JP3905210B2 - Biodegradable solid network structure - Google Patents

Biodegradable solid network structure Download PDF

Info

Publication number
JP3905210B2
JP3905210B2 JP07129798A JP7129798A JP3905210B2 JP 3905210 B2 JP3905210 B2 JP 3905210B2 JP 07129798 A JP07129798 A JP 07129798A JP 7129798 A JP7129798 A JP 7129798A JP 3905210 B2 JP3905210 B2 JP 3905210B2
Authority
JP
Japan
Prior art keywords
network structure
dimensional network
biodegradable
continuous filaments
plant growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07129798A
Other languages
Japanese (ja)
Other versions
JPH11247060A (en
Inventor
宏 谷内
健二 地本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwabo Co Ltd
Daiwabo Holdings Co Ltd
Original Assignee
Daiwabo Co Ltd
Daiwabo Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwabo Co Ltd, Daiwabo Holdings Co Ltd filed Critical Daiwabo Co Ltd
Priority to JP07129798A priority Critical patent/JP3905210B2/en
Publication of JPH11247060A publication Critical patent/JPH11247060A/en
Application granted granted Critical
Publication of JP3905210B2 publication Critical patent/JP3905210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Landscapes

  • Cultivation Of Plants (AREA)
  • Cultivation Of Seaweed (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Nonwoven Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、植生用の土木資材、海藻生育用の海洋資材等に用いられる立体網状構造物に関する。
【0002】
【従来の技術】
従来の植生用の土木資材や海藻生育用の海洋資材に用いられている立体網状構造物は、例えば実開昭60−14136号公報や特開平9−121702号公報の記載にみられるように、微生物によって分解しないポリオレフィン系熱可塑性樹脂が用いられている。そのため、植生または海藻生育後においてもその形態を保持するため、使用後の回収の際には多大な労力と経費を必要とし、また、回収後の処理についても焼却等により処理されているが、その消費量が増大するに従い処理が間に合わず大きな問題となっている。
【0003】
【発明が解決しようとする課題】
本発明は、前記従来技術の問題点を解決するために、一定期間使用後は自然環境になじんだもの、すなわち、土木資材あるいは海洋資材のための施工作業を容易に行うことが出来、且つ使用後は微生物によって自然分解されることにより、回収不要の立体網状構造物を提供しようとするものである。
【0004】
【課題を解決するための手段】
本発明は、直径0.1〜2.0mmの多数の合成重合体連続線条の各々が不規則なループをなして相互に交差し、かつ厚み方向に湾曲して一方から他方に延び、その多数の合成重合体連続線条がそれぞれの交差点において相互に接着され、表面には多数の畝状の山部とその山部間において窪んだ溝状の谷部が形成され、この山部および谷部は裏面において谷部および山部を形成して、見掛け厚さが10〜100mmであって、空隙率50〜99%、平行光線透過率10〜70%の嵩高な網状部によってマット面が形成される立体網状マットからなり、該合成重合体連続線条が、微生物によって分解可能な熱可塑性樹脂を主体としてなることを特徴とした生分解性立体網状構造物であり、微生物によって分解可能な熱可塑性樹脂が、融点(Tm℃)が50<Tm<170の温度範囲にある脂肪族ポリエステル樹脂よりなることを特徴としたものである。以下に本発明について詳細に説明する。
【0005】
本発明に用いる微生物によって分解可能な熱可塑性樹脂は、例えば脂肪族ポリエステル樹脂が好ましく用いられる。脂肪族ポリエステル樹脂には脂肪族の2価カルボン酸を含む多価カルボン酸と脂肪族系ジオールを含む多価アルコールとの重縮合物、ヒドロキシ脂肪族カルボン酸の重縮合物、ラクトンの開環重合物が包含される。これらは例えばエチレンジアジペート、プロピオラクトン、β−ヒドロキシ酪酸等から誘導される単独重合体や共重合体がある。脂肪族ポリエステルに低分子量のポリアミドをブロック重合させたものも用いれる。これらの内から融点(Tm℃)が90<Tm<170の微生物によって生産された脂肪族ポリエステル、または、50<Tmの人工的に合成された脂肪族ポリエステルを選択して使用する。また、100<Tm<160の変性澱粉と変性ポリビニルアルコールからなるポリマーアロイ、熱可塑性の変性リグニンなど動植物由来の熱可塑性樹脂も用いることができる。
【0006】
また、微生物による生分解を促進、調整するために、前記微生物によって分解可能な熱可塑性樹脂にセルロース系パウダー状物や、蛋白質、澱粉、乳糖、脂肪、半繊維分解酵素を含んだ微生物活性剤等を添加させてもよい。
【0007】
また、本発明による生分解性立体網状構造物が、直径0.1〜2.0mmの多数の合成重合体連続線条の各々が不規則なループをなして相互に交差し、かつ厚み方向に湾曲して一方から他方に延び、その多数の合成重合体連続線条がそれぞれの交差点において相互に接着され、表面には多数の畝状の山部とその山部間において窪んだ溝状の谷部が形成され、この山部および谷部は裏面において谷部および山部を形成して、見掛け厚さが10〜100mmであって、空隙率50〜99%、平行光線透過率10〜70%の嵩高な網状部によってマット面が形成される立体網状構造物からなることが望ましい。立体網状構造物であるため、シート状物と比較し、植生用の土木資材、海藻生育用の海洋資材等に適した形態を有することになる。また連続線条により立体的に山部および谷部が形成されているため、土中、水中においてより生分解しやすい利点を有することになる。また、連続線条の直径、密度を調整することにより生分解期間の調整も可能である。連続線条の直径は、0.1mm未満では線状が細過ぎて立体網状構造物全体の強力が不十分となり、2.0mmを越えると剛性が大きくなり、立体網状構造物の表面に山部と谷部が形成されにくくなるので好ましくない。この立体網状構造物は、例えば図1に示すような装置を用いて製造することが出来る。この装置は、孔径0.1〜2.0mmの紡糸孔が6〜20mm間隔で窄設された紡糸孔列が平行に、もしくは、紡糸孔が交互に位置するような千鳥状に2〜3列に亙って設けられた紡糸口金11と、口金の下方に配置され、表面に山部3と谷部4を有する搬送体12で構成されている。立体網状構造物を製造するときは、原料となる合成重合体を溶融状態で紡糸口金から連続線条2として紡糸し、連続線条2の落下速度よりも遅い速度で矢印方向に移動している搬送体12の上に自然落下させ、不規則なループを描かせて隣接する連続線条2と交差させながら順次積層させる。そして、その集積時に連続線条を相互にそれぞれの交差点において自己融着させた後、冷却すれば搬送体の山部3と谷部4に対応して山部、谷部が形成された立体網状構造物1を得ることが出来る。
【0008】
この時、連続線条が太すぎると線条が垂下しにくくなり、搬送体の谷部に対応させることができなくなるため、連続線条の直径は前述した範囲内にすることが望ましい。 また、紡糸口金を複数個設ければ、種類の異なる線条を紡糸することができ、複数種の連続線条で構成された立体網状構造物を得ることができる。このようにして得られる立体網状構造物においては、溝状の谷部が形成されているため土木資材としての植生用で植物の根、茎は谷部に沿って這う事ができ、生育が阻害されることはない。又、海洋資材としての海藻生育基盤材で、アマモのような海藻であっても茎は谷部に沿って這うことができ生育が阻害されることはない。
【0009】
最終的に得られる立体網状構造物の空隙率50〜99%、平行光線透過率10〜70%であることが望ましい。空隙率50%未満、平行光線透過率10%未満では、連続線条の間に形成される隙間が小さくなり、例えばアマモのように砂地に根を下ろす海藻の場合、根の通り抜けが困難になるからである。また、空隙率99%越え、平行光線透過率70%越となると、立体網状構造物の強度が弱くなり耐久性の面で問題が生じる。また、立体網状構造物の見掛けの厚みは10〜100mmであることが望ましい。ここで見掛けの厚みとは、立体網状構造物を剛性のある平板の上に置き、さらに、構造物の上に軽くて剛性のある平板を置いた時の、平板と平板の間の距離をいう。10mm未満では山部と谷部の高低差が小さくなり、表面が平坦化するため好ましくない。厚みが100mm越えの立体網状構造物は製造が困難でコストの上昇につながるために実用的でない。
【0010】
【発明の実施の形態】
発明の実施の形態を実施例にもとずき図面を参照しながら説明すると、図1は本発明の生分解性立体網状構造物の製造装置の一例を略示した側面図である。図2は本発明の生分解性立体網状構造物の一部を示した斜視図である。図3は本発明の生分解性立体網状構造物の山部と谷部を平面的に表した説明図である。図において、1は立体網状構造物、2は連続線条、3は山部、4は谷部、である。
【0011】
【実施例】以下に実施例で本発明について詳細に説明する。尚、実施例中の評価は以下の方法で測定した。
「厚み」 10cm角のサンプルを5枚作成し各サンプル中央部に3g/cm2 荷重をかけ厚みを測定、各測定値を平均して算出した。
「空隙率」 連続線条正味体積を見掛け体積で除した値を1より引いた値に100を乗じ算出した。
「平行光線透過率」 網状体の平面の一部を切り取り、これを裏面から平行光線を照射できるガラス盤上に置きガラス盤に垂直に設置したCCDカメラより画像を取り込み電算機により明暗を2値化し明部分の面積を処理画像面積で除して算出した。
【0012】
(実施例1) 立体網状構造物を製造すべく、前記図1のような装置を使用し、直径1mmの紡糸孔が10mm間隔で窄設されている紡糸孔列が二列に亙って平行に設けられている紡糸口金11を用意し、又、搬送体12として図3のように山部3と谷部4が設けられたものを用意した。そして、搬送体12と紡糸口金11の間隔は約20cm、搬送体12の移動速度は2m/分に設定した。原料として、昭和高分子社製生分解性樹脂「ビオノーレ」(登録商標)#1010(融点114℃)を用意し、これを溶融状態で紡糸口金から紡出させ、連続線条2の落下速度よりも遅い速度で矢印方向に移動している搬送体12の上に自然落下させ、不規則なループを描かせて隣接する連続線条2と交差させながら順次集積して連続線条2群が搬送体12の表面形状に沿って山部と谷部を形成するようにし、集積時に連続線条を相互にそれぞれの交差点において自己融着させた。そして、冷却し表面に山部3と谷部4を有する図2のような生分解性立体網状構造物1を得た。
【0013】
得られた生分解性立体網状構造物1は、直径約0.8mmの多数の連続線条の各々が不規則なループをなして相互に交差し、かつ厚み方向に湾曲して一方から他方に延び、その多数の連続線条がそれぞれ交差点において相互に接着されてなる目付が約1100g/m2 、見掛けの厚みが26mmの嵩高な網状物で構成され、マット面の円弧状をなした山部の幅は約20mm、山部間隔は約25mmであって、マット面の網状部における空隙率が97%、平行光線透過率が46%であった。また、引っ張り強力7Kg/5cmおよび伸び率40%の値を示し、充分実用に耐えられるものであった(JIS1096に準じて測定)。
【0014】
(比較例1) 使用樹脂として、オレフィン系樹脂のプロピレン−エチレン−ブテンの三元共重合物を使用した以外は実施例1と同様な製造方法にて立体網状構造物2を得た。
【0015】
得られた立体網状構造物2は、直径約0.8mmの多数の連続線条の各々が不規則なループをなして相互に交差し、かつ厚み方向に湾曲して一方から他方に延び、その多数の連続線条がそれぞれ交差点において相互に接着されてなる目付が約1100g/m2 、見掛けの厚みが28mmの嵩高な網状物で構成され、マット面の円弧状をなした山部の幅は約20mm、山部間隔は約25mmであって、マット面の網状部における空隙率が96%、平行光線透過率が45%であった。
【0016】
前記実施例1と比較例1で得られた立体網状構造物を畑地の土壌中に埋め、約12か月後に掘り起こした所、比較例1で得られた立体網状構造物は原形を保っていたが、本発明による実施例1で得られた立体網状構造物は、原形をとどめずバラバラの状態であった。
【0017】
【発明の効果】
本発明による生分解性立体網状構造物は、微生物によって分解可能な熱可塑性樹脂を主体にしてなるため、一定期間使用後は、生分解されて最終的に炭酸ガスと水になり、環境を汚すことはない。よって、使用後の余分な回収の労力およびそれに必要な経費を節約することができる。また、たとえ焼却されても燃焼カロリーがポリエチレンの約半分で焼却炉を損傷しにくい。
【図面の簡単な説明】
【図1】 本発明の生分解性立体網状構造物の製造装置の一例を略示した側面図である。
【図2】 本発明の生分解性立体網状構造物の一部を示した斜視図である。
【図3】 本発明の生分解性立体網状構造物の山部と谷部を平面的に表した説明図である。
【符号の説明】
1 立体網状構造物
2 連続線条
3 山部
4 谷部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a three-dimensional network structure used for civil engineering materials for vegetation, marine materials for seaweed growth, and the like.
[0002]
[Prior art]
The three-dimensional network structure used for civil engineering materials for conventional vegetation and marine materials for seaweed growth is, for example, as described in Japanese Utility Model Laid-Open No. 60-14136 and JP-A-9-121702. Polyolefin thermoplastic resins that are not degraded by microorganisms are used. Therefore, in order to maintain the form even after vegetation or seaweed growth, a great deal of labor and expense is required for the recovery after use, and the processing after recovery is processed by incineration etc. As the amount of consumption increases, processing is not in time, which is a big problem.
[0003]
[Problems to be solved by the invention]
In order to solve the problems of the prior art, the present invention can easily perform construction work for a natural environment after use for a certain period, that is, a civil engineering material or a marine material. After that, it is intended to provide a three-dimensional network structure that does not need to be recovered by being naturally decomposed by microorganisms.
[0004]
[Means for Solving the Problems]
In the present invention, each of a large number of synthetic polymer continuous filaments having a diameter of 0.1 to 2.0 mm intersects each other in an irregular loop, and is curved in the thickness direction to extend from one to the other. A large number of synthetic polymer continuous filaments are bonded to each other at their respective intersections, and a large number of bowl-shaped peaks and groove-shaped valleys that are recessed between the peaks are formed on the surface. The part forms valleys and ridges on the back surface, the apparent thickness is 10 to 100 mm, and the matte surface is formed by a bulky net-like part having a porosity of 50 to 99% and a parallel light transmittance of 10 to 70% A biodegradable three-dimensional network structure characterized in that the synthetic polymer continuous filament is mainly composed of a thermoplastic resin decomposable by microorganisms, and is a heat decomposable by microorganisms. The plastic resin has a melting point (Tm ) Is one that was characterized by consisting of an aliphatic polyester resin in the temperature range of 50 <Tm <170. The present invention is described in detail below.
[0005]
As the thermoplastic resin that can be decomposed by the microorganisms used in the present invention, for example, an aliphatic polyester resin is preferably used. Aliphatic polyester resins include polycondensates of polycarboxylic acids containing aliphatic divalent carboxylic acids and polyhydric alcohols containing aliphatic diols, polycondensates of hydroxyaliphatic carboxylic acids, and ring-opening polymerization of lactones. Things are included. These include, for example, homopolymers and copolymers derived from ethylene diadipate, propiolactone, β-hydroxybutyric acid and the like. A material obtained by block polymerizing a low molecular weight polyamide to an aliphatic polyester is also used. Among these, an aliphatic polyester produced by a microorganism having a melting point (Tm ° C.) of 90 <Tm <170 or an artificially synthesized aliphatic polyester of 50 <Tm is selected and used. Further, a thermoplastic resin derived from animals and plants such as a polymer alloy composed of a modified starch of 100 <Tm <160 and a modified polyvinyl alcohol, and a thermoplastic modified lignin can also be used.
[0006]
In addition, in order to promote and adjust biodegradation by microorganisms, microbial activators containing cellulose-based powders, proteins, starch, lactose, fats, and half-fiber degrading enzymes in thermoplastic resins that can be degraded by microorganisms, etc. May be added.
[0007]
In addition, the biodegradable three-dimensional network structure according to the present invention is such that each of a large number of synthetic polymer continuous filaments having a diameter of 0.1 to 2.0 mm intersects each other in an irregular loop, and in the thickness direction. Curved and extended from one to the other, a number of synthetic polymer continuous filaments are bonded to each other at each intersection, and the surface has a number of bowl-shaped peaks and groove-shaped valleys that are recessed between the peaks. The crests and troughs form troughs and crests on the back surface, the apparent thickness is 10 to 100 mm, the porosity is 50 to 99%, and the parallel light transmittance is 10 to 70%. It is desirable to be made of a three-dimensional network structure in which a mat surface is formed by a bulky network part. Since it is a three-dimensional network structure, it has a form suitable for civil engineering materials for vegetation, marine materials for seaweed growth, and the like as compared with sheet-like materials. In addition, since the crest and trough are three-dimensionally formed by the continuous filaments, there is an advantage that biodegradation is easier in soil and water. In addition, the biodegradation period can be adjusted by adjusting the diameter and density of the continuous filaments. If the diameter of the continuous filament is less than 0.1 mm, the linear shape is too thin and the strength of the entire three-dimensional network structure is insufficient, and if it exceeds 2.0 mm, the rigidity is increased, and a peak is formed on the surface of the three-dimensional network structure. Since it is difficult to form valleys, it is not preferable. This three-dimensional network structure can be manufactured using, for example, an apparatus as shown in FIG. This apparatus has two or three rows in a staggered manner in which spinning hole rows in which spinning holes having a hole diameter of 0.1 to 2.0 mm are narrowed at intervals of 6 to 20 mm are arranged in parallel or alternately. The spinneret 11 is provided over the base, and the carrier 12 is disposed below the base and has a crest 3 and a trough 4 on the surface. When producing a three-dimensional network structure, a synthetic polymer as a raw material is spun from a spinneret as a continuous filament 2 in a molten state, and moved in the direction of the arrow at a speed slower than the falling speed of the continuous filament 2 It is allowed to naturally fall on the carrier 12, and an irregular loop is drawn and laminated successively while intersecting with the adjacent continuous filaments 2. Then, after the continuous filaments are self-fused to each other at the respective intersections at the time of accumulation, and then cooled, a three-dimensional network shape in which peaks and valleys are formed corresponding to the peaks 3 and valleys 4 of the carrier The structure 1 can be obtained.
[0008]
At this time, if the continuous filament is too thick, it becomes difficult for the filament to hang down, and it becomes impossible to correspond to the valley portion of the carrier. Therefore, the diameter of the continuous filament is preferably within the above-described range. If a plurality of spinnerets are provided, different types of filaments can be spun and a three-dimensional network structure composed of a plurality of types of continuous filaments can be obtained. In the three-dimensional network structure obtained in this way, since the groove-shaped valley is formed, the roots and stems of plants can be planted along the valley for vegetation as civil engineering materials, and the growth is inhibited. It will never be done. Moreover, even if it is a seaweed growth base material as a marine material, even if it is a seaweed like an amamo, a stem can crawl along a trough part and growth will not be inhibited.
[0009]
It is desirable that the finally obtained three-dimensional network structure has a porosity of 50 to 99% and a parallel light transmittance of 10 to 70%. When the porosity is less than 50% and the parallel light transmittance is less than 10%, the gap formed between the continuous filaments becomes small. For example, in the case of a seaweed that roots in sand like an amamo, it is difficult to pass through the root. Because. On the other hand, if the void ratio exceeds 99% and the parallel light transmittance exceeds 70%, the strength of the three-dimensional network structure becomes weak, causing a problem in terms of durability. The apparent thickness of the three-dimensional network structure is preferably 10 to 100 mm. Here, the apparent thickness refers to the distance between a flat plate when a three-dimensional network structure is placed on a rigid flat plate and a light and rigid flat plate is placed on the structure. . If it is less than 10 mm, the height difference between the peak and the valley becomes small and the surface becomes flat, which is not preferable. A three-dimensional network structure having a thickness exceeding 100 mm is not practical because it is difficult to manufacture and leads to an increase in cost.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the invention will be described with reference to the drawings based on examples. FIG. 1 is a side view schematically showing an example of a biodegradable three-dimensional network manufacturing apparatus according to the present invention. FIG. 2 is a perspective view showing a part of the biodegradable three-dimensional network structure of the present invention. FIG. 3 is an explanatory view showing the peaks and valleys of the biodegradable three-dimensional network structure of the present invention in a plan view. In the figure, 1 is a three-dimensional network structure, 2 is a continuous filament, 3 is a peak, and 4 is a valley.
[0011]
The present invention will be described in detail with reference to the following examples. The evaluation in the examples was measured by the following method.
“Thickness” Five 10 cm square samples were prepared, a thickness of 3 g / cm 2 was applied to the center of each sample, the thickness was measured, and each measured value was averaged.
“Porosity” The value obtained by subtracting the value obtained by dividing the continuous linear net volume by the apparent volume from 1 was calculated by multiplying by 100.
“Parallel light transmittance” A part of the plane of the reticulate body is cut out, and this is placed on a glass plate that can be irradiated with parallel light from the back side, and the image is taken in from a CCD camera installed vertically on the glass plate. Calculated by dividing the area of the bright part by the area of the processed image.
[0012]
(Example 1) In order to manufacture a three-dimensional network structure, the apparatus shown in Fig. 1 is used, and spinning hole rows in which spinning holes having a diameter of 1 mm are constricted at intervals of 10 mm are parallel in two rows. A spinneret 11 provided in the above-mentioned structure was prepared, and a carrier 12 having a crest 3 and a trough 4 as shown in FIG. 3 was prepared. And the space | interval of the conveyance body 12 and the spinneret 11 was set to about 20 cm, and the moving speed of the conveyance body 12 was set to 2 m / min. As a raw material, biodegradable resin “Bionore” (registered trademark) # 1010 (melting point: 114 ° C.) manufactured by Showa Polymer Co., Ltd. was prepared and spun from a spinneret in a molten state. It is naturally dropped onto the carrier 12 moving in the direction of the arrow at a slow speed, and an irregular loop is drawn to sequentially accumulate while intersecting the adjacent continuous filaments 2 to convey the continuous filaments 2 group. Crests and troughs were formed along the surface shape of the body 12, and the continuous filaments were self-fused at each intersection at the time of integration. And it cooled and the biodegradable solid network structure 1 like FIG. 2 which has the peak part 3 and the trough part 4 on the surface was obtained.
[0013]
In the obtained biodegradable three-dimensional network structure 1, each of a large number of continuous filaments having a diameter of about 0.8 mm intersects each other in an irregular loop, and curves in the thickness direction from one to the other. A ridge that is formed by a bulky net having a weight per unit area of about 1100 g / m 2 and an apparent thickness of 26 mm. The width of each was about 20 mm, the interval between the crests was about 25 mm, the porosity in the mesh portion of the mat surface was 97%, and the parallel light transmittance was 46%. Moreover, the tensile strength was 7 kg / 5 cm and the elongation was 40%, which was sufficient for practical use (measured according to JIS1096).
[0014]
(Comparative example 1) The three-dimensional network structure 2 was obtained with the manufacturing method similar to Example 1 except having used the ternary copolymer of propylene-ethylene-butene of olefin resin as resin to be used.
[0015]
In the obtained three-dimensional network structure 2, each of a large number of continuous filaments having a diameter of about 0.8 mm intersects each other in an irregular loop, and is curved in the thickness direction to extend from one to the other. A large number of continuous filaments are bonded to each other at the intersection, the basis weight is about 1100 g / m 2 , the apparent thickness is 28 mm, and the mat portion has an arcuate peak width. About 20 mm, the crest spacing was about 25 mm, the porosity in the mesh portion of the mat surface was 96%, and the parallel light transmittance was 45%.
[0016]
The solid network structure obtained in Example 1 and Comparative Example 1 was buried in upland soil and dug up about 12 months later. The solid network structure obtained in Comparative Example 1 kept its original shape. However, the three-dimensional network structure obtained in Example 1 according to the present invention did not stay in its original form and was in a disassembled state.
[0017]
【The invention's effect】
The biodegradable three-dimensional network structure according to the present invention is mainly composed of a thermoplastic resin that can be decomposed by microorganisms. Therefore, after use for a certain period of time, it is biodegraded and finally becomes carbon dioxide and water, which pollutes the environment. There is nothing. Therefore, it is possible to save extra recovery effort after use and necessary expenses. Moreover, even if incinerated, the calorie burned is about half that of polyethylene, making it difficult to damage the incinerator.
[Brief description of the drawings]
FIG. 1 is a side view schematically showing an example of a production apparatus for a biodegradable three-dimensional network structure according to the present invention.
FIG. 2 is a perspective view showing a part of the biodegradable three-dimensional network structure of the present invention.
FIG. 3 is an explanatory view showing the peaks and valleys of the biodegradable three-dimensional network structure of the present invention in a plan view.
[Explanation of symbols]
1 Three-dimensional network structure 2 Continuous filament 3 Mountain part 4 Valley part

Claims (2)

直径0.1〜2.0mmの多数の合成重合体連続線条の各々が不規則なループをなして相互に交差し、かつ厚み方向に湾曲して一方から他方に延び、その多数の合成重合体連続線条がそれぞれの交差点において相互に接着され、表面には多数の畝状の山部とその山部間において窪んだ溝状の植物生育用谷部が形成され、この山部および谷部は裏面において谷部および山部を形成して、見掛け厚さが10〜100mmであって、空隙率50〜99%、平行光線透過率10〜70%の嵩高な網状部によってマット面が形成される立体網状マットからなり、該合成重合体連続線条が、微生物によって分解可能な脂肪族の2価カルボン酸を含む多価カルボン酸と脂肪族系ジオールを含む多価アルコールとの重縮合物である脂肪族ポリエステル樹脂を主体としてなることを特徴とした植物生育用生分解性立体網状構造物。Each of a large number of synthetic polymer continuous filaments having a diameter of 0.1 to 2.0 mm intersects each other in an irregular loop, and is curved in the thickness direction to extend from one to the other. Combined continuous filaments are bonded to each other at each intersection, and a number of ridge-like ridges and groove-like valleys for plant growth recessed between the ridges are formed on the surface. Forms a trough and a crest on the back surface, has an apparent thickness of 10 to 100 mm, and a matte surface is formed by a bulky mesh portion having a porosity of 50 to 99% and a parallel light transmittance of 10 to 70%. The synthetic polymer continuous filament is a polycondensate of a polyvalent carboxylic acid containing an aliphatic divalent carboxylic acid decomposable by microorganisms and a polyhydric alcohol containing an aliphatic diol. A certain aliphatic polyester resin Plant growth for biodegradable three-dimensional net-like structure which is characterized by comprising a. 前記脂肪族ポリエステル樹脂の融点(Tm℃)が50<Tm<170の温度範囲にあることを特徴とした請求項1記載の植物生育用生分解性立体網状構造物。  The biodegradable three-dimensional network structure for plant growth according to claim 1, wherein the melting point (Tm ° C) of the aliphatic polyester resin is in a temperature range of 50 <Tm <170.
JP07129798A 1998-03-04 1998-03-04 Biodegradable solid network structure Expired - Fee Related JP3905210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07129798A JP3905210B2 (en) 1998-03-04 1998-03-04 Biodegradable solid network structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07129798A JP3905210B2 (en) 1998-03-04 1998-03-04 Biodegradable solid network structure

Publications (2)

Publication Number Publication Date
JPH11247060A JPH11247060A (en) 1999-09-14
JP3905210B2 true JP3905210B2 (en) 2007-04-18

Family

ID=13456599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07129798A Expired - Fee Related JP3905210B2 (en) 1998-03-04 1998-03-04 Biodegradable solid network structure

Country Status (1)

Country Link
JP (1) JP3905210B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523711B2 (en) * 2000-10-10 2010-08-11 ダイワボウホールディングス株式会社 Three-dimensional network and method for producing the same
JP4571318B2 (en) * 2001-01-23 2010-10-27 ダイワボウホールディングス株式会社 Conductive network
JP5001726B2 (en) * 2007-06-19 2012-08-15 ダイワボウホールディングス株式会社 Ceiling laying material and roof structure
CN117083426A (en) * 2021-03-30 2023-11-17 东洋纺Mc株式会社 Biodegradable three-dimensional network structure

Also Published As

Publication number Publication date
JPH11247060A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
US4756946A (en) Plastic material mesh structure
EP0765959B1 (en) Filament nonwoven fabrics and method of fabricating the same
JP3905210B2 (en) Biodegradable solid network structure
MXPA00012318A (en) Resin cultivating base, water purifying device and method using resin cultivating base.
US20220143951A1 (en) Geomaterial web with biological degradation properties
JP2000328422A (en) Antibacterial and antifungal polylactic acid structure and its production
JP2002119160A (en) Resin culture medium, water purifying device and method using the same resin culture medium
JP3342219B2 (en) Nursery mat
WO2005023955A2 (en) Biodegradable nets, methods of manufacture and uses thereof, particularly as an erosion blanket
JP3573612B2 (en) Biodegradable weed control sheet
JP3711409B2 (en) Biodegradable agricultural fiber assembly
JP3181821B2 (en) Seaweed growth base material and method for producing the same
JPH06146231A (en) Three-dimensional net-like structure laid underwater
EP1160367B1 (en) Matting of low density thermoplastic material and high voids index, and a device and process for its production
JPS6353332B2 (en)
CA2274054A1 (en) Synthetic aquatic structure, method of controlling an aquatic environment, and aquarium
JP3342566B2 (en) Biodegradable composite monofilament and its production method
CN114179985B (en) Warp-knitted spacer fabric base water floating bed
JPH1028990A (en) Water cleaner
JP2006291375A (en) Biodegradable weedproof sheet
JP2005113278A (en) Biodegradable nonwoven fabric and filter using the same
JPH10249969A (en) Space network structure
JPH0457953A (en) Microorganism-degradable nonwoven fabric
JPS5932270Y2 (en) artificial reef
CN212312947U (en) Root-resistant waterproof coiled material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees