JP3903502B2 - Electromagnetic wave measuring device - Google Patents

Electromagnetic wave measuring device Download PDF

Info

Publication number
JP3903502B2
JP3903502B2 JP27385896A JP27385896A JP3903502B2 JP 3903502 B2 JP3903502 B2 JP 3903502B2 JP 27385896 A JP27385896 A JP 27385896A JP 27385896 A JP27385896 A JP 27385896A JP 3903502 B2 JP3903502 B2 JP 3903502B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
pulse
wave pulse
unit
receiving unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27385896A
Other languages
Japanese (ja)
Other versions
JPH10123237A (en
Inventor
泰永 加山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP27385896A priority Critical patent/JP3903502B2/en
Publication of JPH10123237A publication Critical patent/JPH10123237A/en
Application granted granted Critical
Publication of JP3903502B2 publication Critical patent/JP3903502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超短パルスの信号を含む電磁波を利用して2カ所の間の高さの差及び距離を測定する装置に関する。
【0002】
【従来の技術】
従来、2カ所間の高さの差を測定する装置としては、被測定位置に設置し垂直方向に立てた標尺上の目盛りを、基準位置に設置し水平方向に向いた望遠鏡で読み取ることで基準位置からの高さの差を求める光学式レベル装置が一般的である。
【0003】
また、省力化、自動化のもとに、基準位置からレーザ光を水平方向に出射して、被測定位置に設置した垂直方向に延びる受光器で、レーザ光の受光位置を計測するレーザレベル装置が開発されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記の光学式レベル装置においては、基準位置で望遠鏡を覗く人間と被測定位置で標尺を持つ人間の最低2人が必要であり、作業性が悪い。また、人間の目視により標尺の目盛りを読み取ることが必要であり作業者の能力による測定誤差の発生を招き、正確な測定が困難である。
【0005】
上記のレーザレベル装置は、このような問題点を一部解決するが、レーザ光を使用しているため、特に太陽光などの外乱光のもとではレーザ光の判別が困難で屋外での測定が困難であるという問題点を有している。更に、遠くまで届くレーザ光を生成する為にはかなりの電力消費を伴い、フィールドでの電源の確保の困難性から電池の寿命の期間しか連続して使用できない。
【0006】
そこで、本発明は上記の問題点を解決し、作業性が良く正確な高さ測定を行うことができ、しかも屋外、屋内の場所を選ばない高さ測定装置を提供することにある。
【0007】
更に、本発明の目的は、2カ所の間の距離を作業性よく正確に測定することができる距離測定装置を提供することにある。
【0008】
【課題を解決するための手段】
上記の目的は、本発明によれば、パルス幅の短いパルス信号を有する電磁波を水平方向に射出する電磁波パルス射出部と、
垂直方向に所定の長さを有し、該電磁波パルスを受信し、該受信した電磁波のパルス信号を前記長さ方向に伝搬させる電磁波パルス受信部と、
該電磁波パルス受信部の上下端に伝搬された前記電磁波パルスの第一、第二のパルス信号を検出するパルス検出部と、
該パルス検出部で検出された前記第一及び第二のパルス信号の時間差から前記電磁波パルス受信部における電磁波パルスの照射位置を検出し、前記電磁波パルス射出部と電磁波パルス受信部との相対的な高さの差を検出する高さ検出部とを有する電磁波による高さ測定装置を提供することにより達成される。
【0009】
200ピコsec程度の超短パルス信号に従って電磁波パルスを生成し、その電磁波パルス信号を利用することにより、効率的にそして正確に高さを測定することができる。
【0010】
更に上記の目的は、本発明によれば、パルス幅の短いパルス信号を有する電磁波をその垂直方向の射出角を絞って水平方向に射出する電磁波パルス射出部と、垂直方向に所定の長さを有し、該電磁波パルスを受信する電磁波パルス受信部と、該電磁波パルス受信部中の該電磁波を受信する位置に基づいて前記電磁波の前記垂直方向の広がりを検出し、該検出された広がりから前記電磁波パルス射出部と電磁波パルス受信部との間の距離を検出する距離検出部とを有する電磁波による距離測定装置を提供することにより達成される。
【0011】
短パルス信号から生成される電磁波パルス信号の広がりの程度を検出することで距離を測定することができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について図面に従って説明する。しかしながら、本発明の技術的範囲がその実施の形態に限定されるものではない。
【0013】
図1は、本発明の実施の形態例の高さ及び距離測定装置のブロック図である。101は超短パルス信号を有する電磁波を水平方向に射出する電磁波パルス射出部であり、例えば基準位置に設置される。電磁波パルス射出部101内には、200ピコsec程度の超短パルスで、100KW程度の高い電圧のパルス信号を生成するパルス発生部1と、そのパルス発生部1からのパルス信号を増幅して得られる電磁波ビームを所定形状に成形して射出する増幅アンテナ部2と、その電磁波ビームを水平方向に走査するビーム走査用ミラー3が設けられている。
【0014】
増幅アンテナ部2では、結果的に水平方向に射出される電磁波EMの垂直方向の広がりの角度が、例えば2度等の狭い角度になる様にアンテナの形状を適宜選択することで電磁波のビームが成形される。また、ビーム走査用ミラー3は、360度回転することで、基準位置に対して被測定位置を自由に選択することができる。或いは、被測定位置がある程度の範囲に限定される場合は、その範囲の方向にミラー3の走査方向が制御される。
【0015】
102は、電磁波EMを受信する受信部であり、被測定位置に設置される。この受信部102には、垂直方向に所定の長さを有する電磁波パルス受信部4が設けられる。この電磁波パルス受信部4は、例えば、アルミニウム等の金属導体で構成されるものであり、水平方向に僅かな広がりを持った電磁波ビームEMをその所定の位置で受信し、その電磁波パルスが金属導体内をその受信位置から上下方向に伝搬する様に構成される。
【0016】
通常電磁波は、真空中及び物質中を高速で移動する。真空中の速度は秒速で約30万kmであり、空気中においてもほぼ同程度の速度で移動する。それに対して、金属導電体中等の物質中ではその誘電率に応じて速度が遅くなり、例えば一般的な電線を利用したときは、毎秒約20万kmになる。
【0017】
従って、電磁波パルス受信部4の長さが2m程度であるとして、電磁波パルスがその中央部で受信されたとすると、その上下端に達するのに要する時間は、5nsec程度になる。
【0018】
電磁波パルス受信部4上の電磁波パルスを受信する位置は、電磁波パルス射出部101との相対的な高さの差によって決定される。そこで、電磁波パルス受信部4の上下端に達する電磁波パルス信号を検出するパルス検出部5a、5bが電磁波パルス受信部4の上下端に設けられている。パルス検出部5a,5bで伝搬パルス信号の反射が発生しない様に、適宜インピーダンス整合がとられている。
【0019】
図2は、図1の要部の信号のタイミングチャート図である。図中(1)は、パルス発生部1にて生成されたパルス信号であり、図中(2)、(3)はパルス検出部5a,5bが検出したパルス信号である。それぞれの検出されたパルス信号が伝搬時間差測定部6に供給され、適宜発生させたカウントパルスを両パルスの間の時間カウントすることで、両パルス信号の伝搬時間差に対応したカウント値6aが電磁波ビーム位置検出部7に与えられる。
【0020】
電磁波ビーム位置検出部7には、伝搬時間差に対応したカウント値と検出高さの実測値との対応を予め作成したテーブルが記憶され、そのテーブルを参照することにより、被測定位置の基準位置からの高さが求められ、表示部8に表示される。
【0021】
一方、受信部102内には、更に電磁波パルス射出部101が設置された基準位置と受信部102が設置された被測定位置との距離を検出する手段が設けられている。
【0022】
図3は、上記の距離測定の原理を説明する為の図である。電磁波パルス射出部101から例えば垂直方向の広がり角度θで電磁波パルスEMが射出され、電磁波パルス受信部4にその電磁波パルスが照射されると、その受信部4内で生成されるパルス幅は、距離Dに応じて相対的に長くなる傾向にある。図3中で、実線で示した受信部4の位置では、例えば図2の(5)の実線で示したパルス信号がパルス検出部5bで検出されるとすると、図3中で、破線でしめした受信部4の位置では、図2(5)の破線で示したパルス信号が検出される。従って、その受信したパルスの幅を測定することにより、図3中の距離D1とD2とを区別して検出することができる。
【0023】
例えば、上記の垂直方向のビームの広がり角度θを2度として、電磁波パルス受信部4の導体中の電磁波の伝搬速度が毎秒20万kmとし、出射パルス幅が200ピコsecとすると、距離Dと受信部4でのビーム幅Lとパルス幅Wの関係は、例えば図3中に示した表の如き関係になる。従って、従来の距離測定器で測定されていた数十mから数百m程度の範囲の距離を測定することが可能である。
【0024】
図1に戻り、上記の電磁波パルス受信部4が受信した電磁波パルスがパルス検出部5bで検出され、そのパルス信号がパルス幅検出部9に与えられる。このパルス信号はパルス検出部5aから供給されても良い。そして、パルス検出部9では、図2(5)に示した通り、パルス信号のピークレベルの半値全幅Wが検出される。具体的には、カウンタパルスをカウントすることによりカウント値9aとしてそのパルス幅が距離検出部10に与えられる。そして、距離検出部10内には、距離Dと受信パルス幅の関係を示した図3中の表の如きテーブルが記憶されており、そのテーブルを参照することで実際の距離が求められる。そして、表示部8にその距離が表示される。
【0025】
この様に、被測定位置の高さに加えて距離も同時に測定することができるので、例えば測定限界距離内にあるか否かの判定を同時に行うことができる。即ち、通常電磁波が所定のパワーで伝搬できる距離は、射出時のパワーとの関係である程度の限界がある。従って、この様な高さ測定装置は測定限界距離が通常設定されている。その場合、測定限界距離を越えた領域で被測定位置の高さを測定することは、発生誤差が大きくなり好ましくない。その場合、上記の様に距離を同時に検出することができると、測定限界距離内であるか否かの判定を即座に行うことができる。
【0026】
上記の測定装置の使用例について簡単に説明する。先ず最初に、電磁波パルス射出部101を任意の基準位置に設置し、スイッチをオンにすると超短パルスの電磁波がその広がり角度を絞られて360度の方向に走査される。続いて、受信部102を被測定位置に移動し、電磁波ビーム受信部4を垂直方向に設置する。その結果、電磁波ビーム受信部4のビーム照射位置は、高さに応じて変化する位置になり、その位置が前述した上下端に設けたパルス検出部5a,5bでの検出パルス信号の時間差として伝搬時間差測定部6で検出され、高さ検出部7で実際の高さが検出される。
【0027】
その時、同時に電磁波パルス受信部4内のパルス幅をパルス幅検出部9で検出することで距離も求められる。
【0028】
電磁波パルス射出部は、例えば、レーダに用いられる公知の回路を用いることができる。
【0029】
更に、他の実施の形態例として、図1においてパルス検出部5a,5bを電磁波パルス受信部4のいずれか一端にのみ設け、受信される電磁波パルスが伝搬してくるパルスと、他端に向かって伝搬しそこで反射して戻ってくるパルスの遅延時間を伝搬時間差測定部6で検出することでも、本発明の原理を適用できる。この場合は、パルス検出部をいずれか一方にのみ設ければ良い。
【0030】
【発明の効果】
以上説明した通り、本発明によれば、超短パルスを利用することにより、屋外で1名の作業者により相対的高さと距離を電気的に測定することができる。従って作業性が高く、測定精度の高い測定装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態例の高さ及び距離測定装置のブロック図である。
【図2】図1の要部の信号のタイミングチャート図である。
【図3】距離測定の原理を説明する為の図である。
【符号の説明】
101 電磁波パルス射出部
102 受信部
1 パルス発生部
2 増幅アンテナ
4 電磁波パルス受信部
5a,5b パルス検出部
6 伝搬時間差測定部
9 パルス幅検出部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for measuring a height difference and a distance between two places using an electromagnetic wave including an ultrashort pulse signal.
[0002]
[Prior art]
Conventionally, as a device for measuring the difference in height between two locations, the scale on the measuring scale installed at the position to be measured and set up in the vertical direction is read by a telescope that is installed at the reference position and oriented in the horizontal direction. An optical level device that determines the height difference from the position is common.
[0003]
In addition, a laser level device that emits laser light from a reference position in the horizontal direction and measures the light receiving position of the laser light with a light receiver extending in the vertical direction installed at the position to be measured under labor saving and automation. Has been developed.
[0004]
[Problems to be solved by the invention]
However, the above optical level device requires at least two persons, a person looking into the telescope at the reference position and a person having a scale at the position to be measured, and the workability is poor. Further, it is necessary to read the scale of the scale by human eyes, which causes measurement errors due to the ability of the operator, and accurate measurement is difficult.
[0005]
The above laser level device solves some of these problems, but because it uses laser light, it is difficult to distinguish laser light, especially under ambient light such as sunlight, and it can be measured outdoors. Has the problem of being difficult. Furthermore, generating laser light that travels far involves considerable power consumption, and can only be used continuously during the lifetime of the battery due to the difficulty of securing a power supply in the field.
[0006]
SUMMARY OF THE INVENTION Accordingly, the present invention is to provide a height measuring apparatus that solves the above-mentioned problems, can perform accurate height measurement with good workability, and does not select outdoor or indoor places.
[0007]
Furthermore, the objective of this invention is providing the distance measuring apparatus which can measure the distance between two places accurately with sufficient workability | operativity.
[0008]
[Means for Solving the Problems]
The above object is, according to the present invention, an electromagnetic wave pulse emitting unit for emitting an electromagnetic wave having a pulse signal with a short pulse width in the horizontal direction,
An electromagnetic wave pulse receiving unit having a predetermined length in the vertical direction, receiving the electromagnetic wave pulse, and propagating a pulse signal of the received electromagnetic wave in the length direction;
A pulse detector for detecting the first and second pulse signals of the electromagnetic wave pulse propagated to the upper and lower ends of the electromagnetic wave pulse receiver;
An electromagnetic wave pulse irradiation position in the electromagnetic wave pulse receiving unit is detected from a time difference between the first and second pulse signals detected by the pulse detecting unit, and the electromagnetic wave pulse emitting unit and the electromagnetic wave pulse receiving unit are relative to each other. This is achieved by providing a height measuring device using electromagnetic waves having a height detecting unit for detecting a height difference.
[0009]
By generating an electromagnetic pulse according to an ultrashort pulse signal of about 200 picoseconds and using the electromagnetic pulse signal, the height can be measured efficiently and accurately.
[0010]
Further, according to the present invention, according to the present invention, an electromagnetic wave pulse emitting unit that emits an electromagnetic wave having a pulse signal with a short pulse width in a horizontal direction by narrowing an emission angle in the vertical direction, and a predetermined length in the vertical direction. a, an electromagnetic wave pulse receiver for receiving the electromagnetic wave pulse, based on the position for receiving the electromagnetic wave in the electromagnetic wave pulse receiver detects the vertical extent of the electromagnetic wave, said from said detected spread This is achieved by providing a distance measuring device using an electromagnetic wave having a distance detecting unit for detecting a distance between the electromagnetic wave pulse emitting unit and the electromagnetic wave pulse receiving unit.
[0011]
The distance can be measured by detecting the extent of the spread of the electromagnetic wave pulse signal generated from the short pulse signal.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the technical scope of the present invention is not limited to the embodiment.
[0013]
FIG. 1 is a block diagram of a height and distance measuring device according to an embodiment of the present invention. Reference numeral 101 denotes an electromagnetic wave pulse emitting unit that emits an electromagnetic wave having an ultrashort pulse signal in the horizontal direction, and is installed at a reference position, for example. In the electromagnetic wave pulse emitting unit 101, a pulse generator 1 that generates a pulse signal having a high voltage of about 100 KW with an ultrashort pulse of about 200 picoseconds, and a pulse signal from the pulse generator 1 are amplified. There are provided an amplifying antenna section 2 that shapes and emits an electromagnetic wave beam to be formed into a predetermined shape, and a beam scanning mirror 3 that scans the electromagnetic wave beam in the horizontal direction.
[0014]
In the amplifying antenna unit 2, as a result, the electromagnetic wave beam is generated by appropriately selecting the shape of the antenna so that the vertical spread angle of the electromagnetic wave EM emitted in the horizontal direction becomes a narrow angle such as 2 degrees, for example. Molded. Further, the beam scanning mirror 3 can be freely selected from the reference position by rotating 360 degrees. Alternatively, when the position to be measured is limited to a certain range, the scanning direction of the mirror 3 is controlled in the direction of the range.
[0015]
Reference numeral 102 denotes a receiving unit that receives the electromagnetic wave EM and is installed at a position to be measured. The receiving unit 102 is provided with an electromagnetic wave pulse receiving unit 4 having a predetermined length in the vertical direction. The electromagnetic wave pulse receiving unit 4 is composed of a metal conductor such as aluminum, for example, and receives an electromagnetic wave beam EM having a slight spread in the horizontal direction at the predetermined position. It is configured to propagate up and down from the reception position.
[0016]
Normally, electromagnetic waves move at high speed in vacuum and in substances. The speed in vacuum is about 300,000 km per second, and it moves at almost the same speed in air. On the other hand, in a material such as a metal conductor, the speed decreases according to the dielectric constant. For example, when a general electric wire is used, the speed is about 200,000 km per second.
[0017]
Therefore, assuming that the length of the electromagnetic wave pulse receiving unit 4 is about 2 m, and the electromagnetic wave pulse is received at the central part, the time required to reach the upper and lower ends is about 5 nsec.
[0018]
The position for receiving the electromagnetic wave pulse on the electromagnetic wave pulse receiving unit 4 is determined by the difference in height relative to the electromagnetic wave pulse emitting unit 101. Therefore, pulse detectors 5 a and 5 b for detecting electromagnetic wave pulse signals reaching the upper and lower ends of the electromagnetic wave pulse receiver 4 are provided at the upper and lower ends of the electromagnetic wave pulse receiver 4. Impedance matching is taken as appropriate so that the pulse detectors 5a and 5b do not reflect the propagation pulse signal.
[0019]
FIG. 2 is a timing chart of signals of the main part of FIG. In the figure, (1) is a pulse signal generated by the pulse generator 1, and (2) and (3) in the figure are pulse signals detected by the pulse detectors 5a and 5b. Each detected pulse signal is supplied to the propagation time difference measuring unit 6, and the count pulse 6 a corresponding to the propagation time difference between the two pulse signals is obtained by counting the time between the two pulses, which is appropriately generated. The position detection unit 7 is given.
[0020]
The electromagnetic wave beam position detection unit 7 stores a table in which the correspondence between the count value corresponding to the propagation time difference and the actual measurement value of the detection height is stored in advance, and the reference position of the measured position can be determined by referring to the table. Is obtained and displayed on the display unit 8.
[0021]
On the other hand, means for detecting the distance between the reference position where the electromagnetic wave pulse emitting unit 101 is installed and the position to be measured where the receiving unit 102 is installed is provided in the receiving unit 102.
[0022]
FIG. 3 is a diagram for explaining the principle of the distance measurement. For example, when the electromagnetic wave pulse EM is emitted from the electromagnetic wave pulse emitting unit 101 at a vertical spread angle θ and the electromagnetic wave pulse receiving unit 4 is irradiated with the electromagnetic wave pulse, the pulse width generated in the receiving unit 4 is a distance. It tends to be relatively long according to D. In FIG. 3, at the position of the receiving unit 4 indicated by a solid line, for example, if the pulse signal indicated by the solid line in (5) of FIG. At the position of the receiving unit 4, the pulse signal indicated by the broken line in FIG. 2 (5) is detected. Therefore, the distances D1 and D2 in FIG. 3 can be distinguished and detected by measuring the width of the received pulse.
[0023]
For example, when the vertical beam divergence angle θ is 2 degrees, the propagation speed of the electromagnetic wave in the conductor of the electromagnetic wave pulse receiving unit 4 is 200,000 km per second, and the outgoing pulse width is 200 picoseconds, the distance D The relationship between the beam width L and the pulse width W at the receiving unit 4 is, for example, as shown in the table of FIG. Therefore, it is possible to measure a distance in the range of several tens of meters to several hundreds of meters, which has been measured with a conventional distance measuring device.
[0024]
Returning to FIG. 1, the electromagnetic wave pulse received by the electromagnetic wave pulse receiver 4 is detected by the pulse detector 5 b, and the pulse signal is given to the pulse width detector 9. This pulse signal may be supplied from the pulse detector 5a. The pulse detection unit 9 detects the full width at half maximum W of the peak level of the pulse signal as shown in FIG. Specifically, by counting the counter pulse, the pulse width is given to the distance detector 10 as the count value 9a. A table such as the table in FIG. 3 showing the relationship between the distance D and the received pulse width is stored in the distance detection unit 10, and the actual distance is obtained by referring to the table. Then, the distance is displayed on the display unit 8.
[0025]
In this way, since the distance can be simultaneously measured in addition to the height of the position to be measured, for example, it is possible to simultaneously determine whether or not the distance is within the measurement limit distance. That is, the distance that the normal electromagnetic wave can propagate with a predetermined power has a certain limit in relation to the power at the time of emission. Therefore, such a height measuring apparatus is usually set with a measurement limit distance. In that case, it is not preferable to measure the height of the position to be measured in the region beyond the measurement limit distance because the generated error increases. In that case, if the distance can be detected simultaneously as described above, it is possible to immediately determine whether or not the distance is within the measurement limit distance.
[0026]
A usage example of the above-described measuring apparatus will be briefly described. First, when the electromagnetic wave pulse emitting unit 101 is set at an arbitrary reference position and the switch is turned on, the electromagnetic wave of the ultrashort pulse is scanned in the direction of 360 degrees with its spreading angle narrowed. Subsequently, the receiving unit 102 is moved to the measurement position, and the electromagnetic wave beam receiving unit 4 is installed in the vertical direction. As a result, the beam irradiation position of the electromagnetic wave beam receiving unit 4 changes according to the height, and the position is propagated as a time difference between detection pulse signals at the pulse detection units 5a and 5b provided at the upper and lower ends described above. It is detected by the time difference measuring unit 6 and the actual height is detected by the height detecting unit 7.
[0027]
At that time, the distance is also obtained by simultaneously detecting the pulse width in the electromagnetic wave pulse receiving unit 4 with the pulse width detecting unit 9.
[0028]
As the electromagnetic wave pulse emitting unit, for example, a known circuit used in a radar can be used.
[0029]
Furthermore, as another embodiment, in FIG. 1, the pulse detectors 5a and 5b are provided only at one end of the electromagnetic wave pulse receiver 4, and the received electromagnetic wave pulse propagates toward the other end. The principle of the present invention can also be applied by detecting the delay time of the pulse that propagates and is reflected and returned by the propagation time difference measuring unit 6. In this case, it is sufficient to provide the pulse detection unit only on one of them.
[0030]
【The invention's effect】
As described above, according to the present invention, the relative height and distance can be electrically measured by one worker outdoors by using the ultrashort pulse. Therefore, it is possible to provide a measuring apparatus with high workability and high measurement accuracy.
[Brief description of the drawings]
FIG. 1 is a block diagram of a height and distance measuring device according to an embodiment of the present invention.
FIG. 2 is a timing chart of signals of main parts in FIG.
FIG. 3 is a diagram for explaining the principle of distance measurement.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 Electromagnetic wave pulse emission part 102 Reception part 1 Pulse generation part 2 Amplifying antenna 4 Electromagnetic wave pulse reception part 5a, 5b Pulse detection part 6 Propagation time difference measurement part 9 Pulse width detection part

Claims (5)

パルス幅の短いパルス信号を有する電磁波を水平方向に射出する電磁波パルス射出部と、
垂直方向に所定の長さを有し、該電磁波パルスを受信し、該受信した電磁波のパルス信号を前記長さ方向に伝搬させる電磁波パルス受信部と、
該電磁波パルス受信部の上下端に伝搬された前記電磁波パルスの第一、第二のパルス信号を検出するパルス検出部と、
該パルス検出部で検出された前記第一及び第二のパルス信号の時間差から前記電磁波パルス受信部における電磁波パルスの照射位置を検出し、前記電磁波パルス射出部と電磁波パルス受信部との相対的な高さの差を検出する高さ検出部とを有する電磁波による高さ測定装置。
An electromagnetic wave pulse emitting unit for emitting an electromagnetic wave having a pulse signal with a short pulse width in a horizontal direction;
An electromagnetic wave pulse receiving unit having a predetermined length in the vertical direction, receiving the electromagnetic wave pulse, and propagating a pulse signal of the received electromagnetic wave in the length direction;
A pulse detector for detecting the first and second pulse signals of the electromagnetic wave pulse propagated to the upper and lower ends of the electromagnetic wave pulse receiver;
An electromagnetic wave pulse irradiation position in the electromagnetic wave pulse receiving unit is detected from a time difference between the first and second pulse signals detected by the pulse detecting unit, and the electromagnetic wave pulse emitting unit and the electromagnetic wave pulse receiving unit are relative to each other. A height measurement device using electromagnetic waves, having a height detection unit for detecting a difference in height.
パルス幅の短いパルス信号を有する電磁波をその垂直方向の射出角を絞って水平方向に射出する電磁波パルス射出部と、
垂直方向に所定の長さを有し、該電磁波パルスを受信する電磁波パルス受信部と、
該電磁波パルス受信部で受信された電磁波パルスに応じて生成され該電磁波パルス受信部の一端に伝搬されるパルス信号のパルス幅に基づいて前記電磁波の前記電磁波パルス受信部での垂直方向の広がりを検出し、該検出された広がりから前記電磁波パルス射出部と電磁波パルス受信部との間の距離を検出する距離検出部とを有する電磁波による距離測定装置。
An electromagnetic wave pulse emitting unit for emitting an electromagnetic wave having a pulse signal with a short pulse width in a horizontal direction by narrowing an emission angle in the vertical direction;
An electromagnetic wave pulse receiver having a predetermined length in the vertical direction and receiving the electromagnetic wave pulse;
Based on the pulse width of the pulse signal generated according to the electromagnetic wave pulse received by the electromagnetic wave pulse receiving unit and propagated to one end of the electromagnetic wave pulse receiving unit, the electromagnetic wave is spread in the vertical direction at the electromagnetic wave pulse receiving unit. A distance measuring device using electromagnetic waves, comprising: a distance detecting unit that detects and detects a distance between the electromagnetic wave pulse emitting unit and the electromagnetic wave pulse receiving unit from the detected spread.
請求項に記載の距離測定装置において、
前記距離検出部は、前記電磁波パルス射出部の前記射出角と前記電磁パルス受信部の感度に従って、該電磁波パルス射出部と受信部間の距離と前記電磁波の前記電磁波パルス受信部での広がりの関係を記録したテーブル手段を有し、該テーブル手段を参照して前記距離を検出することを特徴とする電磁波による距離測定装置。
The distance measuring device according to claim 2 ,
The distance detection unit has a relationship between a distance between the electromagnetic wave pulse emitting unit and the receiving unit and a spread of the electromagnetic wave at the electromagnetic wave pulse receiving unit according to the emission angle of the electromagnetic wave pulse emitting unit and the sensitivity of the electromagnetic pulse receiving unit. A distance measuring device using electromagnetic waves, characterized in that the distance is detected with reference to the table means.
パルス幅の短いパルス信号を有する電磁波をその垂直方向の射出角を絞って水平方向に射出する電磁波パルス射出部と、
垂直方向に所定の長さを有し、該電磁波パルスを受信し、該受信した電磁波のパルス信号を該長さ方向に伝搬させる電磁波パルス受信部と、
該電磁波パルス受信部の上下端に伝搬された前記電磁波パルスの第一、第二のパルス信号を検出するパルス検出部と、
該パルス検出部で検出された前記第一及び第二のパルス信号の時間差から前記電磁波パルス受信部における電磁波パルスの照射位置を検出し、前記電磁波パルス射出部と電磁波パルス受信部との相対的な高さの差を検出する高さ検出部と、該電磁波パルス受信部中の該電磁波を受信する位置に基づいて前記電磁波の前記垂直方向の広がりを検出し、該検出された広がりから前記電磁波パルス射出部と電磁波パルス受信部との間の距離を検出する距離検出部とを有する電磁波による測定装置。
An electromagnetic wave pulse emitting unit for emitting an electromagnetic wave having a pulse signal with a short pulse width in a horizontal direction by narrowing an emission angle in the vertical direction;
An electromagnetic wave pulse receiving unit having a predetermined length in the vertical direction, receiving the electromagnetic wave pulse, and propagating a pulse signal of the received electromagnetic wave in the length direction;
A pulse detector for detecting the first and second pulse signals of the electromagnetic wave pulse propagated to the upper and lower ends of the electromagnetic wave pulse receiver;
An electromagnetic wave pulse irradiation position in the electromagnetic wave pulse receiving unit is detected from a time difference between the first and second pulse signals detected by the pulse detecting unit, and the electromagnetic wave pulse emitting unit and the electromagnetic wave pulse receiving unit are relative to each other. A height detector for detecting a difference in height; and detecting the spread of the electromagnetic wave in the vertical direction based on a position of the electromagnetic wave pulse receiving unit to receive the electromagnetic wave, and detecting the electromagnetic wave pulse from the detected spread. An electromagnetic wave measuring device having a distance detecting unit for detecting a distance between an emitting unit and an electromagnetic wave pulse receiving unit.
パルス幅の短いパルス信号を有する電磁波を水平方向に射出する電磁波パルス射出部と、
垂直方向に所定の長さを有し、該電磁波パルスを受信し、該受信した電磁波のパルス信号を前記長さ方向に伝搬させる電磁波パルス受信部と、
該電磁波パルス受信部の一端に伝搬された前記電磁波パルスの第一のパルス信号と、他端に伝搬されて反射された後該一端に伝搬された第二のパルス信号とを検出するパルス検出部と、
該パルス検出部で検出された前記第一及び第二のパルス信号の時間差から前記電磁波パルス受信部における電磁波パルスの照射位置を検出し、前記電磁波パルス射出部と電磁波パルス受信部との相対的な高さの差を検出する高さ検出部とを有する電磁波による高さ測定装置。
An electromagnetic wave pulse emitting unit for emitting an electromagnetic wave having a pulse signal with a short pulse width in a horizontal direction;
An electromagnetic wave pulse receiving unit having a predetermined length in the vertical direction, receiving the electromagnetic wave pulse, and propagating a pulse signal of the received electromagnetic wave in the length direction;
A pulse detector for detecting a first pulse signal of the electromagnetic wave pulse propagated to one end of the electromagnetic wave pulse receiver and a second pulse signal propagated to the other end and reflected to the one end When,
An electromagnetic wave pulse irradiation position in the electromagnetic wave pulse receiving unit is detected from a time difference between the first and second pulse signals detected by the pulse detecting unit, and the electromagnetic wave pulse emitting unit and the electromagnetic wave pulse receiving unit are relative to each other. A height measurement device using electromagnetic waves, having a height detection unit for detecting a difference in height.
JP27385896A 1996-10-16 1996-10-16 Electromagnetic wave measuring device Expired - Lifetime JP3903502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27385896A JP3903502B2 (en) 1996-10-16 1996-10-16 Electromagnetic wave measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27385896A JP3903502B2 (en) 1996-10-16 1996-10-16 Electromagnetic wave measuring device

Publications (2)

Publication Number Publication Date
JPH10123237A JPH10123237A (en) 1998-05-15
JP3903502B2 true JP3903502B2 (en) 2007-04-11

Family

ID=17533544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27385896A Expired - Lifetime JP3903502B2 (en) 1996-10-16 1996-10-16 Electromagnetic wave measuring device

Country Status (1)

Country Link
JP (1) JP3903502B2 (en)

Also Published As

Publication number Publication date
JPH10123237A (en) 1998-05-15

Similar Documents

Publication Publication Date Title
EP2972471B1 (en) Lidar scanner
US5309212A (en) Scanning rangefinder with range to frequency conversion
US4788441A (en) Range finder wherein distance between target and source is determined by measuring scan time across a retroreflective target
US6750960B2 (en) Optical distance measurement device and method thereof
US6411221B2 (en) Device and method to detect an object in a given area, especially vehicles, for the purpose of traffic control
US6384903B1 (en) Range gated remote measurement utilizing two-photon absorption
KR970707424A (en) Calibrable Optical Disatance Sensing System and Method
JP2002524731A (en) Speckle mitigation for coherent detectors using wideband signals
JP3903502B2 (en) Electromagnetic wave measuring device
UST102104I4 (en) Scanning optical system adapted for linewidth measurement in semiconductor devices
JP3860824B2 (en) Method for measuring dielectric constant in medium, and electromagnetic wave probe
JP2005070017A (en) Ultrasonic flaw detection method using vertical and horizontal diffracted waves and apparatus therefor
RU2267743C1 (en) Contactless method and device for measuring distance to object
JP2021067645A (en) Measuring device, measuring method, and program
KR930008564B1 (en) Angle measuring divice
JPH0642967A (en) Leveling apparatus
RU2092874C1 (en) Method of detection of objects in earth and device intended for its realization
KR100241028B1 (en) Method and apparatus for detecting internal defect using laser
RU2217774C2 (en) Way to measure effective dispersion area of object and radar for its realization
KR20010074256A (en) High-Speed and Fine Accuracy Inspection System by the Integration of the Phase Analysis of Laser and Visual Image Signal Processing
JPS6145832B2 (en)
JP2518062B2 (en) Laser distance measuring device
SU1640658A1 (en) Method for effective scattering area measurement
EP0514747A2 (en) Instrument for measuring optical fibre length
SU1672216A1 (en) Device for measuring the area of opaque flat figures

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term