JP3903126B2 - Underdrain hydrophobic material - Google Patents

Underdrain hydrophobic material Download PDF

Info

Publication number
JP3903126B2
JP3903126B2 JP24692198A JP24692198A JP3903126B2 JP 3903126 B2 JP3903126 B2 JP 3903126B2 JP 24692198 A JP24692198 A JP 24692198A JP 24692198 A JP24692198 A JP 24692198A JP 3903126 B2 JP3903126 B2 JP 3903126B2
Authority
JP
Japan
Prior art keywords
culvert
hydrophobic material
rock wool
weight
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24692198A
Other languages
Japanese (ja)
Other versions
JP2000073347A (en
JP3903126B6 (en
Inventor
徹 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
National Agriculture and Food Research Organization
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization, Nippon Steel Chemical Co Ltd filed Critical National Agriculture and Food Research Organization
Priority to JP1998246921A priority Critical patent/JP3903126B6/en
Priority claimed from JP1998246921A external-priority patent/JP3903126B6/en
Publication of JP2000073347A publication Critical patent/JP2000073347A/en
Publication of JP3903126B2 publication Critical patent/JP3903126B2/en
Application granted granted Critical
Publication of JP3903126B6 publication Critical patent/JP3903126B6/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、農地、泥炭地などの排水を目的として埋設される暗渠において、集水管の目詰まりを防止し排水を確実に行うため暗渠の周辺に充填される暗渠疎水材に関するものである。
【0002】
【従来の技術】
湿田等の高含水農地は、水稲の生育時期に合わせて水切りする場合や稲作から畑作へ転換する場合などに含水比を下げる必要がある。また、泥炭地の開墾にも含水比を下げる必要がある。このため、高含水土壌に溝を掘って暗渠管を埋設し、暗渠を通じて地中の水分を抜く排水工法が広く行われている。しかし、暗渠管に用いられる有孔プラスチックパイプや素焼土管などをそのまま埋設すると、その微細な孔に土砂が詰まって排水できなくなる。これを防止するため、暗渠の周辺に暗渠疎水材を充填し、暗渠管に土砂が直接触れないように工夫している。
【0003】
従来から、暗渠疎水材としては、容易に入手でき優れた透水性を有する籾殻が多く使われてきた。また、農地の近くで入手できれば麦旱、柳そだなども使われることがあった。しかしながら、天然有機質材料である籾殻などは、バクテリア、腐朽菌などにより土壌中で簡単に腐食され、わずか2〜3年で暗渠疎水材としての機能を失ってしまう。その結果、排水できなくなった暗渠は数年足らずで廃棄されることになる。
【0004】
この籾殻等の天然有機質材料に代えて、近くの河川で採れる砂利、ほたて貝の貝殻、廃プラスチックなどを暗渠疎水材として利用することが提案されている。しかし、砂利や貝殻は腐敗しないがその粒度構成によっては暗渠疎水材に要求される透水性能を満足できなかったり、重い砂利は施工作業が困難である。また、土中に埋めた砂利や貝殻が耕運機やロータリーで耕す際に地表に出てくるという問題があり、暗渠に対し直角方向に設けられる弾丸暗渠等の補助暗渠の施工にも支障を生ずる。
【0005】
また、廃プラスチックを有効利用する方法は、梱包用や魚とろ箱の発泡スチロールの破砕物を網に包んで暗渠周辺に充填するものであるが、長期間経ても分解しないプラスチックは環境汚染のおそれがあり、またあまりにも軽いので地表に出やすいという問題がある。このように、従来の暗渠疎水材は、いずれも要求を満たすものにはほど遠いものである。
【0006】
【発明が解決しようとする課題】
したがって、本発明の目的は、暗渠疎水材に要求される透水性を有し、施工が容易で長期間耐久性があり、しかも土壌中で徐々に風化されて環境汚染のおそれがなく、かつ低コストの暗渠疎水材を提供することにある。
【0007】
【課題を解決するための手段】
すなわち、本発明は、ロックウール50〜90重量%と無機水硬性材料10〜50重量%との粒状混合物よりなる暗渠疎水材である。無機水硬性材料には、高炉スラグ粉末と水和刺激剤よりなるスラグ系水硬性材料が好ましい。
【0008】
以下、本発明について詳細に説明する。
本発明の暗渠疎水材は、ロックウールを主材とし、これに特定割合の無機水硬性材料を混合して粒状製品としたものである。
【0009】
本発明の暗渠疎水材に用いられるロックウールは、CaO、SiO2 、Al2 3 を主成分とし、他にMgO、Fe2 3 などを含有する繊維径が数μm程度の細径無機繊維である。通常、このロックウールは、高炉スラグ、電気炉スラグ等の各種冶金スラグや、玄武岩、輝緑岩等の天然岩石や、あるいはこれらの混合物などに、必要に応じて成分調整材を添加して配合原料を調製し、これを電気炉やキュポラなどで溶融し、溶融物を遠心力及び/又は加圧気体で製綿し、空気搬送されたロックウールをネットコンベアなどに集綿して製造される。
【0010】
このロックウールの形態には、粒状に丸めた粒状綿、マット状の層状綿などがあるが、暗渠疎水材に要求される透水性を満たすには、粒状綿を用いることがよい。ロックウール粒状綿は、上記製造工程で集綿されたマット状のロックウールを粒化機に送り、これを20〜30mm程度以下に整粒したものである。
【0011】
また、ロックウールにバインダーとして混合される無機水硬性材料は、水と反応して硬化する無機質材料であればいずれも使用できるが、ロックウールとの混合性から粉末状であるものがよい。このような無機水硬性材料としては、セメント、せっこう、スラグなどの1種又は2種以上が挙げられる。
【0012】
これらの無機水硬性材料のうち、高炉スラグ粉末と水和刺激剤よりなるスラグ系水硬性材料が好ましい。この高炉スラグ粉末は、製鉄所の高炉から出る高温溶融スラグを水で急冷破砕し、乾燥微粉砕して得られる。高炉スラグ粉末は、自硬性は低いが、水和刺激剤を共存させるとセメントと同様に水で簡単に硬化する。水和刺激剤としては、例えば生石灰、二水せっこう、半水せっこう、無水せっこう、セメントクリンカーなどの1種又は2種以上が挙げられる。水和刺激剤の配合量は、10〜60重量%程度、好ましくは20〜50重量%程度がよい。ロックウールのバインダーとしてスラグ系水硬性材料を用いると、ロックウールの主原料が高炉スラグであることから、本発明の暗渠疎水材は珪酸カルシウムに富んだ組成となる。もともと、高炉スラグはけい酸カルシウム肥料として用いられており、けい酸カルシウム肥料に近い組成を有する本発明の暗渠疎水材は、農地に使用するのに好ましい材料である。また、必要に応じて、これらの水和刺激剤にアルミニウムカリウムミョウバン等の硫酸アルミニウム複塩の水化物を併用すると、高炉スラグ粉末とこれらの反応によりエトリンガイトが生成し、暗渠疎水材の耐久性が向上する。
【0013】
本発明の暗渠疎水材において、ロックウールの含有率は50〜90重量%、好ましくは60〜85重量%、無機水硬性材料の含有率は10〜50重量%、好ましくは15〜40重量%である。無機水硬性材料の含有率が10重量%より低いと製品加工後の耐圧縮強度が低下し、50重量%を超えると透水率が低い製品しか得られない。高強度型製品では、無機水硬性材料の含有率が30〜40重量%程度、普通強度型製品では、無機水硬性材料の含有率が15〜20重量%程度がよい。
【0014】
本発明の暗渠疎水材は、塊状、棒状、板状、マット状の製品とは異なり、施工が簡単な粒状製品としている。このため、主材のロックウールには粒状綿を用いることがよい。マット状の層状綿や樹脂加工ロックウールでは粒状に加工する費用がかさみ好ましくない。暗渠疎水材の粒径は、10mm篩通過分が80%以上、好ましくは90%以上、より好ましくは全通するものであることがよい。10mm篩通過分が80%より低いものは暗渠に充填する際均一に投入しにくく施工性が劣る。また、微粉はできるだけ少ないものが施工時の発塵防止の観点から好ましい。
【0015】
また、本発明の暗渠疎水材において、主材のロックウールに籾殻を併用することもできる。入手容易な現地資材である籾殻は、前記のように2〜3年で腐敗するが、ロックウールと併用すると籾殻が腐敗してもロックウールは残り、暗渠疎水材としての機能が保持される。籾殻を併用する場合、ロックウールに対する籾殻の容積比は50%程度以下でよい。籾殻が多くなりすぎると腐食により暗渠疎水材の機能が短期間に失われる。適量の籾殻の併用は、施工費用のコスト低減になり、現地資材の有効利用にもなるので好ましい。
【0016】
次に、本発明の暗渠疎水材の製造方法について説明する。主材のロックウール粒状綿を必要に応じて予備解繊機で予備解繊したのち、所定量の無機水硬性材料好ましくはスラグ系水硬性材料と共にリボンミキサー等の混合機に装入し、攪拌混合する。この際必要に応じて、防塵剤、表面処理剤などを少量配合すると、製品に防塵性を付与でき、また水との親和性を高めることができる。製品は計量したのち防湿紙袋やポリエチレン製袋に包装し、湿気を防ぐことが好ましい。
【0017】
本発明の暗渠疎水材の施工方法は、その形状が粒状であることから、従来の籾殻と同様に施工することができる。先ず、トレンチャー等を用いて地面に所定の深さと幅の溝を掘削する。この溝の中に有孔プラスチックパイプ等の暗渠管を設置し、ロックウール粒状暗渠疎水材を所定高さまで溝に充填する。充填量の目安は80〜150Kg/m3程度でよく、最後に溝を土で埋め戻す。
【0018】
このようにして施工された暗渠疎水材は、土壌中の水分で無機水硬性材料が水和硬化し、ロックウール繊維同士を無機水和物で結合した多孔質繊維構造を形成する。この多孔質繊維構造は、優れた透水性能と耐圧縮強度を有すると共に土砂の通過を防ぐので、水分はこの層を通り抜けるが土砂は暗渠に到達せず、効率的に排水を行うことができる。また、無機材料製の暗渠疎水材は、天然有機質材料のように腐食されることがなく、かなり長期間にわたってその機能を維持する。そのうえ、本発明の暗渠疎水材は、土壌中や水中で緩慢に風化、土壌化され、かつそれ自身も土壌成分に近く、植物に対する有害性が実質的に認められないことから、環境汚染や農作業の障害物になることがない。
【0019】
【実施例】
以下の実施例において、暗渠疎水材の評価試験方法は次のとおりである。
<透水性能評価試験>
JIS A 1218「土の透水試験方法」に従い定水位試験方法で行った。測定温度20℃、試験結果は15℃の透水係数(cm/sec)で示した。
<加圧変形評価試験>
軟弱地盤(70〜80%含水)の容積重1.4〜1.5の場合での地下で受ける土圧相当の圧力で加圧した時の変形量(ひずみ%)を測定した。なお、籾殻の充填密度は、試験容器中に最大限入る量の155Kg/m3 とし、ロックウール粒状暗渠疎水材の充填密度は、試験容器中に最大限入る量の250Kg/m3 及び軽く入る量の100Kg/m3 とした。
【0020】
実施例1
ロックウール粒状綿(平均粒径30mm)を予備解繊機で予備解繊したのち、高炉スラグ粉末60重量%、セメントクリンカー35重量%及び二水せっこう5重量%からなるスラグ系水硬性材料が40重量%になるように計量し、これらをリボンミキサーに装入して攪拌混合し、ロックウール粒状暗渠疎水材を製造した。この暗渠疎水材の粒径は10mm篩通過分が95%であった。また、透水係数は0.01cm/secであり、暗渠疎水材として要求される0.004cm/sec以上を十分満たすものであった。加圧変形評価試験の結果を表1に示す。
【0021】
試験田に深さ50cm、幅20cm、長さ3.6m の水平の溝を掘り、その底部に片方の端を閉止した直径10cmの硬質塩ビ製有孔管からなる暗渠管を埋設し、他の端を排水路に結んだ暗渠を設置した。この暗渠に上記ロックウール粒状暗渠疎水材を深さ40cm、充填密度250Kg/m3 で充填し、さらにその上から田土を20cm厚さに充填して溝を埋め戻した。この試験田に水深10cmで常に一定となるように湛水し、暗渠管出口から水量を測定したところ、試験開始直後では12リットル/分であり、35日経過後では1.3リットル/分であった。透水性試験終了後に試験田への給水を止め、乾燥状態で3か月後放置したのち暗渠を掘り上げたところ、暗渠疎水材にはなんら異常が認められなかった。
【0022】
実施例2
スラグ系水硬性材料が15重量%になるようにした以外は、実施例1と同様にしてロックウール粒状暗渠疎水材を製造した。この暗渠疎水材の粒径は10mm篩通過分が100%、透水係数は0.035cm/secであった。加圧変形評価試験の結果を表1に示す。また、実施例1と同様に実施した試験田における透水性試験の結果(充填密度250Kg/m3 )と試験終了後3か月間放置後の暗渠疎水材の状態調査の結果は、試験開始直後では7.5リットル/分であり、35日経過後では1.1リットル/分であり、透水性試験終了後に試験田への給水を止め、乾燥状態で3か月後放置したのち暗渠を掘り上げたところ、暗渠疎水材にはなんら異常が認められなかった。
【0023】
比較例1
暗渠疎水材として籾殻(充填密度155Kg/m3 )を用いた以外は、実施例1と同様な評価試験を行った。このものの透水係数は0.018cm/secであり、暗渠疎水材として要求される0.004 cm/sec 以上を十分満たすものであった。加圧変形評価試験の結果を表1に示す。また、実施例1と同様に実施した試験田における透水性試験の結果(充填密度155Kg/m3 )と試験終了後3か月間放置後の暗渠疎水材の状態調査の結果は、試験開始直後では10.5リットル/分であり、35日経過後では1.2リットル/分であり、透水性試験終了後に試験田への給水を止め、乾燥状態で3か月後放置したのち暗渠を掘り上げたところ、籾殻の表面に白い腐朽菌類が発生し固結しており、腐食が生じていることが認められた。
【0024】
【表1】

Figure 0003903126
【0025】
表1から、通常の土の被り深さでは、ロックウール粒状暗渠疎水材は、籾殻と同等程度の耐圧縮性を有することが認められる。また、施工場所に応じて充填密度を変えることができ、充填密度を低くすることにより、施工性に優れコスト的にも有利になる。
【0026】
【発明の効果】
本発明のロックウール粒状暗渠疎水材は、施工が容易であってかつ優れた透水性能と耐圧縮強度を有し、かなり長期間耐久性があり、しかも土壌中で徐々に風化されて環境汚染のおそれがなく、また低コストである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a culvert hydrophobic material that is filled around a culvert in order to prevent clogging of a collecting pipe and ensure drainage in a culvert buried for drainage such as farmland and peat land.
[0002]
[Prior art]
High moisture farmland such as wet fields needs to be reduced in water content when draining according to the growing season of paddy rice or when changing from rice cultivation to field cultivation. It is also necessary to reduce the water content in peatland reclamation. For this reason, a drainage construction method is widely practiced in which a culvert pipe is buried by digging a trench in a highly water-containing soil and the moisture in the ground is removed through the culvert. However, if a perforated plastic pipe or an unglazed earth pipe used for a culvert pipe is buried as it is, the fine holes are clogged with earth and sand and cannot be drained. In order to prevent this, a culvert hydrophobic material is filled around the culvert so that earth and sand do not directly touch the culvert tube.
[0003]
Conventionally, rice husks which are easily available and have excellent water permeability have been used as the culvert hydrophobic material. In addition, wheat straw and willow soda were sometimes used if they were available near the farmland. However, rice husks and the like, which are natural organic materials, are easily corroded in the soil by bacteria, decaying fungi, and the like, and lose their function as a culvert hydrophobic material in only two to three years. As a result, underdrains that can no longer be drained will be discarded in less than a few years.
[0004]
In place of natural organic materials such as rice husks, it has been proposed to use gravel, scallop shells, waste plastics, etc. collected from nearby rivers as a culvert hydrophobic material. However, although gravel and shells do not rot, depending on the particle size, the water permeability required for the underdrain hydrophobic material cannot be satisfied, or heavy gravel is difficult to construct. In addition, there is a problem that gravel and shells buried in the soil come out on the ground surface when cultivated with a cultivator or a rotary, and this also hinders the construction of auxiliary culverts such as bullet culverts provided at right angles to the culverts.
[0005]
In addition, the method of effectively using waste plastic is to wrap crushed foam polystyrene from fish and filter boxes in a net and fill the area around the culvert. However, plastic that does not decompose even after a long period of time may cause environmental pollution. There is also a problem that it is so light that it tends to come out on the surface. Thus, all the conventional underdrain hydrophobic materials are far from satisfying the requirements.
[0006]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to have the water permeability required for a culvert hydrophobic material, easy to construct and durable for a long period of time. The object is to provide a costly underdrain hydrophobic material.
[0007]
[Means for Solving the Problems]
That is, the present invention is a culvert hydrophobic material made of a granular mixture of rock wool 50 to 90% by weight and inorganic hydraulic material 10 to 50% by weight. The inorganic hydraulic material is preferably a slag hydraulic material composed of blast furnace slag powder and a hydration stimulant.
[0008]
Hereinafter, the present invention will be described in detail.
The culvert hydrophobic material of the present invention is obtained by using rock wool as a main material and mixing a specific proportion of an inorganic hydraulic material into a granular product.
[0009]
The rock wool used for the underdrain hydrophobic material of the present invention is a small-diameter inorganic fiber having a fiber diameter of about several μm containing CaO, SiO 2 , Al 2 O 3 as main components and MgO, Fe 2 O 3, etc. It is. Normally, this rock wool is blended with various metallurgical slags such as blast furnace slag and electric furnace slag, natural rocks such as basalt and diorite, or a mixture of these as necessary. It is manufactured by preparing raw materials, melting them with an electric furnace or cupola, etc., spinning the melt with centrifugal force and / or pressurized gas, and collecting the air-wooled rock wool on a net conveyor etc. .
[0010]
The form of this rock wool includes granular cotton rounded into a granular shape, mat-like layered cotton, and the like. In order to satisfy the water permeability required for the culvert hydrophobic material, it is preferable to use granular cotton. Rock wool granular cotton is obtained by feeding mat-shaped rock wool collected in the above manufacturing process to a granulator and sizing it to about 20 to 30 mm or less.
[0011]
Any inorganic hydraulic material mixed as a binder with rock wool can be used as long as it is an inorganic material that reacts with water and hardens. However, it is preferable that the inorganic hydraulic material is powdery because of its miscibility with rock wool. Examples of such inorganic hydraulic materials include one or more of cement, gypsum, slag and the like.
[0012]
Of these inorganic hydraulic materials, a slag hydraulic material composed of blast furnace slag powder and a hydration stimulant is preferred. This blast furnace slag powder is obtained by quenching and crushing high-temperature molten slag from a blast furnace in a steel mill with water and drying and pulverizing it. Although blast furnace slag powder has low self-hardness, it can be easily cured with water in the same way as cement when a hydration stimulant is present. Examples of the hydration stimulating agent include one kind or two or more kinds such as quick lime, dihydrate gypsum, half water gypsum, anhydrous gypsum, cement clinker. The blending amount of the hydration stimulant is about 10 to 60% by weight, preferably about 20 to 50% by weight. When a slag hydraulic material is used as a binder for rock wool, the main raw material for rock wool is blast furnace slag, so the underdrain hydrophobic material of the present invention has a composition rich in calcium silicate. Originally, blast furnace slag has been used as calcium silicate fertilizer, and the culvert hydrophobic material of the present invention having a composition close to that of calcium silicate fertilizer is a preferable material for use in farmland. Also, if necessary, hydration of aluminum sulfate double salt such as aluminum potassium alum is used in combination with these hydration stimulants to produce ettringite by blast furnace slag powder and their reaction, and the durability of the culvert hydrophobic material is improved. improves.
[0013]
In the underdrain hydrophobic material of the present invention, the content of rock wool is 50 to 90% by weight, preferably 60 to 85% by weight, and the content of inorganic hydraulic material is 10 to 50% by weight, preferably 15 to 40% by weight. is there. If the content of the inorganic hydraulic material is lower than 10% by weight, the compressive strength after processing the product is lowered, and if it exceeds 50% by weight, only a product having a low water permeability can be obtained. In the high strength type product, the content of the inorganic hydraulic material is preferably about 30 to 40% by weight, and in the normal strength type product, the content of the inorganic hydraulic material is preferably about 15 to 20% by weight.
[0014]
The culvert hydrophobic material of the present invention is a granular product that is easy to construct, unlike lump-shaped, rod-shaped, plate-shaped, and mat-shaped products. For this reason, it is good to use granular cotton for the main material rock wool. In the case of mat-like layered cotton and resin-processed rock wool, the cost of processing into granules is high, which is not preferable. The particle size of the culvert hydrophobic material should be such that the passage through the 10 mm sieve is 80% or more, preferably 90% or more, and more preferably all through. When the 10 mm sieve passage is lower than 80%, it is difficult to throw it uniformly into the culvert and the workability is inferior. Further, it is preferable that the amount of fine powder is as small as possible from the viewpoint of preventing dust generation during construction.
[0015]
In the underdrain hydrophobic material of the present invention, rice husk can be used in combination with the main material rock wool. As described above, rice husk, which is a readily available local material, rots in 2 to 3 years, but when used in combination with rock wool, the rock wool remains even if the rice husk rots, and the function as a culvert hydrophobic material is maintained. When rice husk is used in combination, the volume ratio of rice husk to rock wool may be about 50% or less. If too much rice husk is added, the function of the culvert hydrophobic material is lost in a short time due to corrosion. Use of an appropriate amount of rice husk is preferable because it reduces the cost of construction and effectively uses local materials.
[0016]
Next, the manufacturing method of the underdrain hydrophobic material of this invention is demonstrated. After pre-defining the main material rock wool granular cotton with a pre-definer if necessary, it is charged into a mixer such as a ribbon mixer together with a predetermined amount of inorganic hydraulic material, preferably slag hydraulic material, and stirred and mixed. To do. At this time, if necessary, if a small amount of a dustproofing agent, a surface treatment agent or the like is blended, the product can be imparted with dustproofing properties and the affinity with water can be increased. The product is preferably weighed and then packaged in a moisture-proof paper bag or polyethylene bag to prevent moisture.
[0017]
Since the shape of the culvert hydrophobic material of the present invention is granular, it can be constructed in the same manner as a conventional rice husk. First, a trench having a predetermined depth and width is excavated on the ground using a trencher or the like. A culvert pipe such as a perforated plastic pipe is installed in the groove, and the groove is filled with rock wool granular culvert hydrophobic material to a predetermined height. The standard of the filling amount may be about 80 to 150 kg / m 3 , and finally the groove is backfilled with soil.
[0018]
The thus constructed underdrain hydrophobic material forms a porous fiber structure in which the inorganic hydraulic material is hydrated and hardened by moisture in the soil, and the rock wool fibers are bonded with the inorganic hydrate. This porous fiber structure has excellent water permeability and compressive strength, and prevents the passage of earth and sand, so that moisture passes through this layer, but the earth and sand do not reach the underdrain and can be drained efficiently. Moreover, the culvert hydrophobic material made of an inorganic material is not corroded like a natural organic material, and maintains its function for a considerably long period of time. In addition, the culvert hydrophobic material of the present invention is slowly weathered and soiled in soil and water, and itself is close to soil components, so that no harmful effects on plants are observed. There will be no obstacles.
[0019]
【Example】
In the following examples, the evaluation test method for a culvert hydrophobic material is as follows.
<Permeability evaluation test>
A constant water level test method was performed in accordance with JIS A 1218 “Soil permeability test method”. The measurement temperature was 20 ° C., and the test results were shown as a water permeability (cm / sec) of 15 ° C.
<Pressure deformation evaluation test>
The deformation amount (strain%) was measured when the soft ground (containing 70 to 80% water) was pressed with a pressure equivalent to the earth pressure received in the underground in the case of a bulk weight of 1.4 to 1.5. The filling density of rice husk is 155 kg / m 3 , which is the maximum amount that can be contained in the test container, and the packing density of rock wool granular dark phobic material is 250 kg / m 3 that is the maximum amount that can be contained in the test container. The amount was 100 kg / m 3 .
[0020]
Example 1
After preliminary defibration of rock wool granular cotton (average particle size 30 mm) with a defibrating machine, 40 slag hydraulic materials comprising 60% by weight of blast furnace slag powder, 35% by weight of cement clinker and 5% by weight of dihydrated gypsum These were weighed so as to be weight%, and these were charged into a ribbon mixer and mixed with stirring to produce a rockwool granular culvert hydrophobic material. The particle size of the culvert hydrophobic material was 95% when passing through a 10 mm sieve. Further, the water permeability coefficient was 0.01 cm / sec, which sufficiently satisfied 0.004 cm / sec or more required as a culvert hydrophobic material. The results of the pressure deformation evaluation test are shown in Table 1.
[0021]
A horizontal ditch with a depth of 50 cm, a width of 20 cm, and a length of 3.6 m is dug in the test field, and a culvert pipe made of a hard PVC perforated pipe with a diameter of 10 cm with one end closed is buried in the bottom. A culvert with an end tied to a drainage channel was installed. In this culvert, the rock wool granular culvert hydrophobic material was filled at a depth of 40 cm and a packing density of 250 kg / m 3 , and then the paddy was filled to a thickness of 20 cm to refill the grooves. The test pad was filled with water at a depth of 10 cm so that it was always constant, and the amount of water measured from the outlet of the culvert tube was 12 liters / minute immediately after the start of the test and 1.3 liters / minute after 35 days. It was. After the water permeability test was completed, water supply to the test field was stopped, and after standing for 3 months in a dry state, the culvert was dug up and no abnormality was observed in the culvert hydrophobic material.
[0022]
Example 2
A rock wool granular culvert hydrophobic material was produced in the same manner as in Example 1 except that the slag hydraulic material was 15% by weight. The particle size of the culvert hydrophobic material was 100% when passing through a 10 mm sieve, and the water permeability was 0.035 cm / sec. The results of the pressure deformation evaluation test are shown in Table 1. In addition, the results of the water permeability test (packing density 250 kg / m 3 ) in the test pad conducted in the same manner as in Example 1 and the results of the state investigation of the underdrained hydrophobic material after standing for 3 months after the test were 7.5 liters / minute, 1.1 liters / minute after 35 days, water supply to the test field was stopped after completion of the water permeability test, and after standing for 3 months in a dry state, a culvert was dug up However, no abnormality was observed in the culvert hydrophobic material.
[0023]
Comparative Example 1
The same evaluation test as in Example 1 was performed except that rice husk (packing density 155 kg / m 3 ) was used as the culvert hydrophobic material. The water permeability coefficient of this product was 0.018 cm / sec, which sufficiently satisfied 0.004 cm / sec or more required as a culvert hydrophobic material. The results of the pressure deformation evaluation test are shown in Table 1. In addition, the results of the water permeability test (packing density 155 kg / m 3 ) in the test pad conducted in the same manner as in Example 1 and the results of the state investigation of the underdrain hydrophobic material after standing for 3 months after the test were 10.5 liters / minute, 1.2 liters / minute after 35 days, water supply to the test field was stopped after the water permeability test was completed, and after standing for 3 months in a dry state, a culvert was dug up However, white rot fungi were generated and solidified on the surface of rice husks, and it was confirmed that corrosion occurred.
[0024]
[Table 1]
Figure 0003903126
[0025]
From Table 1, it is recognized that rock wool granular underdrain hydrophobic material has compression resistance comparable to that of rice husk at normal soil covering depth. In addition, the filling density can be changed according to the construction site, and by lowering the filling density, the workability is excellent and the cost is advantageous.
[0026]
【The invention's effect】
The rock wool granular culvert hydrophobic material of the present invention is easy to construct, has excellent water permeability and compressive strength, is durable for a long period of time, and is gradually weathered in the soil to prevent environmental pollution. There is no fear and the cost is low.

Claims (3)

ロックウール50〜90重量%と無機水硬性材料10〜50重量%との粒状混合物よりなる暗渠疎水材。A culvert hydrophobic material comprising a granular mixture of 50 to 90% by weight of rock wool and 10 to 50% by weight of an inorganic hydraulic material. 10mm篩通過分が80%以上である請求項1記載の暗渠疎水材。The culvert hydrophobic material according to claim 1, wherein the passage through a 10 mm sieve is 80% or more. 無機水硬性材料が高炉スラグ粉末と水和刺激剤よりなるスラグ系水硬性材料である請求項1又は2記載の暗渠疎水材。The underdrain hydrophobic material according to claim 1 or 2, wherein the inorganic hydraulic material is a slag hydraulic material comprising a blast furnace slag powder and a hydration stimulant.
JP1998246921A 1998-09-01 Underdrain hydrophobic material Expired - Lifetime JP3903126B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1998246921A JP3903126B6 (en) 1998-09-01 Underdrain hydrophobic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1998246921A JP3903126B6 (en) 1998-09-01 Underdrain hydrophobic material

Publications (3)

Publication Number Publication Date
JP2000073347A JP2000073347A (en) 2000-03-07
JP3903126B2 true JP3903126B2 (en) 2007-04-11
JP3903126B6 JP3903126B6 (en) 2007-07-11

Family

ID=

Also Published As

Publication number Publication date
JP2000073347A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
CN103362132B (en) A kind of construction method of cast-in-place greening concrete protective slope
CN103806454B (en) Method for pollution control and vegetation recovery of metal sulfide ore solid waste storage yard
CN111424687A (en) Construction method for ecological protection of expansive soil side slope by using phosphogypsum and microbial mineralization technology
CN108532580A (en) A kind of hillock eco-environment restoration comprehensive processing method
CN107117893A (en) The method of the closely knit macrovoid pervious concrete pavement construction of plate vibration
KR20100118666A (en) Eco light soil
Faiz et al. A state-of-the-art review on the advancement of sustainable vegetation concrete in slope stability
KR101342975B1 (en) Eco soil and its construction method
CN110698222A (en) Composite vegetation concrete for ecological protection of stone slope and preparation method thereof
JP3783388B2 (en) Method for reforming and solidifying high water content mud, mud or sludge
CN204898694U (en) Living concrete member is planted to prefabricated chain formula
JP3903126B2 (en) Underdrain hydrophobic material
JP3903126B6 (en) Underdrain hydrophobic material
JP5533690B2 (en) Granular materials for civil engineering work
WO2003095589A1 (en) Material for civil engineering work and its execution method
JP3525084B2 (en) Soil improvement method and soil improvement material for highly hydrous soil
JP3623718B2 (en) Lightweight porous concrete material for greening
JP3849755B2 (en) Gypsum-based structural material, method for producing gypsum-based structural material, and method for constructing structure using gypsum-based structural material
CN105908987A (en) Ecological reinforcement composite material used for historical site protection project and construction method thereof
JP3080288B2 (en) Paving material and its manufacturing method
CN106436524A (en) Composite material bag for road temporary emergency treatment and production process of composite material bag
JP3574817B2 (en) Material for soil cover and method of laying soil cover using the same
JP3996915B2 (en) Deformation following type water shielding material
JP3914007B2 (en) A method for producing a slope spray material and a pneumatic feeding face spray method using the material.
CN220117579U (en) Ecological building block containing river sediment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070111

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term