JP3905229B2 - Multi-directional simultaneous detection light concentrator and scanning near-field microscope - Google Patents

Multi-directional simultaneous detection light concentrator and scanning near-field microscope Download PDF

Info

Publication number
JP3905229B2
JP3905229B2 JP25870398A JP25870398A JP3905229B2 JP 3905229 B2 JP3905229 B2 JP 3905229B2 JP 25870398 A JP25870398 A JP 25870398A JP 25870398 A JP25870398 A JP 25870398A JP 3905229 B2 JP3905229 B2 JP 3905229B2
Authority
JP
Japan
Prior art keywords
optical
light
field microscope
scanning near
simultaneous detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25870398A
Other languages
Japanese (ja)
Other versions
JP2000088734A (en
Inventor
典孝 山本
宏 村松
明 江川
克則 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP25870398A priority Critical patent/JP3905229B2/en
Publication of JP2000088734A publication Critical patent/JP2000088734A/en
Application granted granted Critical
Publication of JP3905229B2 publication Critical patent/JP3905229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は被測定物表面を光照射もしくは光励起することにより、固体表面のナノメートル領域における形状観察や光物性測定を行うことを目的とする走査型近接場顕微鏡に使用する光集光系と走査型近接場顕微鏡に関する。
【0002】
【従来の技術】
対物レンズもしくはカセグレンタイプの対物レンズなど、レンズ光学系を用い大きな立体角で光を検出する走査型近接場顕微鏡がある。走査型近接場顕微鏡は光プローブを対象物表面で走査させることで画像を形成する方法で、光学分解能は光の輝点のサイズで決まるため、小さく微弱な点光源の光を検出するため、大きな立体角で光を集められる手法を用い効率を上げているのである。また対物レンズの置く方向を変えて角度に依存した光学像を得るという事も可能である。
【0003】
【発明が解決しようとする課題】
しかし従来の光検出法と走査型光プローブ顕微鏡では光学像をとりあえず高分解能で観察することはできても、その光学像が包含する情報を十分理解することは困難である。すなわち簡単のために光学顕微鏡を例にすると、光学顕微鏡で得られる像には対象物の凹凸が明暗となって像となるものもあれば、対象物の材質が違うので明暗となって像となるもの、対象物に蛍光物質があるための検出光をフィルターを通すことにより明暗となって像となるものなど、光の明暗の原因となるものがあればそれらが混在していても分離されることなく、なんらかの形を成した像として現れる。蛍光顕微鏡の世界ではこれらを分離するため、もしくは際立たせるために、微分干渉法・蛍光法など開発されている。同じ光を画像化する走査型光プローブ顕微鏡においてもこういった事情は同じ事で、対象物を観察する結果、その起因が何であるのか知ることは重要で、シグナルから情報を分離する手法を開発する必要がある。
【0004】
ナノメートルの分解能で微小領域を観察する走査型近接場顕微鏡では、これらに加え、対象物表面の形状が光像に影響を及ぼすためより問題は複雑である。また対物レンズの置く方向を変えて角度に依存した光学像を得るという事も可能ではあるが、複数回同じ操作を行って角度に依存した光学像を得る方法では走査位置の再現性の問題、対象物の変化の問題などがあり、同時に観察する必要がある。
【0005】
【課題を解決するための手段】
本発明の多方位同時検出光集光器によれば、対象物を複数個の光導波路もしくは検出器で同時に光を検出するので走査位置の再現性の問題、対象物の変化の問題は解消される。透過側、反射側どちらにも設置でき、また得られた個々のシグナルを積算することで従来の光学系を用いた光検出法としても利用できるし、それぞれのシグナル同士を演算処理して画像化する事で対象物の表面形状、材質の違いなどに由来する情報を分離し対象物の真の物性を観察する事ができる。
【0006】
【発明の実施の形態】
以下に本発明の実施の形態について図面を参照して説明する。
[実施の形態1]
図1(A)は本発明の実施の形態1にかかわる多方位同時検出光集光器をななめ上から見た図を示したものである。ドーム1の中心に向かうように導波路穴2があけられている。導波路穴2には端面を平らに壁開させた光ファイバーを差し込む。光ファイバーの反対の末端側にはそれぞれ光検出器が光学的に接続されている。取り付け冶具3により走査型近接場顕微鏡筐体に固定しドームの中心に光プローブが来るようにセッティングする。光プローブは光てこ法ではなく、水晶振動子を用いた自己検出法で対象物との距離を制御する。この方法は光てこ法と異なり、光プローブに検出用レーザーを集光するなどの操作が必要ないので取り扱いが簡便である。このモデルでは導波路穴2が13個もうけられており同時に13方向から光を検出でき、それぞれ画像化できる。これら同時検出した光シグナルを積算させる事により、大きな立体角の光シグナルを取得した事になり、微弱な光信号の検出感度を上げるために使用する事も可能である。この方法は従来のレンズ光学系を用いた光集光器より効率が良くコンパクトな構成となる。
【0007】
図1(B)は多方位同時検出光集光器をななめ下から見た図である。ドーム内側4は半径4mmで、図に見られる1/4球面の中に直径2mmの光ファイバー端面13個配列している。
このことにより従来のものと異なり角度の異なる光学像が同時に観察できる。光ファイバーの反対側の末端にはそれぞれ分光器を光学的に接続し光検出すれば、角度に依存したスペクトルを同時に測定することも可能である。また多方位同時検出光集光器を試料上面におけば、不透明な対象物の反射光学系における角度依存性の光像が観察できる。
[実施の形態2]
図2(A)は本発明の実施の形態2にかかわる多方位同時検出光集光器をななめ上から見た図を示したものである。図1同様、ドーム1の中心に向かうように導波路穴2があけられているが、輝点に対して水平に近い角度のみ導波路穴2がある。その他の構成は基本的に図1と同じでドーム1の上方を切り取った形状をしている。作用として図1と異なる点は光プローブの対象物との距離制御に光てこ方式を用いる事もできる点である。光てこ方式を用いる事で溶液中の対象物観察が可能となる。また光プローブを対象物に対して接触させたまま走査させるコンタクトモード方式で光プローブの対象物との距離制御する事が可能となり、複数の光像と同時に対象物表面の摩擦情報などを観察する事が可能となる。また多方位同時検出光集光器を対象物の上側(反射側)に設置して光像を観察した場合には、光プローブ自身の影により、輝点に対して垂直に近い角度には光が来ないことがわかっているので、垂直に近い角度を設けず、光てこ方式を採用するメリットを優先したものである。もちろん水晶振動子を用いた自己検出法をもちいても構わない。
図2(B)は多方位同時検出光集光器をななめ下から見た図である。ドーム内側4は半径5mmで、導波路穴2には端面を平らに壁開させた光ファイバーが差し込まれる。直径1mmの光ファイバー端面が2段にアレイ状に26個配列している。このことにより従来のものと異なり角度の異なる光学像が同時に観察できる。光ファイバーの反対側の末端に、それぞれ分光器を光学的に接続し光検出すれば角度に依存したスペクトルの同時測定を行うことも可能である。
[実施の形態3]
図3は本発明の実施の形態3にかかわる多方位同時検出光集光器14を搭載した走査型近接場顕微鏡の構成図を示している。図2の実施の形態2に示したドームの上部分を切り取った多方位同時検出光集光器を反射光学系として用いたものである。鈎状の光プローブ5を振動手段であるバイモルフ6に設置し、鈎状の光プローブ5の先端を対象物7に対して垂直に振動させ、光プローブ5の先端と対象物7の表面の間に作用する原子間力あるいはその他の相互作用に関わる力を光プローブ5の振動特性の変化として変位検出手段8で検出し、鈎状の光プローブ5の先端と対象物7の表面の間隔を一定に保つようにコントローラー9で制御しながら、XYZ移動機構10により対象物7を走査して表面形状を測定する構成である。鈎状の光プローブ5に外部のレーザー13から光を導くことにより開口11から対象物7に光を照射することができる。多方位同時検出光集光器14には光ファイバー15が差し込まれていて、対象物7に作用した光を光学特性測定光検出手段12まで導き検出することによって同時に微小領域の光学特性の測定を行うことができる。図中には光ファイバー15を2本しか描いていないが実際には26本あり、異なる角度・方位から検出されたシグナルはコントローラー9で演算処理する事で対象物7の表面凹凸に依存した情報、材質に依存した情報等を分離する事ができる。
図3は試料7の反射面で測定光を検出する反射型の構成を示したが、透過側で測定光を検出する透過型の構成も可能である。また、通常、変位検出手段8としては光てこを用いられるが、圧電体を有する光プローブを用いることで変位検出手段8は不要となる。
【0008】
また、図3は鈎状の光プローブ5を振動させる装置構成を示したが、バイモルフ6を振動させないか、バイモルフ6を使用しない装置構成とし、コンタクトモードのAFMとして測定を行うことも可能である。振動させない方式では得る事ができない摩擦情報も観察する事が可能である。
さらに、これらの装置にプローブと試料が液体中に保持されるように液だめの覆いを設けることで液中における測定を行うことができる。
【0009】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
多方位同時検出光集光器を走査型近接場顕微鏡に使用する事で、光プローブから出射される光と対象物表面が作用した結果生じる光を、任意の立体角から同時に検出する事ができる。得られた光シグナルを積算して用いる事は、微弱な光を検出する効率として考えると、従来のレンズ系を用いた集光系より向上することになる。また調整が容易でコンパクトな設計となる。得られた光シグナルを別々に画像化すると、多方向からの同時光イメージングを行うことができる。またそれぞれのシグナルを演算処理する事によってイメージングを行うと、シグナルの中に包含された表面凹凸情報、表面材料情報などに依存しない光像を分離して表示することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1にかかわる多方位同時検出光集光器を示した図である。
【図2】 本発明の実施の形態2にかかわる多方位同時検出光集光器を示した図である。
【図3】本発明の実施の形態3にかかわる多方位同時検出光集光器を搭載した走査型プローブ顕微鏡を示した構成図である。
【符号の説明】
1・・・ドーム
2・・・導波路穴
3・・・取り付け冶具
4・・・ドーム内側
5・・・鈎状の光プローブ
6・・・バイモルフ
7・・・対象物
8・・・変位検出手段
9・・・コントローラー
10・・・XYZ移動機構
11・・・開口
12・・・光学特性測定光検出手段
13・・・レーザー
14・・・多方位同時検出光集光器
15・・・光ファイバー
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a light condensing system and a scanning system used in a scanning near-field microscope for the purpose of observing the shape of a solid surface in the nanometer region and measuring optical properties by irradiating or exciting the surface of the object to be measured. The present invention relates to a mold near-field microscope.
[0002]
[Prior art]
There are scanning near-field microscopes that detect light with a large solid angle using a lens optical system, such as an objective lens or a Cassegrain type objective lens. A scanning near-field microscope is a method of forming an image by scanning an optical probe on the surface of an object. The optical resolution is determined by the size of the bright spot of the light. The efficiency is increased by using a method that collects light at a solid angle. It is also possible to obtain an optical image depending on the angle by changing the direction in which the objective lens is placed.
[0003]
[Problems to be solved by the invention]
However, even though conventional optical detection methods and scanning optical probe microscopes can observe an optical image with high resolution for the time being, it is difficult to fully understand the information contained in the optical image. In other words, for the sake of simplicity, taking an optical microscope as an example, some images obtained with an optical microscope may become an image due to the unevenness of the object being bright and dark. If there is something that causes light brightness and darkness, such as light that becomes a dark and bright image by passing a filter through the detection light due to the fluorescent substance in the object, it will be separated It appears as an image that has some form. In the world of fluorescence microscopes, differential interference methods and fluorescence methods have been developed to separate them or make them stand out. The same is true for scanning optical probe microscopes that image the same light. It is important to know what the cause is as a result of observing the object, and develop a method to separate information from the signal. There is a need to.
[0004]
In a scanning near-field microscope that observes a minute region with nanometer resolution, the problem is more complicated because the shape of the object surface affects the optical image in addition to these. It is also possible to obtain an optical image depending on the angle by changing the direction in which the objective lens is placed, but in the method of obtaining the optical image depending on the angle by performing the same operation multiple times, the problem of reproducibility of the scanning position, There is a problem of the change of the object, and it is necessary to observe at the same time.
[0005]
[Means for Solving the Problems]
According to the multi-directional simultaneous detection light concentrator of the present invention, since the object is simultaneously detected by a plurality of optical waveguides or detectors, the problem of reproducibility of the scanning position and the problem of change of the object are solved. The It can be installed on both the transmission side and the reflection side, and can be used as a light detection method using conventional optical systems by integrating the individual signals obtained, and each signal is processed and imaged By doing so, it is possible to separate information derived from the surface shape of the object, the difference in material, etc., and observe the true physical properties of the object.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[Embodiment 1]
FIG. 1A shows a view of a multidirectional simultaneous detection light concentrator according to Embodiment 1 of the present invention as seen from above. A waveguide hole 2 is formed so as to go to the center of the dome 1. An optical fiber having a flat end face is inserted into the waveguide hole 2. Photodetectors are optically connected to opposite ends of the optical fiber. Fixed optical probe to the center of the dome to the scanning near-field microscope housing by the mounting jig 3 is Sette Ingu to come. The optical probe is not an optical lever method, but controls the distance to the object by a self-detection method using a crystal resonator. Unlike the optical lever method, this method is easy to handle because it does not require an operation such as focusing a detection laser on the optical probe. In this model, 13 waveguide holes 2 are provided, and at the same time, light can be detected from 13 directions and each can be imaged. By integrating these simultaneously detected light signals, a light signal with a large solid angle is acquired, and can be used to increase the detection sensitivity of weak light signals. This method is more efficient and compact than an optical concentrator using a conventional lens optical system.
[0007]
FIG. 1B is a view of the multidirectional simultaneous detection light concentrator as seen from the bottom. The dome inner side 4 has a radius of 4 mm, and 13 optical fiber end faces having a diameter of 2 mm are arranged in a ¼ spherical surface shown in the figure.
As a result, unlike conventional ones, optical images with different angles can be observed simultaneously. If a spectroscope is optically connected to the opposite end of the optical fiber and the light is detected, it is possible to simultaneously measure the spectrum depending on the angle. If the multi-directional simultaneous detection light concentrator is placed on the upper surface of the sample, an angle-dependent light image in the reflection optical system of an opaque object can be observed.
[Embodiment 2]
FIG. 2 (A) shows a multi-directional simultaneous detection light concentrator according to Embodiment 2 of the present invention as seen from above. As in FIG. 1, the waveguide hole 2 is formed so as to go to the center of the dome 1, but the waveguide hole 2 exists only at an angle close to the horizontal with respect to the bright spot. The other configuration is basically the same as that shown in FIG. The difference from FIG. 1 is that the optical lever system can also be used to control the distance between the optical probe and the object. By using the optical lever method, the object in the solution can be observed. In addition, it is possible to control the distance between the optical probe and the object by using the contact mode method that scans the optical probe while keeping it in contact with the object. Things will be possible. When a multidirectional simultaneous detection light concentrator is installed on the upper side (reflection side) of an object and an optical image is observed, light is projected at an angle close to perpendicular to the bright spot due to the shadow of the optical probe itself. Since it is known that the angle does not come, the merit of adopting the optical lever method is given priority without providing an angle close to vertical. Of course, a self-detection method using a crystal resonator may be used.
FIG. 2B is a view of the multidirectional simultaneous detection light concentrator as seen from the bottom. The inside of the dome 4 has a radius of 5 mm, and an optical fiber having a flat end face opened into the waveguide hole 2 is inserted. Twenty-six optical fiber end faces with a diameter of 1 mm are arranged in two rows in an array. As a result, unlike conventional ones, optical images with different angles can be observed simultaneously. If a spectroscope is optically connected to the opposite end of the optical fiber to detect light, simultaneous measurement of the spectrum depending on the angle can be performed.
[Embodiment 3]
FIG. 3 shows a block diagram of a scanning near-field microscope equipped with a multidirectional simultaneous detection light concentrator 14 according to Embodiment 3 of the present invention. The multi-directional simultaneous detection light concentrator obtained by cutting out the upper part of the dome shown in the second embodiment in FIG. 2 is used as a reflection optical system. A saddle-like optical probe 5 is placed on a bimorph 6 that is a vibrating means, and the tip of the saddle-like optical probe 5 is vibrated perpendicularly to the object 7 so that the tip of the optical probe 5 and the surface of the object 7 The interatomic force acting on the substrate or other interaction-related force is detected by the displacement detection means 8 as a change in the vibration characteristics of the optical probe 5, and the distance between the tip of the bowl-shaped optical probe 5 and the surface of the object 7 is constant. The surface shape is measured by scanning the object 7 with the XYZ moving mechanism 10 while being controlled by the controller 9 so as to keep the surface shape. By guiding light from the external laser 13 to the bowl-shaped optical probe 5, the object 7 can be irradiated with light from the opening 11. An optical fiber 15 is inserted into the multidirectional simultaneous detection light collector 14, and the optical characteristics of the minute region are simultaneously measured by guiding and detecting the light acting on the object 7 to the optical characteristic measurement light detection means 12. be able to. Although only two optical fibers 15 are depicted in the figure, there are actually 26, and signals detected from different angles and directions are processed by the controller 9 to obtain information depending on the surface irregularities of the object 7, Information that depends on the material can be separated.
Although FIG. 3 shows a reflection type configuration in which the measurement light is detected on the reflection surface of the sample 7, a transmission type configuration in which the measurement light is detected on the transmission side is also possible. In general, an optical lever is used as the displacement detection means 8, but the displacement detection means 8 is not necessary by using an optical probe having a piezoelectric body.
[0008]
3 shows an apparatus configuration for vibrating the bowl-shaped optical probe 5. However, it is also possible to perform measurement as a contact mode AFM by using an apparatus configuration that does not vibrate the bimorph 6 or does not use the bimorph 6. . It is also possible to observe friction information that cannot be obtained by a method that does not vibrate.
Further, in these apparatuses, measurement in the liquid can be performed by providing a reservoir cover so that the probe and the sample are held in the liquid.
[0009]
【The invention's effect】
The present invention is implemented in the form as described above, and has the following effects.
By using a multi-directional simultaneous detection light concentrator for a scanning near-field microscope, it is possible to simultaneously detect light emitted from the optical probe and light generated as a result of the action of the object surface from any solid angle. . Using the obtained optical signals in an integrated manner improves the light collecting system using a conventional lens system in terms of the efficiency of detecting weak light. In addition, the design is easy and compact. When the obtained optical signals are separately imaged, simultaneous optical imaging from multiple directions can be performed. When imaging is performed by processing each signal, it is possible to separate and display a light image that does not depend on surface unevenness information and surface material information included in the signal.
[Brief description of the drawings]
FIG. 1 is a diagram showing a multidirectional simultaneous detection light concentrator according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a multidirectional simultaneous detection light concentrator according to a second embodiment of the present invention.
FIG. 3 is a configuration diagram showing a scanning probe microscope equipped with a multidirectional simultaneous detection light concentrator according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Dome 2 ... Waveguide hole 3 ... Mounting jig 4 ... Dome inner side 5 ... Sponge-shaped optical probe 6 ... Bimorph 7 ... Object 8 ... Displacement detection Means 9 ... Controller 10 ... XYZ moving mechanism 11 ... Aperture 12 ... Optical characteristic measurement light detection means 13 ... Laser 14 ... Multi-directional simultaneous detection light collector 15 ... Optical fiber

Claims (3)

プローブから対象物に光を照射する光プローブを用いた走査型近接場顕微鏡であって、A scanning near-field microscope using an optical probe that irradiates light to an object from a probe,
前記対象物からの反射光の導波方向を規制する光導波路を別体として複数設けた光集光系と、  A light condensing system provided with a plurality of separate optical waveguides that regulate the waveguide direction of reflected light from the object;
前記光導波路の、対象物と相対する側とは反対側に、それぞれ光検出器が設けた光検出系と、から構成され、  A light detection system provided with a photodetector on each side of the optical waveguide opposite to the side facing the object; and
前記光集光系および光検出系が、前記光プローブの変位検出を阻害しないように配置されたことを特徴とする走査型近接場顕微鏡。  A scanning near-field microscope, wherein the light condensing system and the light detection system are arranged so as not to hinder displacement detection of the optical probe.
前記各光検出器が検出した光シグナルの複数又は全部を積算する請求項1に記載の走査型近接場顕微鏡。The scanning near-field microscope according to claim 1, wherein a plurality or all of the optical signals detected by the respective photodetectors are integrated. 前記各光検出器が検出した光シグナルの複数又は全部を記憶・演算処理するシグナルの中から情報を分離する請求項1または2に記載の走査型近接場顕微鏡。 Wherein the plurality or scanning near-field microscope according to claim 1 or 2 for separating the information from the signal storing and processing all of the optical signal the photodetector detects.
JP25870398A 1998-09-11 1998-09-11 Multi-directional simultaneous detection light concentrator and scanning near-field microscope Expired - Fee Related JP3905229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25870398A JP3905229B2 (en) 1998-09-11 1998-09-11 Multi-directional simultaneous detection light concentrator and scanning near-field microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25870398A JP3905229B2 (en) 1998-09-11 1998-09-11 Multi-directional simultaneous detection light concentrator and scanning near-field microscope

Publications (2)

Publication Number Publication Date
JP2000088734A JP2000088734A (en) 2000-03-31
JP3905229B2 true JP3905229B2 (en) 2007-04-18

Family

ID=17323937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25870398A Expired - Fee Related JP3905229B2 (en) 1998-09-11 1998-09-11 Multi-directional simultaneous detection light concentrator and scanning near-field microscope

Country Status (1)

Country Link
JP (1) JP3905229B2 (en)

Also Published As

Publication number Publication date
JP2000088734A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
CN103562732B (en) Scanning probe microscopy with compact scanner
JPH05256641A (en) Cantilever displacement detector
JPH10293133A (en) Scanning proximity field optical microscope
JP3196945B2 (en) Scanning optical microscope
US6470738B2 (en) Rotating probe microscope
EP0846932B1 (en) Scanning near-field optic/atomic force microscope
JP3905229B2 (en) Multi-directional simultaneous detection light concentrator and scanning near-field microscope
JP2000097857A5 (en)
JP3021872B2 (en) Cantilever, atomic force microscope
JP2004144839A (en) Optical scanning device
US6232588B1 (en) Near field scanning apparatus having an intensity distribution pattern detection
JP2010266452A (en) Scanning optical near-field microscope
JPH09500218A (en) Laser scattered light microscope
JP4989764B2 (en) Ultra-high resolution scanning optical measuring device
CA2428218C (en) Apparatus for parallel detection of the behaviour of mechanical micro-oscillators
WO2023021867A1 (en) Scanning probe microscope, and specimen used in same
JP3205455B2 (en) Atomic force detection mechanism and atomic force detection scanning near-field microscope
JP3399810B2 (en) Sample analyzer
JPH11101743A (en) Sample analyser
JP3720173B2 (en) Evaluation device for micro-aperture probe
EP2477037A1 (en) Optical component for integrating the optical microscopy into the atomic force microscopy maintaining maximal performance of the atomic force microscopy.
WO2022070173A1 (en) An integrated optical arrangement for combinatorial microscopy
JPH11352405A (en) Near-field optical microscope device
JPH08220114A (en) Displacement detector for scanning force microscope
JP2009058534A (en) Near-field optical probe and method of manufacturing the same, and near-field optical device using the near-field optical probe

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040302

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees