋳型を型枠に装着するので、予めピン型ファスナを製作することなく、金属層を形成すると同時に金属層と一体的なピン型ファスナを製造することができる。埋設されるピン型ファスナ用鋳型は、耐熱構造体の構造物へのボルト、ナット又はアダプタ差込み等の固定方式に応じて、鋳型形状を適宜選択することができる。
【0027】
ピン型ファスナ付き耐熱構造体の傾斜機能材本体については、平面である構造物の表面に対応して、セラミックス部の表面を平面とした直方体に製造するのが最も簡素で且つ製造も容易である。しかしながら構造物の表面が曲面であることに対応してセラミックス部の表面を凸面又は凹面に形成し、耐熱構造体を並設したときに隣接した耐熱構造体と隙間無く敷き詰め可能とするために、セラミックス部の表面形状に応じて傾斜機能材本体をセラミックス部側が膨らみ又は窄んだ立体形状に形成することが好ましい。そうした傾斜機能材本体の形状に対応して、型枠を底壁と底壁に密着可能で開口側に向かって拡大した又はすぼんだ傾斜面を持つ周壁とで構成することができる。セラミックス部の表面を凸面に形成する場合には、周壁の開口側端部に密着付加及び取外し可能な筒状部を設けることにより、周壁に密着付加した状態の筒状部を満たすまで充填したセラミックススラリーの成形後で且つ焼成前に、筒状部を取り除いてセラミックス層の表面を凸面に加工することができる。セラミックス部の表面を凹面に形成する場合には、周壁の開口側からセラミックス層の表面に直接加工を施すことができる。
【0028】
更に、上記課題を解決するため、この発明による耐熱構造体に用いるピン型ファスナは、耐熱セラミックスから成るセラミックス部、構造物への取付け側となる金属部、及び前記セラミックス部と前記金属部との間に前記耐熱セラミックスと金属との組成比率が段階的又は連続的に変化した組成遷移部が一体的に結合された傾斜機能材本体の構造物への取付けに適用可能であり、前記金属部の金属組成と融着できる金属素材から成り、一端側に前記金属部に埋設状態に融着一体結合されるフランジ部を備え、及び前記フランジ部から他端側に伸び且つ前記構造物への取付けに適用可能であり熱的に隔離された凸軸部を有し、該凸軸部には前記構造物に配設された他のファスナに螺合する雌ねじが形成されていることから成っている。
【0029】
この発明によるピン型ファスナによれば、傾斜機能材本体の金属部の金属組成と融着できる金属素材から成り、一端側に金属部に埋設状態に結合されるフランジ部を備えているので、フランジ部が金属部と融著して一体となってピン型ファスナと傾斜機能材本体との結合が強固になり、傾斜機能材本体がピン型ファスナから剥がれ落ちる等の不具合を予め防止することができる。また、ピン型ファスナは、フランジ部から他端側に伸びる凸軸部を有しているので、凸軸部を利用しての傾斜機能材本体の構造物へ取付けを容易にすることができる。
【0030】
このピン型ファスナは、前記金属部に個別に分散配置される個別ピン型ファスナ、又は前記金属部に埋設される共通フランジ板を持つ複合ピン型ファスナとすることができる。個別に分散配置する場合には、個々にピン型ファスナを扱う必要があるが、耐熱構造体の大きさ等の仕様に応じて配設場所及び配設個数について適宜対応可能である。複合ピン型ファスナとする場合には、ピン型ファスナの位置が互いに拘束されるが、一括しての取扱いが可能になり、また、傾斜機能材本体の金属部との結合を更に強固にすることができる。
【0031】
また、このピン型ファスナにおいて、前記凸軸部は、前記構造物への取付け用のボルト又はナットが螺合する雌ねじ又は雄ねじ部が形成されているねじ軸、或いは前記構造物への取付け用の係合部を備えたアダプタが取付け可能な係合軸とすることができる。雌ねじ部が形成される場合にはボルト固定方式で、また雄ねじ部が形成される場合にはナット固定方式にて、耐熱構造体を構造物の取付けフレームに、直接にボルトやナットで取り付けることができる。また、凸軸部をアダプタが取付け可能な係合軸とすることで、アダプタを介した間接的な差込固定方式によって耐熱構造体を構造物に取り付けることができる。アダプタの凸軸部への取付けは、ねじ軸に形成された雄ねじ部又は雌ねじ部へのねじ係合で行うことができる。また、アダプタの係合部は、先端に設けられた楔状のすり割り構造とすることができる。
【0032】
更に、このピン型ファスナにおいて、前記耐熱構造体の高温焼成において前記凸軸部の形状確保するため保護キャップを取り付けることができる。金属製のピン型ファスナは、それ自体、耐熱性能に優れていて通常の使用状態での強度は確保されるが、高温下での焼成においては耐熱構造体の金属部に埋設するフランジ部以外を保護キャップで被うことで、ピン型ファスナの形状を保持することができる。
【0033】
ピン型ファスナ付き耐熱構造体の取付け態様は、ピン型ファスナとアダプタの組合せによって選択可能である。ピン型ファスナは、一方が耐熱構造体の金属部に埋設するフランジ部、他方がねじ加工(雄ねじ部、雌ねじ部)等の種々の形状加工が施された凸状軸に構成されているので、全体として堅固であり、構造物にボルトやナット或いはアダプタを用いて簡単に取付け可能である。また、フランジ部やねじ部等の加工は、既設の旋盤等の自動工作機械による量産化が可能である。
【0034】
【発明の実施の形態】
以下、添付した図面に基づいて、この発明によるピン型ファスナ付き耐熱構造体とその製造方法、及びその耐熱構造体に用いられるピン型ファスナの実施例を説明する。図1はこの発明によるピン型ファスナ付き耐熱構造体の概念図、図2は本発明によるピン型ファスナ付き耐熱構造体の一製造方法を示す工程図、図3は本発明によるピン型ファスナ付き耐熱構造体の別の製造方法を示す工程図、図4は本発明によるピン型ファスナ付き耐熱構造体の他の製造方法を示す工程図である。
【0035】
図1(A)は、この発明によるピン型ファスナ付き耐熱構造体の概念を示す概略断面図である。図1(A)によれば、ピン型ファスナ付き耐熱構造体(以下、簡単のため、単に「耐熱構造体」と略称する)1で覆われることで、構造物6への熱的影響が防止・緩和される。耐熱構造体1は、後述する傾斜機能材本体2と、傾斜機能材本体2と一体に成型されたピン型ファスナ8とから成っている。構造物6には取付け板7が固定されており、取付け板7に取付けボルト9で取付け板7を挟んでピン型ファスナ8にねじ込むことにより、傾斜機能材本体2がピン型ファスナ8を介して構造物6に取り付けられる。傾斜機能材本体2は、ピン型ファスナ8が鋳込み成形されてピン型ファスナ8と一体的に形成された金属部3、金属部3に積層されて金属とセラミックスとの組成が段階的に変化する組成遷移部4、及び組成遷移部4に積層されたセラミックス部5から成っている。
【0036】
図1(B)は図1(A)に示すピン型ファスナ付き耐熱構造体の傾斜機能材本体について厚み方向の位置に応じたセラミックス混合比を示すグラフであり、図1(C)は図1(A)に示すピン型ファスナ付き耐熱構造体を高温雰囲気下で使用したときの傾斜機能材本体の厚み方向の位置に応じた温度変化を示すグラフである。図1(B)に示すように、傾斜機能材本体2中のセラミックス混合比は、金属部3では0%であって、セラミックス部5では100%である。組成遷移部4では、セラミックス混合比は金属部3側から段階的に次第に増加している。ピン型ファスナ付き耐熱構造体1を実際の使用状態と同様の高温環境下(表面側温度が2000℃(実線)と1000℃(点線))に置いたとき、傾斜機能材本体2中の温度変化は、図1(C)に示すようになっており、構造物6に取り付ける取付け側での温度は十分に低下していることが判る。
【0037】
図2は、本発明によるピン型ファスナ付き耐熱構造体の一製造方法を示す工程図である。図2(A)は、耐熱構造体に埋め込まれるピン型ファスナの一例を示す断面図である。ピン型ファスナ100は、鋳込み時には金属層内に埋設されることになる一端側の埋込み用フランジ部101と、埋込み用フランジ部101から凸軸部として他端側に延びる筒状部102と、筒状部102に内部に形成された雌ねじ部103とを備えている。筒状部102の雌ねじ部103にボルトやナットをねじ込むことにより、耐熱構造体を構造物に取り付けることができる。図2(A)右側に示すように、ピン型ファスナ100については、金属層に浸漬される埋込み用フランジ部101以外の部分に保護キャップ106を被せることにより、高温下での焼成においてピン型ファスナ100の形状を保持することができる。保護キャップ106には、雌ねじ部103に嵌入する軸部107を形成しておくのが好ましい。保護キャップ106の周囲形状は、円柱形状又は四角柱形状等の簡単な形状に設定されている。
【0038】
図2(B)は、耐熱構造体を鋳込み成形するための鋳込み用型枠を示す断面図である。図2(B)に示す鋳込み用型枠(以下、簡素化のため単に「型枠」と略称する)10は、底壁11と周壁12とから構成されており、底壁11には、ピン型ファスナ100を設定するための複数(図示の例では2個であるが、これに限られない。)の円柱状の装着穴13が形成されている。装着穴13の開口周囲には、埋込み用フランジ部101を金属部分に埋設しやすくするため、座ぐりによってすり鉢状の円錐部13aが形成されている。底壁11と周壁12とによって、内部に鋳込み空間14が形成される。保護キャップ106が被せられたピン型ファスナ100(図2(A))を、図2(B)に示す鋳込み用型枠10の底壁11に形成されている装着穴13に挿入嵌着することにより、図2(C)に示されている鋳込み前の準備段階が完了する。なお、図2(C)において、一方のピン型ファスナ100については断面で示しているが、他方のピン型ファスナ100については断面としていない。
【0039】
初めに、型枠内に十数層から成る階段状の組成遷移層(傾斜機能材)を形成させるために、金属製のピン型ファスナの部分に鋳込み且つ融着可能な金属粒子(ステンレス:比重8.1等)と耐熱・耐硬度があるセラミックス粒子(ジルコニア:比重6.1等)とから、図1(B)に模式的に示すように、注入順に金属粒子とセラミックス粒子の混合比を順次変えた複数種類(約十種類)の中間スラリーが用意される。図2(C)に示す状態の型枠10の鋳込み空間14に、金属粒子を分散させて流動化させた金属スラリー15が注入・充填される。図2(D)に示すように、金属スラリー15は、ピン型ファスナ100の埋込み用フランジ部101を完全に浸漬する程度にまで注入されて金属層を構成し、その後、中間乾燥が施される。金属スラリー15の乾燥後、図2(E)に示すように、順次、型枠10の鋳込み空間14には、金属粒子とセラミックス粒子から成る中間スラリー16が注入される。中間スラリー16の混合比の順に鋳込みと乾燥工程を繰り返し、十数層から成る階段状の組成遷移層が積層して構成される。最後に、図2(F)に示すように、成分100%のセラミックススラリー17が鋳込まれて乾燥される。セラミックススラリー17が乾燥したとき、図2(G)に示すように、鋳型内の金属層、組成遷移層及びセラミックス層から成るピン型ファスナ付き沈積物(以下、「沈積物」と略す)をホットプレス又はプレスして表面等の成型を施して加圧成形することで、残存している気泡成分を排出すると共に密度の高度化と一様化を図り一定の硬度を有するピン型ファスナ付き成形体(以下、「成形体」と略す)18を形成する。成形体18については、更に加工して所定の整形体とし、仮焼結させて中間製品とすることができる。中間製品はガス雰囲気炉に入れて形状を整えて本焼結させて、製品(ピン型ファスナ付き耐熱構造体)とされる。セラミックスの混合比が異なる各層及び層間であっても粒子間の結合がおこなわれ、乾燥スラリーが一体的に焼結される。
【0040】
焼結された製品は、冷却後、型枠10と保護キャップ106とを外すことによって図2(H)に示すようにピン型ファスナ100と一体化された耐熱構造体20が得られる。図2のピン型ファスナ100を含む円形点線部分で囲む領域が図2(I)に拡大して示されている。耐熱構造体20の焼結部分は、図1に示す構造と対応させると、構造物6への取付け側である金属部3から組成遷移部4を経て表面側であるセラミックス部5に至る傾斜機能材本体2となっている。構造物6(図1)への取付け側において、ピン型ファスナ100がその埋込み用フランジ部101を完全に金属部3内に埋設した状態で一体化される。すり鉢状の円錐部13aに対応して、金属部3は埋込み用フランジ部101を取り囲む補強部3aで厚く形成されており、ピン型ファスナ100との結合を補強している。
【0041】
図3は、この発明によるピン型ファスナ付き耐熱構造体の別の製造方法を示す工程図である。図3に示す製造方法は、ピン型ファスナを耐熱構造体を構成することになる金属部と一体成形によって形成する方法である。図3(A)は、耐熱構造体と一体成形されるピン型ファスナ用鋳型の一例を示す断面図である。ピン型ファスナ用鋳型110は、外側部分111が円柱形状又は四角柱形状等の簡単な形状に設定されている。ピン型ファスナ用鋳型110の中心部には、外側部分111に連なる雄ねじ部112が形成されており、外側部分111と雄ねじ部112との間には、鋳込みによって雌ねじ型のピン型ファスナを形成するための環状の鋳込み空間113が形成されている。
【0042】
図3(B)は、耐熱構造体を鋳込み成形するための鋳込み用型枠を示す断面図である。図3(B)に示す鋳込み用型枠は、図2(B)に示す型枠10と同じ構造であるので、各構成部位には図2(B)に用いた符号と同じ符号を用いることで、再度の詳細な説明を省略する。装着穴13の開口周囲には、一体成形されるピン型ファスナとの結合を補強するため、すり鉢状の円錐部13aが形成されている。ピン型ファスナ鋳型110を図3(B)に示す型枠10の底壁11に形成されている装着穴13に挿入嵌合することにより、図3(C)に示されているような、鋳込み前の準備段階が完了する。
【0043】
図3(C)に示す状態の型枠10の鋳込み空間14に、金属スラリー15が注入される。図3(D)に示すように、金属スラリー15は、ピン型ファスナ鋳型110の鋳込み空間113に浸入し、更に円錐部13aの上部を埋めて底壁11に平行な金属層を形成するまで注入される。金属スラリー15の乾燥後、図3(E)に示すように、型枠10の鋳込み空間14には順次、図2(E)及び(F)に示す場合と同様に、金属とセラミックスから成る中間スラリー16、成分100%のセラミックススラリー17が鋳込まれて乾燥される。セラミックススラリー17が乾燥したとき、図3(F)においては、図2(G)に示すのと同様に、加圧成形して得られた成形体を焼成することによって、金属スラリー15、中間スラリー16及びセラミックススラリー17の各層及び層間で粒子間の結合がおこなわれ、乾燥スラリーが一体的に焼結される。
【0044】
焼結された製品は、型枠10とピン型ファスナ用鋳型110とを外すことによって、図3(G)に示すように雌ねじ型のピン型ファスナ114と一体化された耐熱構造体21が得られる。図3(G)のピン型ファスナ114を含む円形点線部分で囲む領域が図3(H)に拡大して示されている。耐熱構造体21の焼結部分は、構造物6への取付け側である金属部23から組成遷移部4を経て表面側であるセラミックス部5に至る傾斜機能材本体22となっている。構造物6(図1)への取付け側において、ピン型ファスナ114が金属層23と一体化される。すり鉢状の円錐部13aに対応して、金属層23は補強部23aで肉厚に形成され、ピン型ファスナ114との結合を補強することができる。ピン型ファスナ114に形成される雌ねじ部115は、取付け側において、取付けボルト(後述する)の雄ねじ部のねじ込み用に供される。
【0045】
図4は、この発明によるピン型ファスナ付き耐熱構造体の他の製造方法を示す工程図である。図3に示す製造方法は、型枠内にピン型ファスナを設けた状態で、複数の傾斜機能素材からなるスラリーを一度に流し込んで遠心分離器で沈積、排液後、凍結乾燥にて沈積固形体を得て、沈積固形体を取り出した後、焼結させて製品とする方法である。図4(A)は、耐熱構造体と一体成形されるピン型ファスナの一例を示す断面図であり、図2(A)と同様の構造を有しているので、図2(A)で用いたのと同じ符号を用いることで再度の説明を省略する。
【0046】
図4(B)は、耐熱構造体を鋳込み成形するための鋳込み用型枠を示す断面図である。図4(B)に示す鋳込み用型枠についても、図2(B)に示す型枠10と同じ構造であるので、各構成部位には図2(B)に用いた符号と同じ符号を用いることで、再度の詳細な説明を省略する。ピン型ファスナ100を図4(B)に示す型枠10の底壁11に形成されている設置穴13に挿入嵌合することにより、図4(C)に示されているような鋳込み前の準備段階が完了する。耐熱構造体の傾斜機能材料を形成するため、図4(D)に示すように、型枠10の鋳込み空間14に金属及びセラミックスから成る混合スラリー30が一度に注ぎ込まれる。
【0047】
型枠10を遠心分離機に装着し、底壁11が公転回転の遠心側を占めるように型枠10を回転させることにより、比重の重い金属粒子が底壁11側に沈積して金属層33が形成され、公転回転の中心側には比重の軽いセラミックス粒子が沈積してセラミックス層35が形成される(図4(E))。両層の間には、金属とセラミックスとの組成が連続的に変化する組成遷移層34が形成される。セラミックス層35の上部に染み出した液体成分を排液し、更に液体窒素で瞬間的に凍結することで成形体内に残存する液体成分を表面に浸出させて成形体31が乾燥される。成形体31は、図4(F)に示すように、更にプレス成形されてピン型ファスナ付き整形体(以下、「整形体」と略す)32となり、整形体32が焼結される(図4(G))。整形体32を焼結することによって、金属層33、組成遷移層34及びセラミックス層35がそれぞれ焼結され、ピン型ファスナ100が一体的に埋設された金属部37、金属とセラミックスとの組成が連続的に変化した組成遷移部38、及びセラミックス部39から成る傾斜機能材本体36aが形成される。型枠10と保護キャップ106とを取り外すことで、図4(H)に示すように、ピン型ファスナ100と一体化された耐熱構造体36が得られる。図4(I)には、図4(H)に示す円形点線部分が拡大されている。ピン型ファスナ100の鋳込み用フランジ部101が埋設される金属部37の一部は、ピン型ファスナ100との結合を補強する肉厚の補強部37aとなっている。なお、成形体の形成においては、図2又は図3に示した順次積層方式によって得られた沈漬物に対して、図4に示す遠心分離方式を適用してもよい。
【0048】
埋設型のピン型ファスナは、種々の形状加工が可能で、堅固で耐熱性能に優れ、且つ量産化が容易である。ピン型ファスナの各種形状について、図5に基づいて説明する。図5は、耐熱構造体に埋設されるこの発明によるピン型ファスナの実施例を示す図である。図5(A)は、既に説明したボルト止め方式によるピン型ファスナ100を示す例であり、左側は側面図、右側は断面図である。円筒部102の外周面には、係止用の肩部104が形成されている。ピン型ファスナ100は、耐熱構造体の取付側の金属部に埋設・融着されて一体となる円盤状のフランジ部101と、構造物6(図1)に固定するために耐熱構造体本体の取付け側から凸状に突き出すねじ固定部から成る。この例の場合、ねじ固定部は雌ねじ部103が形成された円筒部102であり、耐熱構造体の取付け方式は雌ねじ部103に取付けボルト(図1の符号9を参照)をねじ込むボルト固定方式である。
【0049】
図5(B)は、ピン型ファスナ120を示す別の例であり、一端には、耐熱構造体の金属部に埋設・融着されて一体となる円盤状の埋込み用フランジ121が形成されていると共に、埋め込み用フランジ121から凸状軸部としてねじが形成されたねじ固定用の雄ねじ部122が一体的に延びている。ピン型ファスナ120の埋込み用フランジ121と雄ねじ部122との境界部には取付け時の係止用の肩部124が形成されている。雄ねじ部122を取付け側の構造物6(図1参照)の取付け板7に層通し、雄ねじ部122に螺合させたナットによって取付け板7を挟み込むことによって、耐熱構造体を構造物6に取り付けることができる。耐熱構造体の取付け方式は、雄ねじ部122に取付けナットをねじ込むナット固定方式である。
【0050】
ピン型ファスナ100,120はステンレス製等の金属製であるが、焼結工程において高温に加熱される。そのため、ピン型ファスナ100,120を耐熱保護する必要がある。図5(A)及び(B)に示す金属製のピン型ファスナ100,120のフランジ部101,121を除く下部部分(ねじ加工を施した凹凸部)の内外形状をカーボン粒子等の耐熱材で円筒状に被って固形化し、ピン型ファスナ把持駒(ボルト固定方式とナット固定方式)を形成し、ジルコニア材等のセラミックスの焼結温度において、ピン型ファスナ101,121の円筒部102又は雄ねじ部122等の下部形状を保持することが好ましい。
【0051】
ピン型ファスナによる固定方式として、筐体の取付け板に直接、ボルトやナットで固定する方法の他に、ピン型ファスナにアダプタを取り付けて間接的に固定する差込固定方式がある。図6は、差込固定方式を用いたこの発明によるピン型ファスナの例を示す図である。図6(A)及び図6(B)に示すアダプタ130,140は、図5(A)に示すピン型ファスナ100にねじ込んで使用するアダプタであり、基端側がピン型ファスナ100の雌ねじ部103にねじ込まれる雄ねじ部131,141となっており、それぞれ鍔部132,142がピン型ファスナ100の端部に当接するまでねじ込むことができる。図6(A)に示すアダプタ130の先端側は、楔状のすり割り構造133に形成されており、取付け板7(図1参照)の孔に差し込んで鍔部132とすり割り構造133の係止部134との間で挟み込むことで、耐熱構造体を構造物6に固定することができる。図6(B)に示すアダプタ140の先端側は、球形のすり割り構造143に形成されており、図6(A)と同様に取付け板7の孔に差し込んで、鍔部142とすり割り構造133の係止部144との間で挟み込むこと耐熱構造体を構造物6に取り付けることができる。
【0052】
図6(C)及び図6(D)に示すアダプタ150,160は、図5(B)に示すピン型ファスナ120にねじ込んで使用するアダプタであり、基端側にピン型ファスナ120の雄ねじ部122にねじ込まれる雌ねじ部151,161を備えている。図6(C)に示すアダプタ150の先端側は、係止部154を持つ楔状のすり割り構造153に形成されており、耐熱構造体を構造物6に固定するために、取付け板7(図1参照)の孔に差し込むことができる。図6(D)に示すアダプタ160の先端側は、係止部164を持つ球形のすり割り構造163に形成されており、図6(B)と同様に取付け板7の孔に差し込んで用いられる。図6(E)に示すリードフレーム形のアダプタ170は、本体部分171と、本体部分171の両側で一体的に折り曲げて繋がるフック部分173,173とから成っている。ピン型ファスナ100,120〜160は、アダプタ170の本体部分171に形成されているねじ止め用の孔172を利用してボルト又はナットで固定される。アダプタ170は、フック部分173,173を構造物6の取付け板7に引っ掛けて使用される。
【0053】
図7は、図2又は図4に示す製造方法によって製造された平面型の耐熱構造体20,36(以下、代表して「耐熱構造体20」という)の構造物への取付け状態を示す断面図である。耐熱構造体20の取付け方法については、図7(A)〜(D)に示すように、図5に示すピン型ファスナ100,120、図3に示す製造方法によって金属部と一体に形成されるピン型ファスナ114、或いは図5に示すピン型ファスナ100,120に図6に示す各種アダプタ130〜170を組み合せた各種の固定方式を選ぶことができる。図7(A)は、耐熱構造体20を構造物の中間フレーム180(図1に示す取付け板7に相当する)に直接、取付けボルト182で固定するボルト固定方式である。ピン型ファスナ100(又は110,120)を中間フレーム180に形成された取付け孔181に挿通し、取付けボルト182をピン型ファスナ110の雌ねじ部103にねじ込むことにより、ピン型ファスナ100の肩部104と取付けボルト182で支持されたばね座金183とで中間フレーム180を挟み付けることで、耐熱構造体20を中間フレーム180に取り付けることができる。なお、ばね座金183をピン型ファスナ100に対してガタ付くのを防止するため、ピン型ファスナ100の周面に係止用の切欠きや溝を形成することができる。
【0054】
図7(B)は、耐熱構造体20を構造物の中間フレーム180にナット固定方式で取り付けた取付け状態を示す断面図である。ピン型ファスナ120を中間フレーム180に形成された取付け孔181に挿通し、締付けナット184がピン型ファスナ120の雄ねじ部122に締め付けられる。ピン型ファスナ120の肩部124と締付けナット184で支持されたばね座金183とで中間フレーム180を挟み付けることで、耐熱構造体20を締付けナット184によって直接に中間フレーム180に取り付けることができる。
【0055】
図7(C)は、耐熱構造体20を構造物の中間フレーム185にアダプタを介して間接的に固定する差込み固定方式で取り付けた取付け状態を示す断面図である。図6(A)に示すアダプタ130の雄ねじ部131が、ピン型ファスナ100の雌ねじ部103に対して、鍔部132がピン型ファスナ100に当接するまでねじ込まれる。アダプタ130の先端側に形成されている楔状のすり割り構造133を中間フレーム185の挿通孔186に突き刺し、鍔部132と係止部134との間で中間フレーム185を挟み付けることで、耐熱構造体20を中間フレーム185に取り付けることができる。
【0056】
図7(D)は、アダプタを介してボルト固定方式と差込み固定方式とにより、耐熱構造体20を構造物の中間取付けフレーム187に間接的に取り付けた取付け状態を示す断面図である。取付けボルト182をリードフレーム形の止め金具であるアダプタ170の本体部分171に形成された孔172を通してボルト固定方式のピン型ファスナ100にねじ込むことで、アダプタ170がピン型ファスナ100を介して耐熱構造体20に取り付けられる。次に、アダプタ170のフック部分173,173を中間取付けフレーム187に形成されている係合孔188の係合部に係合させることで、耐熱構造体20を、アダプタ170を介して中間取付けフレーム187に取り付けることができる。以上、図2及び図4に示す製造方法によって製造された平型の耐熱構造体22の取付けについて説明したが、図3に示す製造方法によって製造された平面型の耐熱構造体21の構造物への取付けについても同様である。上記の(A)〜(D)に示した取付け型式以外に、ピン型ファスナの凸軸部に取り付けられるアダプタを、構造物の表面に取り付けられているネット状ばね、コイル状ばね及びベローズ状ばねから選択されるファスナばねに係合させることによって、耐熱構造体を構造物に取り付けることもできる。
【0057】
図8は、ピン型ファスナ付きの耐熱構造体の一例を示す図であり、(A)は平面図、(B)は(A)のX−X断面図である。耐熱構造体は、例えば、図2に示す製造方法によって製造された平面型の耐熱構造体20であるので、断面構造についての説明を省略する。耐熱構造体20には、平面図(A)に示すように、四つのピン型ファスナ100が、それぞれ金属部3の補強部3aによって個別に埋設された状態にある。この例では、耐熱構造体におけるピン型ファスナ100の位置を個別に設定可能である。図9は、ピン型ファスナ付き耐熱構造体の別の例を示す図であり、(A)は平面図、(B)は(A)のY−Y断面図である。耐熱構造体は、例えば、図8の場合と同様、図2に示す製造方法によって製造された平面型の耐熱構造体20である。耐熱構造体20に設けられる四つのピン型ファスナ100のうち、横方向に隣接する二つのピン型ファスナ100のフランジ部101a,101aが一枚の共通フランジ板101bとして連なっており、その周囲が金属部3の補強部3aによって取り囲まれて埋設された状態にある。二つのピン型ファスナ100が互いに連結されているので、ピン型ファスナ100間の距離が確定していると共に耐熱構造体20との一体化を一層強固にすることができる。
【0058】
図10は、凸面を有するピン型ファスナ付き耐熱構造体(凸面型耐熱構造体)の製造工程の一例を示す概略図及びそうして製造された凸面型耐熱構造体を示す断面図である。図10(A)は型枠への鋳込み状態を示す断面図、図10(B)は図10(A)に示す耐熱構造体の乾燥・凸表面成形・凍結工程を示す断面図、及び図10(C)は型枠から取り出した製品としての耐熱構造体を示す断面図である。図10に示すセラミック部の表面が凸面となっている耐熱構造体とその製造工程は、型枠の構造、及び乾燥(凍結乾燥を含む)工程と焼成工程との間に凸面成形工程を設ける点以外には、図2〜図4に示す平面型のピン型ファスナ付き耐熱構造体及びその製造工程と実質的に変わるところはない。
【0059】
図10(A)に示すように、耐熱構造体の製造のための鋳込み型枠40は、底壁41と底壁41に液密に密着嵌合する周壁42とから成っている。周壁42は、内周面が開口側に向かって拡大した角錐面43aに形成された周壁本体部43と、周壁本体部43の開口側端部上に密着載置された背の低い筒状部44とから成っている。保護キャップ106を被せたピン型ファスナ100を底壁41の装着穴41aに装着した状態でスラリーを注入し、順次積層方式又は遠心分離方式によって、底壁41側に金属粒子から成る金属層46a、表面側に至るほど次第にセラミックス含有率が上昇する組成遷移層47a、及び表面側のセラミックス層48aから成る成形体45aが形成される。図10(B)に示すように、筒状部44を周壁本体部43から取り外して周壁本体部43から外側の成形体45aの頂部表面に滑らかな凸曲面から成る凸面49を成形した後、成形体45aに含まれる水分を吸水・蒸発・凍結乾燥等によって取り除く乾燥工程が施される。乾燥された成形体45aの各層は、金属層46b、組成遷移層47b及びセラミックス層48bから成る整形体45bとなる。凸面49は、周壁本体部43の角錐面43aの縁部43bにおいて摺切り状に交わる曲面とするのが好ましい。整形体45bに焼結を施し、焼結完了後に型枠40と保護キャップ106とを取り除くことにより、図10(C)に示すような凸面49を持つ凸面型耐熱構造体(以下、単に「耐熱構造体」と称する)45cが得られる。
【0060】
耐熱構造体45cにおいては、金属層46bが焼成されてピン型ファスナ100のフランジ101が一体的に埋設された状態となる金属部46c、組成遷移層の金属粒子とセラミックス粒子とが焼結されて金属とセラミックスとの組成が段階的又は連続的に変化する組成遷移部47c、及びセラミックス粒子が焼結されたセラミックス部48cが一体的に接続する傾斜機能材本体が形成される。耐熱構造体45cは、凸状の物体表面に沿って取り付けて連続する耐熱凸表面を形成する耐熱タイルとして用いるのに有効である。耐熱構造体45cの側面は角錐状の傾斜面43cとなっており、隣接配置される耐熱構造体45cの傾斜面43cと当接して連続する凸面49,49を形成するか、又は平面型の耐熱構造体20(36)の側面と当接して凸面49とセラミックス部5の平らな表面とを滑らかに接続させることができる。
【0061】
耐熱構造体45cを、傾斜機能材本体の周囲側面についてすべてセラミックス部48c側が拡がりセラミックス部48cの凸面49と交叉する稜線が外側に凸となった曲線である扇形面状の傾斜面43cとなった立体形状に形成することができる。この場合、複数の耐熱構造体45cを、凸曲面から成る表面を持つ構造物に沿って隙間無く密集した状態に並設させることができ、セラミックス部48cの凸面49は互いに接続して凸球面のような連続凸曲面を与える。耐熱構造体45cを、互いに反対方向を向いた一方の対の周囲側面のみを互いに平行な扇形面状の傾斜面43cとし、他方の対の周囲側面を扇形面と繋がる平行四辺形面とした立体形状に形成すると、複数の耐熱構造体45cを並べるときに、セラミックス部48cの凸面49は互いに連なって円筒表面に沿った凸円筒面を与える。
【0062】
図11は、凹面を有するピン型ファスナ付き耐熱構造体(凹面型耐熱構造体)の製造工程の一例を示す概略図及びそうして製造された凹面型耐熱構造体を示す断面図である。図11(A)は型枠への鋳込み状態を示す断面図、図11(B)は図11(A)に示す耐熱構造体の乾燥・凸面成形・凍結工程を示す断面図、及び図11(C)は型枠から取り出した製品としての耐熱構造体を示す断面図である。図11に示す凹面を有する耐熱構造体とその製造工程は、型枠の構造、及び乾燥(凍結乾燥を含む)工程と焼成工程との間に凹面成形工程を設ける点以外には、図10に示す凸面を持つピン型ファスナ付き耐熱構造体とその製造工程と実質的に変わらない。
【0063】
図11(A)に示すように、耐熱構造体の製造のための鋳込み型枠50は、底壁51と底壁51に液密に密着嵌合する周壁52とから成っている。周壁52は、内周面が開口側に向かって縮小した角錐面53aに形成された周壁本体部53として構成されている。保護キャップ106を被せたピン型ファスナ100を底壁51の装着穴51aに装着した状態でスラリーを注入し、順次積層方式又は遠心分離方式によって、底壁51側に金属粒子から成る金属層56a、表面側に至るほど次第にセラミックス含有率が上昇する組成遷移層57a、及び表面側のセラミックススラリー層58aから成る成形体55aが形成される。図11(B)に示すように、成形体55aの頂部表面に凹面59を成形した後、成形体55aに含まれる水分を吸水・蒸発・凍結乾燥等によって取り除く乾燥工程が施される。乾燥された成形体55aの各層は乾燥されて、金属層56b、組成遷移層57b及びセラミックス層58bから成る整形体55bとなる。凹面59は、周壁本体部53の角錐面53aの縁部53bにおいて摺切り状に交わる曲面とするのが好ましい。整形体55bに焼結を施し、焼結完了後に型枠50と保護キャップ106とを取り除くことにより、図11(C)に示すような凹面59を持つ凹面型耐熱構造体(以下、単に「耐熱構造体」と称する)55cが得られる。
【0064】
耐熱構造体55cにおいては、金属層56bが焼成されてピン型ファスナ100のフランジ101が一体的に埋設された状態となる金属部56c、中間層の金属粒子とセラミックス粒子とが焼結されて金属とセラミックスとの組成が段階的又は連続的に変化する組成遷移部57c、及びセラミックス粒子が焼結されたセラミックス部58cが一体的に接続する傾斜機能材料本体が形成される。耐熱構造体55cは、凹状の物体表面に沿って取り付けて連続する耐熱凹表面を形成する耐熱タイルとして用いるのに有効である。耐熱構造体55cの側面は角錐状の傾斜面53cとなっており、隣接配置される耐熱構造体55cの傾斜面53cと当接して連続する凹表面59,59を形成するか、又は平面型の耐熱構造体20(36)の側面と当接して凹表面59とセラミックス部5の平らな表面とを滑らかに接続させることができる。
【0065】
耐熱構造体55cを、傾斜機能材本体の周囲側面がすべてセラミックス部58c側が窄まりセラミックス部58cの凹面59と交叉する稜線が外側に凹となった曲線である逆形面状の傾斜面53cとなった立体形状に形成することができる。この場合、複数の耐熱構造体55cを凹曲面から成る表面を持つ構造物に沿って隙間無く密集した状態に並設させることができ、セラミックス部58cの凹面59は互いに接続して凹球面のような連続凹曲面を与える。耐熱構造体55cを、互いに反対方向を向いた一方の対の周囲側面のみを互いに平行な逆扇形面状の傾斜面53cとし、他方の対の周囲側面を逆扇形面と繋がる平行四辺形面とした立体形状に形成することもできる。この場合、複数の耐熱構造体55cを並べるときに、セラミックス部58cの凹面59は互いに連なって窪んだ円筒表面に沿った凹円筒面を与える。
【0066】
図12は、上記の各製造方法によって得られた平面型耐熱構造体、凸面型耐熱構造体及び凹面型耐熱構造体をそれぞれ耐火レンガとして用いた高温焼却炉への適用例を示す断面概略図である。図12に示すように、高温焼却炉60は、炉基礎構造61に対して外壁構造材62、及び更にその内側に配設した中間耐熱隔壁63を備えており、中間耐熱隔壁63には、各耐火レンガを取り付けるための複数の取付けフレーム(構造物に相当する)64が並べて配置されている。耐火レンガの種類として、平面型耐熱構造体から成る平面耐火レンガ65、凸面型耐熱構造体から成る凸面型耐火レンガ66、及び凹面型耐熱構造体から成る凹面型耐火レンガ67が用意される。耐火レンガの取付けフレーム64への装着には、取付けフレーム64に向かっての作業が許容されるのみであるので、耐火レンガ65〜67の取付け部に一体的に埋設して設けられるピン型ファスナとしては、図6に示すような差込み式のファスナ130〜160が用いられる。中間耐熱隔壁63の表面形状(平面、凸表面又は凹表面)に応じて耐火レンガ65〜67を選択し、ピン型ファスナを取付けフレーム64に差し込むことによって、表面が滑らかに連続した高温焼却炉60のための耐火レンガ面69が得られる。耐火レンガ65〜67と中間耐熱隔壁63との間には冷却用空隙部68が形成され、空隙部68を通過することで温度上昇した空気の熱を回収利用することができる。冷却用空隙部68には、必要に応じて断熱材粉末を充填することもできる。
【0067】
耐火レンガ方式によって建設される高温焼却炉では、耐火レンガ65〜67の取付け作業は、耐火レンガ65〜67を表側から取付けフレーム64に差し込むだけで済むので、取付け作業が安全であると共に作業時間が短縮できる。また、高温焼却炉60の燃焼効率を上げるには、上部燃焼空間の最適内壁形状の確保が必要であるが、ピン型ファスナ付きの耐火レンガ方式は重量・強度の条件が厳しくなく、特に、不完全燃焼を起こし易い上部コーナー部の内壁表面を凹凸のない滑らかにすることができ、内壁上部の形状改善を容易に行うことができる。
【0068】
図13は、上記の各製造方法によって得られた平面型耐熱構造体、凸面型耐熱構造体及び凹面型耐熱構造体をそれぞれ耐火レンガとして用いた高温焼却炉への別の適用例を示す断面概略図である。図12に示す高温焼却炉60に用いられている部品や要素と同じものについては、それらに付された符号と同じ符号を付すことで再度の説明を省略する。図13に示すように、高温焼却炉70は、炉基礎構造61に対して、上部構造71については、高温焼却炉60の場合と同様に、外壁構造材62、その内側に配設した中間耐熱隔壁63、及び中間耐熱隔壁63上の複数の耐熱タイル取付けフレーム64が並べて配置されている。また、高温焼却炉60の場合と同様、耐火レンガの種類としては、平面型耐火レンガ65、凸面型耐火レンガ66及び凹面型耐火レンガ67が用意され、耐火レンガの取付け部に一体的に埋設して設けられるピン型ファスナには、図6に示すような差込み式のファスナ130〜160が用いられる。高温焼却炉70の下部構造72においては、外壁構造材62の内側に既存の耐火レンガ73が敷き詰められ、外壁構造材62と耐火レンガ73との間に形成される冷却用空隙部74には断熱材粉末材75が充填される。重量・強度の条件が厳しい上部構造71については、この耐火レンガ65〜67を用いることにより、軽量に構築することができ、且つ不完全燃焼を回避するために要求される滑らかな耐火面が確保される。また、耐火レンガ73は、その荷重に対して安定に敷き詰めることができる下部構造72についてのみ用いられるので、安価に且つ頑丈に構築することができ、比較的軽量な上部構造71の支持を確保できる。
【0069】
図14は、この発明による耐熱構造体を内壁に適用した精錬用転炉の一例の外観を示す概略斜視図(図14(A))とその一部を拡大して示す断面図(図14(B))である。精錬用転炉80は、横置きされた概略円筒状の構造を有しており、水平中心軸の周りに回転可能に設置されている。精錬用転炉80の炉壁81には、修理点検用出入り口としての転炉入口88が形成されている。炉壁81は、図14(B)に示すように、外壁筒82とその内側に同心状に配置された内壁筒83とから構成されている。内壁筒83の内周面には複数の取付けフレーム84が等間隔に隔置して配設されており、ピン型ファスナ付き耐熱構造体としての凹表面を有する耐火レンガ87(一部にのみ符号を付す)が、そのピン型ファスナを取付けフレーム84に係合させることにより、隙間無く敷き詰められている。耐火レンガ87を内側から取付け可能にするため、ピン型ファスナは図12及び図13に示す高温焼却炉の場合と同様にアダプタを利用した差込み式とされている。外壁筒82と内壁筒84との間の環状空隙85及び内壁筒84と耐火レンガ87との間の環状空隙86には、必要に応じて断熱材粉末を充填することができる。耐火レンガ87は、周囲側面のうち、互いに反対方向を向いた一対の側面が逆扇形面であって、他方の対の側面が平行四辺形面である立体形状を有する凹面型耐熱構造体67である。
【0070】
この発明による耐熱構造体の適用例としては、上記のように、加熱炉、焼却炉、転炉、工業等の炉の耐熱壁面を構成する耐火レンガが考えられる。固定用ファスナが個々の耐火レンガに取り付けられているので、炉の耐熱壁の一部が損傷を受けることがあれば、該当する損傷部分の耐火レンガのみを取り外して、新規な耐火レンガに取り替えることが可能である。また、別の適用例としては、エンジンや燃焼器の燃焼室内壁面にも適用可能である。更に、スペースシャトルのような地上と宇宙との間を往復飛行し、大気突入時に高温に晒される機体表面に用いられる耐熱パネルにも適用可能である。いずれも、固定用ファスナが埋設状態に固定される金属部と耐熱セラミックスから成るセラミックス部とを組成遷移部で一体的に連結しているので、耐熱セラミックス材料を金属製の取付け部に固着具で取り付ける必要がなく、取扱いが極めて容易である。また、損傷が生じれば、該当部分のみを取り換えれば良く、取換え作業もファスナの嵌外しや嵌込みのみで済み、低コストにて対応可能である。ピン型ファスナの先端形状部品は、固定する構造体に合わせて種々の形状のものが加工選択できるので、排気ノズル、研磨器具等にも応用が期待できる。更に、この製品群は、従来の地場産業の陶磁器製造技術と設備改造で量産化が可能である。
【0071】
【発明の効果】
この発明による耐熱構造体は、上記のように構成されており、耐熱性のセラミックス部と、金属とセラミクスの組成成分が段階的又は連続的に変化する組成遷移部と共に傾斜機能材料を構成する金属部において、ピン型ファスナを一体的に埋設して結合させているので、ピン型ファスナと金属部との結合が強固になり取扱いが容易になる。また、構造物に対して表面側からの作業のみで耐熱構造体を貼り付けることができ、耐熱構造体の構造物への取付け・取外しが容易になる。更に、複数の耐熱構造体によって構造物の表面を敷き詰めて覆うことができ、特定の耐熱構造体のみを交換、補充する等の部分的な補修が可能になる。また、この発明によるピン型ファスナ付き耐熱構造体の製造方法は、金属層を形成する工程においてピン型ファスナを浸漬させ、或いはピン型ファスナ用鋳型を用いて金属部と同時にピン型ファスナを焼結形成しているので、傾斜機能材料を製作する工程を利用して、傾斜機能材料の一部を構成することになる金属部にピン型ファスナを結合させている。従って、ピン型ファスナ付き耐熱構造体を簡単に且つ的確に製造することができる。更に、傾斜機能材料を用いた耐熱構造体において、傾斜機能材料の一部を構成することになる金属部に強固に結合可能なピン型ファスナが得られる。ピン型ファスナは、それ自身が堅牢であって既存の工作機械を用いて量産化することが可能であり、フランジ部を金属部に埋設させることによって、傾斜機能材本体とも強固に結合可能である。
【図面の簡単な説明】
【図1】この発明によるピン型ファスナ付き耐熱構造体の概念図である。
【図2】この発明によるピン型ファスナ付き耐熱構造体をピン型ファスナの埋込みによって製造する製造方法を示す工程図である。
【図3】この発明によるピン型ファスナ付き耐熱構造体をピン型ファスナの一体的な鋳込み成形によって製造する製造方法を示す工程図である。
【図4】この発明によるピン型ファスナ付き耐熱構造体をスラリーの遠心分離及び凍結乾燥によって製造する製造方法を示す工程図である。
【図5】耐熱構造体に用いられるこの発明によるピン型ファスナの実施例を示す図である。
【図6】差込固定方式を用いたこの発明によるピン型ファスナの例を示す図である。
【図7】図2又は図4に示す製造方法によって製造された平面型耐熱構造体の筐体への取付け状態を示す断面図である。
【図8】この発明によるピン型ファスナ付きの耐熱構造体の一例を示す図である。
【図9】この発明によるピン型ファスナ付き耐熱構造体の別の例を示す図である。
【図10】この発明による凸表面を有するピン型ファスナ付き耐熱構造体の製造工程の一例を示す概略図及びそうして製造された耐熱構造体を示す断面図である。
【図11】この発明による凹表面を有するピン型ファスナ付き耐熱構造体の製造工程の一例を示す概略図及びそうして製造された耐熱構造体を示す断面図である。
【図12】この発明による平面型、凸表面型及び凹表面型の各種耐熱構造体を耐火タイルとして用いた高温焼却炉への適用例を示す断面概略図である。
【図13】この発明による平面型、凸表面型及び凹表面型の各種耐熱構造体を耐火タイルとして用いた高温焼却炉への別の適用例を示す断面概略図である。
【図14】この発明による耐熱構造体を耐火レンガとして内壁に適用した精錬用転炉の一例の外観を示す概略斜視図とその一部を拡大して示す断面図である。
【符号の説明】
1,20,21,36,45c ピン型ファスナ付き耐熱構造体
2,22,36a 傾斜機能材本体
3,23,37,46c,56c 金属部
4,38,47c,57c 組成遷移部
5,39,48c,58c セラミックス部
6 構造物 7 取付け板
8 ピン型ファスナ 9 取付けねじ
10,40,50 鋳込み型枠
11,41,51 底壁 12,42,52 周壁
13,41a,51a 装着穴 13a 円錐部
15 金属スラリー 16 中間スラリー 17 セラミクススラリー
18,31,45a,55a ピン型ファスナ付き成形体
23a,37a 補強部
30 混合スラリー
32,45b,55b 整形体
33,46a,56a 金属層
34,47a,57a 組成遷移層
35,48a,58a セラミックス層
43,53 周壁本体部 43c,53c 傾斜面 44 筒状部
49 凸面 59 凹面
60,70 高温燃焼炉 64 取付けフレーム
65 平面型耐火レンガ
66 凸面型耐火レンガ
67 凹面型耐火レンガ 87 耐火レンガ
80 精錬用転炉
100,110,114,120 ピン型ファスナ
101,121 埋込み用フランジ 101b 共通フランジ板
103 雌ねじ部 104,124 肩部
106 保護キャップ
130,140,150,160 アダプタ
170 リードフレーム型アダプタ
131,141,151,161 雄ねじ部
133,143,153,163 すり割り構造
134,144,154,164 係止部
180,185 中間フレーム 187 中間取付けフレーム
181 取付け孔 186 挿通孔
182 取付けボルト 183 ばね座金
184 締付けナット 188 係合孔

Claims (19)

  1. 耐熱セラミックスから成るセラミックス部、構造物への取付け側となる金属部、及び前記セラミックス部と前記金属部との間に前記耐熱セラミックスと金属との組成比率が段階的又は連続的に変化した組成遷移部が一体的に結合された傾斜機能材本体と、一端側で前記金属部に埋設状態に融着一体結合され他端側で前記構造物への取付けに適用され熱的に隔離されたピン型ファスナとを備えており、前記傾斜機能材本体は該ピン型ファスナと、前記構造物に配設された他のファスナとの螺合により又は該構造物の孔へのアダプタを介しての差込結合により該構造物の表面に敷き詰められ且つ前記螺合または前記差込結合を解くことにより容易に交換することが可能なように構成されていることを特徴とするピン型ファスナ付き耐熱構造体。
  2. 前記傾斜機能材本体は、前記セラミックス部の表面を平面とし前記傾斜機能材本体の側面を矩形平面とした角柱体形状に形成されていることから成る請求項1に記載のピン型ファスナ付き耐熱構造体。
  3. 前記傾斜機能材本体は、前記セラミックス部の表面として凸面を有し、周囲側面として前記セラミックス部側が拡がり前記セラミックス部の前記凸面と交叉する稜線が外側に凸となった曲線である扇形面を有する立体形状に形成されていることから成る請求項1に記載のピン型ファスナ付き耐熱構造体。
  4. 前記傾斜機能材本体は、前記セラミックス部の表面として凸面を有し、互いに反対方向を向いた一方の対の周囲側面として前記セラミックス部側が拡がり前記セラミックス部の前記凸面と交叉する稜線が外側に凸となった曲線である互いに平行な扇形面を有し、他方の対の周囲側面として前記扇形面と繋がる平行四辺形面をする立体形状に形成されていることから成る請求項1に記載のピン型ファスナ付き耐熱構造体。
  5. 前記傾斜機能材本体は、前記セラミックス部の表面として凹面を有し、周囲側面として前記セラミックス部側が窄み前記セラミックス部の前記凹面と交叉する稜線が外側に凹となった曲線である逆扇形面を有する立体形状に形成されていることから成る請求項1に記載のピン型ファスナ付き耐熱構造体。
  6. 前記傾斜機能材本体は、前記セラミックス部の表面として凹面を有し、互いに反対方向を向いた一方の対の周囲側面として前記セラミックス部側が窄み前記セラミックス部の前記凹面と交叉する稜線が外側に凹となった曲線である互いに平行な逆扇形面を有し、他方の対の周囲側面として前記逆扇形面と繋がる平行四辺形面をする立体形状に形成されていることから成る請求項1に記載のピン型ファスナ付き耐熱構造体。
  7. 前記傾斜機能材本体は粒子状の前記耐熱セラミックスと前記金属との焼結体であり、前記ピン型ファスナは前記金属が焼結されて形成された前記取付け部の中に埋設状態で結合されていることから成る請求項1に記載のピン型ファスナ付き耐熱構造体。
  8. 前記セラミックス部にダイヤモンド粒子を混合させて超耐熱機能を備えたことから成る請求項1に記載のピン型ファスナ付き耐熱構造体。
  9. 前記セラミックス部、前記金属部及び前記組成遷移部がカーボンナノチューブ混合物を積層させて成形されており、各積層間の剥離の防止と耐熱性とを備えたことから成る請求項1に記載のピン型ファスナ付き耐熱構造体。
  10. 宇宙往復機の機体表面に貼着される耐熱パネル、若しくは加熱炉、焼却炉又は精錬用転炉の耐火レンガに適用可能であることから成る請求項1に記載のピン型ファスナ付き耐熱構造体。
  11. 型枠内の一つ又は複数の装着穴に対しピン型ファスナの雌ねじ部に合する軸部を持った保護キャップを介して該ピン型ファスナを装着するピン型ファスナ装着工程と、前記型枠内に金属粒子とセラミックス粒子との組成比率が異なる複数のスラリーを順次鋳込み、前記金属粒子によって前記装着穴に装着された前記ピン型ファスナの一部を浸漬する金属層、前記金属粒子と前記セラミックス粒子の組成比率が異なる組成遷移層、及び前記セラミックス粒子から成るセラミックス層を沈積して成るピン型ファスナ付き成形体を形成する成形工程と、前記ピン型ファスナ付き成形体を乾燥し形状を整えてピン型ファスナ付き整形体を成形する整形工程と、前記ピン型ファスナ付き整形体を焼成して、前記金属粒子を前記ピン型ファスナと一体焼成して成る金属部、前記組成遷移層を焼成して成る組成遷移部、及び前記セラミックス層を焼成して成るセラミックス部を形成する焼成工程とから成るピン型ファスナ付き耐熱構造体の製造方法。
  12. 前記成形工程は、前記型枠内に前記金属粒子を含む金属スラリーを鋳込んで前記金属層を形成し、次に前記型枠内に前記金属粒子と前記セラミックス粒子とを含み前記セラミックスの組成比率が順次増加する中間スラリーを順に鋳込んで組成比率が階段状に変化した前記組成遷移層を形成し、更に前記セラミックス粒子を含むセラミックススラリーを鋳込んで前記セラミックス層を形成することから成る請求項11に記載のピン型ファスナ付き耐熱構造体の製造方法。
  13. 前記成形工程は、前記型枠内に前記金属粒子と前記セラミックス粒子とを含む混合スラリーを鋳込み、前記型枠を回転させるときに作用する遠心力によって、前記混合スラリーから前記金属層、前記金属粒子と前記セラミックス粒子とを含み前記セラミックスの組成比率が連続的に変化した前記組成遷移層、及び前記セラミックス層を前記型枠内に強制沈降させることから成る請求項11に記載のピン型ファスナ付き耐熱構造体の製造方法。
  14. 前記ピン型ファスナは、耐熱性の保護キャップを被せた状態で前記装着穴内に装着されることから成る請求項11に記載のピン型ファスナ付き耐熱構造体の製造方法。
  15. 前記ピン型ファスナ装着工程に代えて、ピン型ファスナ用鋳型を型枠に装着する鋳型装着工程を有し、前記成形工程において、前記型枠内に前記金属粒子を含む金属スラリーを鋳込むことで、前記金属層を形成するとともに、前記ピン型ファスナ用鋳型に鋳込まれる前記金属スラリーによって前記金属層と一体成形される前記ピン型ファスナを形成することから成る請求項11に記載のピン型ファスナ付き耐熱構造体の製造方法。
  16. 耐熱セラミックスから成るセラミックス部、構造物への取付け側となる金属部、及び前記セラミックス部と前記金属部との間に前記耐熱セラミックスと金属との組成比率が段階的又は連続的に変化した組成遷移部が一体的に結合された傾斜機能材本体の構造物への取付けに適用可能であり、前記金属部の金属組成と融着できる金属素材から成り、一端側に前記金属部に埋設状態に融着一体結合されるフランジ部を備え、及び前記フランジ部から他端側に伸び且つ前記構造物への取付けに適用可能であり熱的に隔離された凸軸部を有し、該凸軸部には前記構造物に配設された他のファスナに螺合する雌ねじが形成されていることから成るピン型ファスナ。
  17. 前記ピン型ファスナは、前記金属部に個別に分散配置される個別ピン型ファスナ、又は前記金属部に埋設される共通フランジ板を持つ複合ピン型ファスナであることから成る請求項16に記載のピン型ファスナ。
  18. 前記凸軸部は、前記構造物への取付け用のボルト又はナットが螺合する雌ねじ又は雄ねじ部が形成されているねじ軸、或いは前記構造物への取付け用の係合部を備えたアダプタが取付け可能な係合軸であることから成る請求項16に記載のピン型ファスナ。
  19. 前記耐熱構造体の高温焼成において前記凸軸部の形状確保するため保護キャップが取り付けられていることから成る請求項16に記載のピン型ファスナ。
JP2002276405A 2002-09-20 2002-09-20 ピン型ファスナ付き耐熱構造体とその製造方法及びその耐熱構造体に用いるピン型ファスナ Expired - Fee Related JP3905446B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002276405A JP3905446B2 (ja) 2002-09-20 2002-09-20 ピン型ファスナ付き耐熱構造体とその製造方法及びその耐熱構造体に用いるピン型ファスナ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002276405A JP3905446B2 (ja) 2002-09-20 2002-09-20 ピン型ファスナ付き耐熱構造体とその製造方法及びその耐熱構造体に用いるピン型ファスナ

Publications (2)

Publication Number Publication Date
JP2004114708A JP2004114708A (ja) 2004-04-15
JP3905446B2 true JP3905446B2 (ja) 2007-04-18

Family

ID=32272289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002276405A Expired - Fee Related JP3905446B2 (ja) 2002-09-20 2002-09-20 ピン型ファスナ付き耐熱構造体とその製造方法及びその耐熱構造体に用いるピン型ファスナ

Country Status (1)

Country Link
JP (1) JP3905446B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6951214B2 (en) * 2003-02-07 2005-10-04 J. W. Beech Pty Ltd Oven top section and method of construction
US10018363B1 (en) 2016-12-23 2018-07-10 Jade Range LLC Hearth oven
CN112811921B (zh) * 2021-01-27 2022-10-25 巩义市泛锐熠辉复合材料有限公司 一种纤维增强陶瓷基复合材料耐热板及其制备方法

Also Published As

Publication number Publication date
JP2004114708A (ja) 2004-04-15

Similar Documents

Publication Publication Date Title
EP3075531B1 (en) Sandwich arrangement with ceramic panels and ceramic felts
US7153096B2 (en) Stacked laminate CMC turbine vane
JP3157522U (ja) セラミック・アセンブリ
US7648605B2 (en) Process for applying a thermal barrier coating to a ceramic matrix composite
US7988395B2 (en) Mechanical fastener system for high-temperature structural assemblies
US20170328223A1 (en) Hybrid ceramic matrix composite materials
US20140127005A1 (en) Method for producing a component, component and turbomachine having a component
JPS61228948A (ja) セラミクスと金属との複合体並びにその製造法
JPH08296976A (ja) セラミックライニング
US9174275B2 (en) Method for manufacturing a metal-ceramic composite structure and metal-ceramic composite structure
CN103321687A (zh) 用于金属部件和cmc部件的连接系统、涡轮叶片固持系统及旋转部件固持系统
KR20010102448A (ko) 고온 내식성, 마모성 열장벽 복합재 코팅
KR19990036408A (ko) 금속 도포, 세라믹, 섬유 보강 세라믹 매니폴드
JP3905446B2 (ja) ピン型ファスナ付き耐熱構造体とその製造方法及びその耐熱構造体に用いるピン型ファスナ
US20140208929A1 (en) Coated ballistic structures and methods of making same
US7311790B2 (en) Hybrid structure using ceramic tiles and method of manufacture
JP2004516938A5 (ja)
CA1249751A (en) Composite ceramic metal assembly and method of making
KR101773444B1 (ko) 용광로 노상의 세라믹 바닥 라이닝
KR19990036409A (ko) 내연기관용 섬유 보강 세라믹 메트릭스 합성물 피스톤 및 실린더/슬리브
US20100176542A1 (en) Filter device for molten metal filtration
US20020146584A1 (en) Process for producing sandwich structures between metallic and nonmetallic materials
US8739572B2 (en) Component based glass casting system and method
US8795828B2 (en) Encapsulated preformed shapes
JPH05681Y2 (ja)

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050805

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees