JP3903025B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP3903025B2
JP3903025B2 JP2003198678A JP2003198678A JP3903025B2 JP 3903025 B2 JP3903025 B2 JP 3903025B2 JP 2003198678 A JP2003198678 A JP 2003198678A JP 2003198678 A JP2003198678 A JP 2003198678A JP 3903025 B2 JP3903025 B2 JP 3903025B2
Authority
JP
Japan
Prior art keywords
semiconductor chip
substrate
electrode
back surface
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003198678A
Other languages
Japanese (ja)
Other versions
JP2004158825A (en
Inventor
誠 照井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2003198678A priority Critical patent/JP3903025B2/en
Publication of JP2004158825A publication Critical patent/JP2004158825A/en
Application granted granted Critical
Publication of JP3903025B2 publication Critical patent/JP3903025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively utilize solder balls in a ball grid array package. <P>SOLUTION: Electrodes of a semiconductor chip 28 mounted on a front side of a copper plate 21 are connected to the solder balls 34 by copper foil wires 23 formed via an insulation material 22 on the copper plate 21. Through-holes 30 insulated from the copper plate 21 are formed to the copper plate 21. Electrodes of a semiconductor chip 36 mounted on a rear side of the copper plate 21 are connected to the through-holes 30 by copper foil wires 26 formed via an insulation material 25 on the copper plate 21, and connected to the solder balls 34 by way of the through-holes 30. Thus, the excess solder balls 34 not connected to the electrodes of the semiconductor chip 28 can be used for terminals of the semiconductor chip 36. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造方法に関するもので、詳しくはボールグリッドアレイ(以下、BGAパッケージという)パッケージの製造方法に関するものである。
【0002】
【従来の技術】
図2(a),(b)は、従来のBGAパッケージの一例を示す断面図である。図3(a),(b)は、従来のBGAパッケージの他の例を示す断面図であり、図2中の要素と共通の要素には共通の符号が付されている。一般的な放熱性を考慮したBGAパッケージでは、厚さ0.3〜0.4mmの銅板1に、厚さ10〜30μmのポリイミド等からなる絶縁材2が、貼付けられている。絶縁材2の上に、厚さ12〜35μmの銅箔配線3が形成されている。銅板1の表面側には、図2のように、切削加工よって半導体チップ4の搭載箇所5aが形成されるか、図3のように、金型絞り加工によって半導体チップ4の搭載箇所5bが形成され、基板が構成されている。
【0003】
半導体チップ4は、電極が形成された電極面とその反対側の背面とを有している。搭載箇所5a,5bの底部に導電性或いは絶縁性のペースト6が塗布され、そこに半導体チップ4が背面を向けて固着されている。半導体チップ4の電極と銅箔配線3とがボンディングワイヤ7で接続され、該半導体チップ4の搭載されているキャビティ部分が、エポキシ樹脂8によって充填されている。基板の表面側のエポキシ樹脂8のない部分に、半田ボール9が格子状に取り付けられている。基板の表面側のエポキシ樹脂8及び半田ボール9のない場所は、レジスト膜10で覆われている。なお、封止後の基板の反り対策或いは汚れ防止対策として、基板の裏面側に、図3のように絶縁材11が貼付けられる場合もある。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の図2及び図3のBGAパッケージでは、次のような課題があった。図4(a),(b)は、図2及び図3のBGAパッケージの課題の説明図である。多ピン化に対応するために、半田ボール9からなる格子状の端子の列数を増加したり、該端子のピッチを狭くすると、図4(a)のように、銅箔配線3の幅とギャップからの制約により、半導体チップ4の電極とボンディングワイヤ7で接続されるボンディングポスト12に結線されない余剰端子13が多数発生する。また、図2或いは図3のBGAパッケージを、図4(b)のようにマザーボード14に実装しようとしても、多ピン化に伴って該BGAパッケージの外形寸法が増加するので実装面積が増大する。よって、マザーボード14の寸法も増大させる必要があった。
【0005】
【課題を解決するための手段】
前記課題を解決するために、本発明のうちの第1の発明は、BGAパッケージにおいて、次のような構成にしている。即ち、表面と裏面とを有する板状の基材と、電極が形成された電極面と該電極面の反対側で該電極を持たない背面とを有し、背面が基材の表面側に固着された第1の半導体チップと、基材の表面側に配列された複数の半田ボールと、基材の表面側に形成され、複数の半田ボールのうちの一部の半田ボールと導通を持つ第1の配線パターンと、第1の半導体チップの電極と第1の配線パターンとを接続する第1の接続部材と、基材の裏面側に形成された第2の配線パターンと、電極面及び背面を有し、基板の裏面側に搭載された任意数の第2の半導体チップと、第2の半導体チップの電極と第2の配線パターンとを接続する第2の接続部材と、基材に形成され、基材の表面側の複数の半田ボールのうちの残った半田ボールと基材の裏面側の第2の配線パターンとを接続するスルーホールと、第1の半導体チップの電極面を封止する第1の封止部材と、第2の半導体チップの電極面を封止する第2の封止部材とを、備えている。
【0006】
第2の発明は、第1の発明における第2の半導体チップは、背面を基材の裏面側に固定し、第2の接続部材は、ボンディングワイヤで構成している。第3の発明は、第1の発明における第2の接続部材は、第2の半導体チップの電極に突設された複数のバンプで構成し、第2の半導体チップは、電極側が基材の裏面側に対向し、バンプによって電極が第2の配線パターンに接続されている。
【0007】
第4の発明は、BGAパッケージにおいて、次のような構成にしている。即ち、表面と裏面とを有する板状の基材と、電極が形成された電極面と該電極面の反対側で該電極を持たない背面とを有し、背面が基材の表面側に固着された第1の半導体チップと、基材の表面側に配列された複数の半田ボールと、基材の表面側に形成され、複数の半田ボールのうちの一部の半田ボールと導通を持つ第1の配線パターンと、第1の半導体チップの電極と第1の配線パターンとを接続する第1の接続部材と、基材の裏面側に形成された第2の配線パターンと、端子のみが露出し、他が既に封止された任意数の半導体装置と、半導体装置の端子と第2の配線パターンとを接続する第2の接続部材と、基材に形成され、基材の表面側の複数の半田ボールのうちの残った半田ボールに基材の裏面側の第2の配線パターンを接続するスルーホールと、第1の半導体チップの電極面を封止する第1の封止部材とを備えている。
【0008】
第5の発明は、第3の発明のBGAパッケージを製造するBGAパッケージの製造方法において、次のような製造方法を講じている。即ち、表面と裏面とを有する板状の基材にスルーホールを形成し、該基材の表面側に第1の配線パターンを形成すると共に基材の裏面側にスルーホールと導通を持つ第2の配線パターンを形成するパターン形成処理とを最初に行う。そして、パターン形成処理の後に、電極が形成された電極面と該電極面の反対側で該電極を持たない背面とを有する第1の半導体チップを、背面を基材の表面側に向けて固着し、第1の半導体チップの電極と第1の配線パターンとを第1の接続部材で接続する第1の搭載処理と、第1の半導体チップの前記電極面を第1の封止樹脂で封止する第1の封止処理と、パターン形成処理の後の第1の搭載処理及び第1の封止処理の前または後に、電極が形成された電極面と電極面の反対側で該電極を持たない背面とを有し、電極には導電性のバンプが突設された第2の半導体チップを、電極面側を基材の裏面側に対向させ、第2の配線パターンに該バンプを加熱圧着することにより、第2の半導体チップを該基材に搭載する第2の搭載処理と、搭載された第2の半導体チップと基材の間に、第2の半導体チップの横から液状の第2の封止樹脂を注入し、液状の第2の封止樹脂を硬化させて第2の半導体チップの電極面を封止する第2の封止処理と、基材の表面側に、第1の配線パターンと導通を持つ半田ボール及びスルーホールと導通を持つ半田ボールを形成する半田ボール形成処理とを行うようにしている。
【0009】
第6の発明は、第3の発明のBGAパッケージを製造するBGAパッケージの製造方法において、次のような製造方法を講じている。即ち、表面と裏面とを有する板状の基材にスルーホールを形成し、該基材の表面側に第1の配線パターンを形成すると共に該基材の裏面側に該スルーホールに導通を持つ第2の配線パターンを形成するパターン形成処理と、前記パターン形成処理の前または後に、基材の第2の半導体チップ搭載予定領域に表面から裏面に貫通する孔を形成する貫通孔形成処理とを行う。そして、パターン形成処理及び貫通孔形成処理の後に、電極が形成された電極面と該電極面の反対側で電極を持たない背面とを有し、電極には導電性のバンプが突設された第2の半導体チップを、電極面側を基材の裏面側に対向させ、第2の配線パターンにバンプを加熱圧着することにより、第2の半導体チップを基材に搭載する第1の搭載処理と、第2の半導体チップの電極面と基材の裏面との間に孔を介して液状の第2の封止樹脂を注入し、液状の第2の封止樹脂を硬化させて第2の半導体チップの電極面を封止する第1の封止処理と、第1の封止処理の後に、電極が形成された電極面と該電極面の反対側で電極を持たない背面とを有する第1の半導体チップを、背面を基材の表面側に向けて固着し、第1の半導体チップの電極と第1の配線パターンとを第1の接続部材で接続する第2の搭載処理と、第1の半導体チップの電極面を第1の封止樹脂で封止する第1の封止処理と、基材の表面側に、第1の配線パターンと導通を持つ半田ボール及びスルーホールと導通を持つ半田ボールを形成する半田ボール形成処理とを行うようにしている。
【0010】
第7の発明は、第3の発明のBGAパッケージを製造するBGAパッケージの製造方法において、次のような製造方法を講じている。即ち、表面と裏面とを有する板状の基材にスルーホールを形成し、基材の表面側に第1の配線パターンを形成すると共に基材の裏面側にスルーホールに導通を持つ第2の配線パターンを形成するパターン形成処理を行う。そして、パターン形成処理の後に、電極が形成された電極面と該電極面の反対側で該電極を持たない背面とを有する第1の半導体チップを、背面を基材の表面側に向けて固着し、第1の半導体チップの電極と第1の配線パターンとを第1の接続部材で接続する第1の搭載処理と、第1の半導体チップの電極面を第1の封止樹脂で封止する第1の封止処理と、パターン形成処理の後の第1の搭載処理及び第1の封止処理の前または後に、基材の第2の半導体チップ搭載予定領域にテープ状の第2の封止樹脂を置くテープ載置処理と、電極が形成された電極面と該電極面の反対側で該電極を持たない背面とを有し、電極には導電性のバンプが突設された第2の半導体チップを、電極面側を基材の裏面側に対向させ、第2の配線パターンに該バンプを加熱圧着することにより、第2の半導体チップを基材に搭載する第2の搭載処理と、これと同時に行われ、第2の封止樹脂を溶融させた後に硬化させ、第2の半導体チップの電極面を封止する第2の封止工程と、基材の表面側に、第1の配線パターンと導通を持つ半田ボール及びスルーホールと導通を持つ半田ボールを形成する半田ボール形成工程とを、行うようにしている。
【0011】
第1から第7の発明によれば、以上のようにBGAパッケージ及び該BGAパッケージの製造方法を構成したので、基材の表面側には、第1の半導体チップが搭載され、基材の裏面側には第2の半導体チップまたは半導体装置が搭載される。この第2の半導体チップの電極または半導体装置の端子は、第2の配線パターン及びスルーホールを介して基材の表面側の半田ボールと接続される。そのため、第2の半導体チップまたは半導体装置への信号の入出力には、その半田ボールが用いられる。
【0012】
また、第8の発明は、半導体装置において、表面と裏面とを有する基板と、その基板の表面に形成された第1の外部電極と、基板の表面に搭載されるとともに、第1の外部電極と電気的に接続された第1の半導体チップと、基板の表面に形成された第2の外部電極と、基板の裏面に搭載されるとともに、第2の外部電極と、基板に形成されたスルーホールを介して電気的に接続された第2の半導体チップとを含むようにしている。
【0013】
第9の発明は、第8の発明の半導体装置において、第1の半導体装置は、基板の表面に形成された第1の配線パターンを介して第1の外部電極に電気的に接続し、第2の半導体チップは、基板の裏面に形成された第2の配線パターンを介して第2の外部電極に電気的に接続した構成にしている。
【0014】
第10の発明は、第8の発明の半導体装置における第2の外部電極は実質的に、基板のコーナー部近傍に設けている。第11の発明は、第8の発明の半導体装置において、基板には凹部を形成し、第1の半導体チップはこの凹部内に配置している。第12の発明は、第8の発明の半導体装置において、第1の外部電極及び第2の外部電極は半田ボールで構成している。第8から第12の発明によれば、以上のように半導体装置を構成したので、基板の表面に第1の外部電極及び第2の外部電極が形成されている。基板の表面に第1の半導体チップが搭載され、裏面に第2の半導体チップが搭載される。第1の半導体チップは第1の外部電極に電気的に接続され、第2の半導体チップは、スルーホールを介して第2の外部電極に電気的に接続される。そのため、第2の半導体チップへの信号の入出力は、基板の表面に形成された第2の外部電極が用いられる。
【0015】
【発明の実施の形態】
第1の実施形態図1は、本発明の第1の実施形態を示すBGAパッケージの断面図である。図5(a)〜(c)は、図1のBGAパッケージのベースとなる基板20を示す図であり、図1中の要素と共通の要素には共通の符号が付されている。このBGAパッケージのベースとなる基板20には、厚さ0.3〜0.4mmの銅板21が基材として用いられている。銅板21の表面側には、従来と同様に厚さ10〜30μmのポリイミド等からなる絶縁材22が貼付けられ、該絶縁材22の上に厚さ12〜35μmの第1の配線パターンである銅箔配線23が形成されている。銅箔配線23の上部は、一部を残してソルダーレジスト24が塗布されている。銅板21の裏面側には、図5(b)のように、厚さ10〜30μmのポリイミド等からなる絶縁材25が貼付けられ、該絶縁材25の上に厚さ12〜35μmの第2の配線パターンである銅箔配線26が形成されている。銅箔配線26の上は、一部を残してソルダーレジスト27が塗布されている。
【0016】
例えば、金型絞り加工により、銅板21の表面側には、第1の半導体チップ28の搭載箇所29が凹状に形成されている。銅板21には、さらに、表面と裏面をつなぐスルーホール30が形成されている。スルーホール30は、銅板21とは絶縁されている。各銅箔配線23,26の一端が、後述するボンディングワイヤに接続されるボンディングポスト25a,26aになっている。裏面側の銅箔配線26の他端は、スルーホール30に接続されている。搭載箇所29に例えば絶縁ペースト31が塗布され、該搭載箇所29に、半導体チップ28が電極面とは反対の背面を向けて固着されている。半導体チップ28の電極と銅箔配線23とが第1の接続部材であるボンディングワイヤ32で接続され、該半導体チップ28の搭載されているキャビティ部分が、第1の封止樹脂のエポキシ樹脂33によって封止されている。基板20の表面側には、複数の半田ボール34が例えば格子状に配置されている。銅箔配線23のソルダーレジスト27の開口した部分に、半田ボール34が形成され、さらに、各スルーホール30も半田ボール34と導通を持つように形成されている。
【0017】
このような基板20の裏面側の一部に導電性或いは絶縁性のペースト35が塗布され、図1のように、第2の半導体チップ36が搭載され、半導体チップ36の背面がペースト35によって固着されている。半導体チップ36の電極と銅箔配線26のボンディングポスト26aとが、第2の接続部材であるボンディングワイヤ37により、接続されている。この半導体チップ36も、第2の封止樹脂であるエポキシ樹脂38により、封止されている。半導体チップ28,36が搭載された図1のBGAパッケージでは、信号が半田ボール34及び銅箔配線23を介して半導体チップ28に入出力されるばかりでなく、半田ボール34、スルーホール30及び銅箔配線26を介して半導体チップ36に信号が入出力される。
【0018】
以上のように、この第1の実施形態では、基材21の表面側と裏面側の両方に銅泊配線23,26を形成すると共に、該基材21にスルーホール30を設け、基材21の裏面側に搭載した半導体チップ36の電極を表面側に配列した半田ボール34に接続したので、半導体チップ28に接続できなかった半田ボール34、つまり、余剰端子を半導体チップ36の端子として有効に使用することができる。また、半導体チップ28と半導体チップ36とを基材21の両側に搭載するので、マザーボードに実装する時の実装面積を低減でき、マザーボードの面積も小さくできる。
【0019】
第2の実施形態図6は、本発明の第2の実施形態を示すBGAパッケージの断面図である。図7(a),(b)は、図6のBGAパッケージのベースとなる基板40を示す図であり、図6中の要素と共通の要素には共通の符号が付されている。このBGAパッケージのベースとなる基板40は、第1の実施形態と同様の銅板41が基材として用いられ、該銅板41の表面側には、厚さ10〜30μmの絶縁材42が貼付けられている。絶縁材42の上に、厚さ12〜35μmの第1の配線パターンである銅箔配線43が形成されている。銅箔配線43の上部は、一部を残してソルダーレジスト44が塗布されている。
【0020】
銅板41の裏面側には、図7(b)のように、厚さ10〜30μmのポリアミド等からなる絶縁材45が貼付けられ、該絶縁材45の上に、厚さ12〜35μmの第2の配線パターンである銅箔配線46が形成されている。銅箔配線46の上は、一部を残してソルダーレジスト47が塗布されている。金型絞り加工により、銅板41の表面側に第1の半導体チップ48の搭載箇所49が凹状に形成されている。銅板41には、さらに、該銅板41とは絶縁され、表面側と裏面側をつなぐスルーホール50が形成されている。銅箔配線43の一端が、ボンディングワイヤに接続されるボンディングポスト43aになっている。裏面側の銅箔配線46の一端が後述する金バンプに接続されるランド46aになっており、例えば該ランド46aには、下地にNiメッキが施され、さらに、その上に金メッキが施されている。
【0021】
銅箔配線46の他端は、スルーホール50に接続されている。搭載箇所49の底部には例えば絶縁ペースト51が塗布され、該搭載箇所49に、第1の半導体チップ48が電極面とは反対の背面を向けて搭載されている。半導体チップ48の電極と銅箔配線43とが第1の接続部材であるボンディングワイヤ52で接続され、該半導体チップ48の搭載されているキャビティ部分が、第1の封止樹脂のエポキシ樹脂53によって封止されている。複数の半田ボール54が基板50の表面側に例えば格子状に配置されている。各銅箔配線43のソルダーレジスト47の開口した部分に、半田ボール54が形成され、さらに、各スルーホール50も半田ボール54に接続されている。
【0022】
以上のような基板40の裏面側に、第2の接続部材である金バンプ55が電極に突設された第2の半導体チップ56が搭載されている。この場合、半導体チップ56の電極が金バンプで銅箔配線46に接続されているので、基板40の裏面側に該半導体チップ56の電極面が対向している。基板40の裏面側と半導体チップ56の電極面との間が、第2の封止樹脂57によって封止されている。
【0023】
図8(a)〜(d)は、図6のBGAパッケージの製造工程の概要を示す断面図である。この第2の実施形態のBGAパッケージは、図8(a)〜(d)の工程により、製造される。まず、図8の(a)の工程において、パターン形成処理により、銅板41にスルーホール50を形成し、銅板41の表面側に絶縁材42を貼付け、その上に銅箔配線43を形成し、銅板41の裏面側に絶縁材45を貼付け、さらに、該絶縁材45の上に銅箔配線46を形成する。銅箔配線43,46の必要部分にソルダーレジスト44,47を塗布した後、第1の搭載処理により、半導体チップ48を搭載箇所49に固着し、該半導体チップ48の電極をボンディングワイヤ52で銅箔配線43と接続する。そして、第1の封止処理を行い、半導体チップ48の電極面をエポキシ樹脂53で封止する。一方、半導体チップ56の電極面の電極には、金バンプ55を突設させておく。
【0024】
図8(b)の工程において、第2の搭載処理により、半導体チップ56の電極面を銅板41の裏面に対向させて金バンプ55をランド46aに当接し、熱圧着法によって接続する。さらに、半導体チップ56の電極面と銅板41の裏面側との間に、液状の樹脂57を側面から注入する。図8(c)の工程において、第2の封止処理を行い、加熱により、注入した樹脂57を硬化させ、半導体チップ56の電極面を封止する。図8(d)の工程において、銅板41の表面側の銅箔配線43及びスルーホール50の該表面側に半田ボール54を形成する。半導体チップ48,56が搭載された図7のBGAパッケージでは、信号が半田ボール54及び銅箔配線43を介して半導体チップ48に入出力されるばかりでなく、半田ボール54、スルーホール50及び銅箔配線46を介して信号が半導体チップ54に入出力される。
【0025】
以上のように、この第2の実施形態では、銅板41の裏面側に形成された銅泊配線46とスルーホール50とを設け、銅板41の裏面側に搭載した半導体チップ46の電極を表面側に配列した半田ボール54に接続したので、半導体チップ48に接続できなかった半田ボール54を半導体チップ56の端子として有効に使用することができる。また、半導体チップ48と半導体チップ56とを銅板41の両側に搭載するので、マザーボードに実装する時の実装面積を低減でき、マザーボードの面積も小さくできる。さらに、半導体チップ56の搭載を金バンプ55にて行うので、第1の実施形態よりも短時間で接続できる。
【0026】
第3の実施形態図9(a)〜(d)は、本発明の第3の実施形態を示すBGAパッケージの製造方法の断面図であり、第2の実施形態の図6中の要素と共通の要素には共通の符号が付されている。
【0027】
この第3の実施形態では、図6と同様のBGAパッケージに対する第2の実施形態とは異なる製造方法を説明する。まず、図9(a)の工程において、パターン形成処理を行い、銅板41の表面側に絶縁材42を貼付け、その上に銅箔配線43を形成し、銅板41の裏面側に絶縁材45を貼付け、該絶縁材45の上に銅箔配線46を形成し、さらに、スルーホール50も基材41に形成する。銅箔配線43,46の必要部分にソルダーレジスト44,47を塗布する。また、貫通孔形成処理を行い、銅板41の表面側から裏面側に貫通する孔60を、半導体チップ56の搭載予定位置の中央に形成しておく。一方、半導体チップ56の電極面の電極には、金バンプ55を突設させておく。
【0028】
図9(b)の工程において、第1の搭載処理により、半導体チップ56の電極面を銅板41の裏面に対向させて金バンプ55をランド46aに当接し、熱圧着法によって接続する。そして、孔60を介して液状の樹脂57を半導体チップ56の電極面と基板40の裏面側との間に注入する。図9(c)の工程において、第1の封止処理を行い、液状の樹脂57を加熱硬化させ、半導体チップ56の電極面を封止する。
【0029】
図9(d)の工程において、第2の搭載処理により、半導体チップ48を搭載箇所49に固着し、該半導体チップ48の電極をボンディングワイヤ52で銅箔配線43と接続する。そして、第2の封止処理を行い、半導体チップ48の電極面をエポキシ樹脂53で封止する。図9(e)の工程において、半田ボール形成処理により、銅板41の表面側の銅箔配線43及びスルーホール50の該表面側に半田ボール54を形成する。
【0030】
以上のように、この第3の実施形態では、第2の実施形態と同様に、銅板41の裏面側に形成された銅泊配線46とスルーホール50とを設け、銅板41の裏面側に搭載した半導体チップ46の電極を表面側に配列した半田ボール54に接続したので、半導体チップ48に接続できなかった半田ボール54を半導体チップ56の端子として有効に使用することができる。半導体チップ48と半導体チップ56とを銅板41の両側に搭載するので、マザーボードに実装する時の実装面積を低減でき、マザーボードの面積も小さくできる。さらに、半導体チップ56の搭載を金バンプ55にて行うので、第1の実施形態よりも短時間で接続できる。その上、樹脂57が貫通孔60から注入されるので、該樹脂57が均一に分布し、完成後の熱応力による樹脂57の膨脹収縮が原因で、半導体チップ56の接続信頼性が劣化することを、予防できる。
【0031】
第4の実施形態図10(a)〜(c)は、本発明の第4の実施形態を示すBGAパッケージの製造方法の断面図であり、第2の実施形態の図6中の要素と共通の要素には共通の符号が付されている。この第3の実施形態では、図6と同様のBGAパッケージに対する第2の実施形態とは異なる製造方法を説明する。まず、図10(a)の工程において、パターン形成処理を行い、銅板41の表面側に絶縁材42を貼付け、その上に銅箔配線43を形成し、銅板41の裏面側に絶縁材45を貼付け、該絶縁材45の上に銅箔配線46を形成し、スルーホール50も基材41に形成する。銅箔配線43,46の必要部分にソルダーレジスト44,47を塗布する。ここで、第1の搭載処理により、半導体チップ48を搭載箇所49に固着し、該半導体チップ48の電極をボンディングワイヤ52で銅箔配線43と接続する。そして、第1の封止処理を行い、半導体チップ48の電極面をエポキシ樹脂53で封止する。一方、半導体チップ56の電極面の電極には、金バンプ55を突設させておくと共に、テープ状に形成された樹脂57を用意する。
【0032】
図10(b)の工程において、テープ載置処理により、基板40の裏面側の半導体チップ56の搭載予定領域にテープ状の樹脂57を載置し、続いて、第2の搭載処理を行い、半導体チップ56の電極面を銅板41の裏面に対向させて金バンプ55をランド46aに当接し、熱圧着法によって接続する。このとき、第2の封止処理が同時に行われ、テープ状の樹脂57が加熱されて溶融して硬化するる。よって、半導体チップ56の電極面が封止される。図10(c)の工程において、銅板41の表面側の銅箔配線43及びスルーホール50の該表面側に半田ボール54を形成する。
【0033】
以上のように、この第4の実施形態では、第2及び第3の実施形態と同様に、銅板41の裏面側に形成された銅泊配線46とスルーホール50とを設け、銅板41の裏面側に搭載した半導体チップ46の電極を表面側に配列した半田ボール54に接続したので、半田ボール54を半導体チップ56の端子として有効に使用することができると共に、マザーボードに実装する時の実装面積を低減でき、マザーボードの面積も小さくできる。その上、半導体チップ56の搭載を金バンプ55にて行うので、第1の実施形態よりも短時間で接続できる。さらに、半導体チップ56の封止を、バンプ55の接続と同時にできるので、第2及び第3の実施形態よりも、短時間で封止できることなる。
【0034】
第5の実施形態図11は、本発明の第5の実施形態を示すBGAパッケージの断面図である。図12(a),(b)は、図11のBGAパッケージのベースとなる基板70を示す図であり、図11中の要素と共通の要素には共通の符号が付されている。このBGAパッケージのベースとなる基板70は、第1の実施形態と同様の銅板71が基材として用いられ、該銅板71の表面側には、厚さ10〜30μmの絶縁材72が貼付けられている。絶縁材72の上に、厚さ12〜35μmの第1の配線パターンである銅箔配線73が形成されている。銅箔配線73の上部は、一部を残してソルダーレジスト74が塗布されている。
【0035】
銅板71の裏面側には、図12(b)のように、厚さ10〜30μmのポリイミド等からなる絶縁材75が貼付けられ、該絶縁材75の上に、厚さ12〜35μmの第2の配線パターンである銅箔配線76が形成されている。銅箔配線76の上は、一部を残してソルダーレジスト77が塗布されている。金型絞り加工により、銅板71の表面側に第1の半導体チップ78の搭載箇所79が凹状に形成されている。銅板71には、さらに、表面と裏面をつなぐスルーホール80が形成されている。銅箔配線73の一端が、ボンディングワイヤに接続されるボンディングポスト73aになっている。裏面側の銅箔配線76の一端が半田ボール接続用ランド76aになっており、例えば該ランド76aは、例えば耐熱性プリフラックスがコートされている。
【0036】
銅箔配線76の他端は、スルーホール80に接続されている。搭載箇所79の底部には例えば絶縁ペースト81が塗布され、該搭載箇所79に、第1の半導体チップ78が電極面とは反対の背面を向けて搭載されている。半導体チップ78の電極と銅箔配線73とが第1の接続部材であるボンディングワイヤ82で接続され、該半導体チップ78の搭載されているキャビティ部分が、第1の封止樹脂のエポキシ樹脂83によって封止されている。複数の半田ボール84が基板80の表面側に例えば格子状に配置されている。各銅箔配線73のソルダーレジスト77の開口した部分に、半田ボール84が形成され、さらに、各スルーホール80も半田ボール84に接続されている。
【0037】
以上のような基板70の裏面側に、第2の接続部材となる半田ボール85のみが電極面から露出したチップ・サイズ・パッケージ等の半導体装置86が搭載されている。半導体装置86の端子が半田ボール85で銅箔配線76のランド76aに接続されている。このようなBGAパッケージを製造する場合には、半導体装置86の半田ボール85を加熱リフローしては、該半導体装置86の端子を銅箔配線76のランド76aに接続し、最後に、半田ボール84を形成することにより、半田ボール84の変形が防止される。
【0038】
以上のように、この第5の実施形態では、銅板71の裏面側に形成された銅泊配線76とスルーホール80とを設け、銅板71の裏面側に搭載した半導体装置86の端子を表面側に配列した半田ボール84に接続したので、半導体チップ78に接続できなかった半田ボール84を半導体装置86の端子として有効に使用することができる。その上,半導体装置86は、事前に封止されているので、第2から第4の実施形態では必要であった樹脂57が不要であり、部材費の低減が可能である。なお、本発明は、上記実施形態に限定されず種々の変形が可能である。例えば、第1、第2及び第4の実施形態では、基板20,40の表面側の半導体チップ28,48をよりも先に搭載しているが、逆に、半導体チップ36,56を先に搭載するようにしていもよい。
【0039】
【発明の効果】
以上詳細に説明したように、第1から第7の発明によれば、基材に形成されたスルーホールと、該基材の裏面側に形成された第2の配線パターンとを有すると共に、基材の表面側に第1の半導体チップを搭載し、基材の裏面側に第2の半導体チップまたは半導体装置を搭載し、該第2の半導体チップまたは半導体装置の電極或いは端子を第2の配線パターン及びスルーホールを介して半田ボールと接続したので、第1の半導体チップに接続できなかった半田ボール、つまり、余剰端子を第2の半導体チップまたは半導体装置の端子として有効に使用することができる。マザーボードに実装する時の実装面積を低減でき、マザーボードの面積も小さくできる。
【0040】
第8から第12の発明によれば、第1の半導体チップを基板の表面に搭載し、第2の半導体チップを基板の裏面に搭載し、これら第1及び第2の半導体チップの信号の入出力が、共に基板の表面に形成された第1及び第2の外部電極で行うようにしたので、マザーボードに実装する時の実装面積を低減でき、マザーボードの面積を小さくできる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示すBGAパッケージの断面図である。
【図2】従来のBGAパッケージの一例を示す断面図である。
【図3】従来のBGAパッケージの他の例を示す断面図である。
【図4】図2及び図3のBGAパッケージの課題の説明図である。
【図5】図1のBGAパッケージのベースとなる基板20を示す図である。
【図6】本発明の第2の実施形態を示すBGAパッケージの断面図である。
【図7】図6のBGAパッケージのベースとなる基板40を示す図である。
【図8】図6のBGAパッケージの製造工程の概要を示す断面図である。
【図9】本発明の第3の実施形態を示すBGAパッケージの製造方法の断面図である。
【図10】本発明の第4の実施形態を示すBGAパッケージの製造方法の断面図である。
【図11】本発明の第5の実施形態を示すBGAパッケージの断面図である。
【図12】図11のBGAパッケージのベースとなる基板70を示す図である。
【符号の説明】
21,41,71 銅板
23,26,43,46,73,76 銅箔配線
28,36,48,56 半導体チップ
30,50,80 スルーホール
32,37,42,82 ボンディングワイヤ
34,54,84 半田ボール
60 貫通孔
86 半導体装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a ball grid array (hereinafter referred to as BGA package) package.
[0002]
[Prior art]
2A and 2B are cross-sectional views showing an example of a conventional BGA package. FIGS. 3A and 3B are cross-sectional views showing other examples of the conventional BGA package. Elements common to those in FIG. 2 are denoted by common reference numerals. In a BGA package considering general heat dissipation, an insulating material 2 made of polyimide or the like having a thickness of 10 to 30 μm is attached to a copper plate 1 having a thickness of 0.3 to 0.4 mm. A copper foil wiring 3 having a thickness of 12 to 35 μm is formed on the insulating material 2. On the surface side of the copper plate 1, as shown in FIG. 2, the mounting portion 5a of the semiconductor chip 4 is formed by cutting or the mounting portion 5b of the semiconductor chip 4 is formed by die drawing as shown in FIG. The substrate is configured.
[0003]
The semiconductor chip 4 has an electrode surface on which electrodes are formed and a back surface on the opposite side. Conductive or insulating paste 6 is applied to the bottoms of the mounting locations 5a and 5b, and the semiconductor chip 4 is fixed thereto with the back side facing. The electrode of the semiconductor chip 4 and the copper foil wiring 3 are connected by the bonding wire 7, and the cavity portion on which the semiconductor chip 4 is mounted is filled with the epoxy resin 8. Solder balls 9 are attached in a grid pattern on the surface side of the substrate where there is no epoxy resin 8. A portion where the epoxy resin 8 and the solder balls 9 are not present on the surface side of the substrate is covered with a resist film 10. In some cases, as shown in FIG. 3, the insulating material 11 is attached to the back side of the substrate as a countermeasure against warping or contamination prevention of the substrate after sealing.
[0004]
[Problems to be solved by the invention]
However, the conventional BGA package of FIGS. 2 and 3 has the following problems. FIGS. 4A and 4B are explanatory diagrams of the problems of the BGA package of FIGS. In order to cope with the increase in the number of pins, when the number of rows of grid-like terminals made of solder balls 9 is increased or the pitch of the terminals is reduced, the width of the copper foil wiring 3 is increased as shown in FIG. Due to the restriction from the gap, a large number of surplus terminals 13 that are not connected to the bonding posts 12 connected to the electrodes of the semiconductor chip 4 by the bonding wires 7 are generated. Further, even if the BGA package of FIG. 2 or FIG. 3 is to be mounted on the mother board 14 as shown in FIG. 4B, the mounting area increases because the external dimensions of the BGA package increase with the increase in the number of pins. Therefore, it is necessary to increase the size of the mother board 14.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a first invention of the present invention is configured as follows in a BGA package. That is, it has a plate-like substrate having a front surface and a back surface, an electrode surface on which an electrode is formed, and a back surface on the opposite side of the electrode surface that does not have the electrode, and the back surface is fixed to the surface side of the substrate A first semiconductor chip formed, a plurality of solder balls arranged on the surface side of the base material, and a first conductive chip formed on the surface side of the base material and electrically connected to some of the plurality of solder balls. 1 wiring pattern, the 1st connection member which connects the electrode of a 1st semiconductor chip, and the 1st wiring pattern, the 2nd wiring pattern formed in the back surface side of a substrate, an electrode surface, and the back An arbitrary number of second semiconductor chips mounted on the back side of the substrate, a second connection member for connecting the electrode of the second semiconductor chip and the second wiring pattern, and a base material Of the plurality of solder balls on the front surface side of the substrate and the second solder ball on the back surface side of the substrate. A through hole connecting the wiring pattern, a first sealing member for sealing the electrode surface of the first semiconductor chip, and a second sealing member for sealing the electrode surface of the second semiconductor chip. Have.
[0006]
In the second invention, the second semiconductor chip in the first invention has the back surface fixed to the back surface side of the base material, and the second connecting member is constituted by a bonding wire. In a third invention, the second connecting member in the first invention is composed of a plurality of bumps protruding from the electrodes of the second semiconductor chip, and the second semiconductor chip has the electrode side on the back surface of the base material The electrodes are connected to the second wiring pattern by bumps.
[0007]
The fourth invention has the following configuration in the BGA package. That is, it has a plate-like substrate having a front surface and a back surface, an electrode surface on which an electrode is formed, and a back surface on the opposite side of the electrode surface that does not have the electrode, and the back surface is fixed to the surface side of the substrate A first semiconductor chip formed, a plurality of solder balls arranged on the surface side of the base material, and a first conductive chip formed on the surface side of the base material and electrically connected to some of the plurality of solder balls. 1 wiring pattern, a first connecting member for connecting the electrode of the first semiconductor chip and the first wiring pattern, a second wiring pattern formed on the back side of the substrate, and only the terminals are exposed. And any number of other semiconductor devices that are already sealed, a second connection member that connects the terminal of the semiconductor device and the second wiring pattern, and a plurality of semiconductor devices formed on the base, The second wiring pattern on the back side of the base material is connected to the remaining solder balls of the solder balls And a first sealing member for sealing the Horu, the electrode surface of the first semiconductor chip.
[0008]
The fifth invention employs the following manufacturing method in the manufacturing method of the BGA package for manufacturing the BGA package of the third invention. That is, a through hole is formed in a plate-like base material having a front surface and a back surface, a first wiring pattern is formed on the front surface side of the base material, and a second having conduction with the through hole on the back surface side of the base material. First, a pattern forming process for forming the wiring pattern is performed. Then, after the pattern formation process, the first semiconductor chip having the electrode surface on which the electrode is formed and the back surface not having the electrode on the opposite side of the electrode surface is fixed with the back surface facing the surface side of the substrate. Then, a first mounting process for connecting the electrode of the first semiconductor chip and the first wiring pattern with a first connecting member, and sealing the electrode surface of the first semiconductor chip with a first sealing resin. The first sealing process to be stopped, the first mounting process after the pattern forming process, and the first sealing process before or after the first sealing process, the electrode is formed on the opposite side of the electrode surface and the electrode surface. A second semiconductor chip having a back surface that does not have a conductive bump on the electrode, the electrode surface facing the back surface of the substrate, and heating the bump to the second wiring pattern A second mounting process for mounting the second semiconductor chip on the substrate by pressure bonding; A liquid second sealing resin is injected between the second semiconductor chip and the base material from the side of the second semiconductor chip, and the liquid second sealing resin is cured to form a second semiconductor. Second sealing process for sealing the electrode surface of the chip, and solder ball forming process for forming a solder ball having conductivity with the first wiring pattern and a solder ball having conductivity with the through hole on the surface side of the substrate And do.
[0009]
The sixth invention employs the following manufacturing method in the manufacturing method of the BGA package for manufacturing the BGA package of the third invention. That is, a through-hole is formed in a plate-like base material having a front surface and a back surface, a first wiring pattern is formed on the front surface side of the base material, and conduction is provided to the through hole on the back surface side of the base material. A pattern forming process for forming a second wiring pattern, and a through hole forming process for forming a hole penetrating from the front surface to the back surface in the second semiconductor chip mounting planned region of the base material before or after the pattern forming process. Do. Then, after the pattern formation process and the through hole formation process, the electrode surface on which the electrode was formed and the back surface having no electrode on the opposite side of the electrode surface, and the conductive bumps protruded from the electrode A first mounting process for mounting the second semiconductor chip on the base material by causing the electrode surface side to face the back side of the base material and heat-bonding the bumps to the second wiring pattern. And injecting a liquid second sealing resin through the hole between the electrode surface of the second semiconductor chip and the back surface of the base material to cure the second liquid sealing resin A first sealing process for sealing an electrode surface of a semiconductor chip; and an electrode surface on which an electrode is formed after the first sealing process and a back surface having no electrode on the opposite side of the electrode surface. 1 semiconductor chip is fixed with the back surface facing the front surface side of the substrate, and the first semiconductor chip electrode and the first semiconductor chip A second mounting process for connecting the line pattern with the first connecting member; a first sealing process for sealing the electrode surface of the first semiconductor chip with the first sealing resin; and a surface of the substrate. On the side, a solder ball forming process for forming a solder ball having electrical continuity with the first wiring pattern and a solder ball having electrical continuity with the through hole is performed.
[0010]
The seventh invention employs the following manufacturing method in the manufacturing method of the BGA package for manufacturing the BGA package of the third invention. That is, a through hole is formed in a plate-like base material having a front surface and a back surface, a first wiring pattern is formed on the front surface side of the base material, and the second hole having conduction to the through hole on the back surface side of the base material. A pattern forming process for forming a wiring pattern is performed. Then, after the pattern formation process, the first semiconductor chip having the electrode surface on which the electrode is formed and the back surface not having the electrode on the opposite side of the electrode surface is fixed with the back surface facing the surface side of the substrate. Then, a first mounting process for connecting the electrode of the first semiconductor chip and the first wiring pattern with the first connecting member, and sealing the electrode surface of the first semiconductor chip with the first sealing resin Before or after the first sealing process, the first mounting process after the pattern forming process, and the first sealing process, the second semiconductor chip mounting region of the substrate A tape mounting process for placing a sealing resin; an electrode surface on which an electrode is formed; and a back surface not having the electrode on the opposite side of the electrode surface; and a conductive bump protruding from the electrode. 2 with the electrode side facing the back side of the base material and the bumps on the second wiring pattern A second mounting process for mounting the second semiconductor chip on the base material by thermocompression bonding is performed simultaneously with the second mounting process. After the second sealing resin is melted and cured, the second semiconductor chip of the second semiconductor chip is cured. A second sealing step for sealing the electrode surface, and a solder ball forming step for forming a solder ball having electrical continuity with the first wiring pattern and a solder ball having electrical continuity with the through hole on the surface side of the substrate. To do.
[0011]
According to the first to seventh inventions, since the BGA package and the method for manufacturing the BGA package are configured as described above, the first semiconductor chip is mounted on the front surface side of the base material, and the back surface of the base material A second semiconductor chip or semiconductor device is mounted on the side. The electrodes of the second semiconductor chip or the terminals of the semiconductor device are connected to the solder balls on the surface side of the substrate through the second wiring pattern and the through holes. Therefore, the solder balls are used for signal input / output to / from the second semiconductor chip or semiconductor device.
[0012]
According to an eighth aspect of the present invention, in the semiconductor device, a substrate having a front surface and a back surface, a first external electrode formed on the surface of the substrate, a first external electrode mounted on the surface of the substrate A first semiconductor chip electrically connected to the substrate, a second external electrode formed on the front surface of the substrate, a second external electrode mounted on the back surface of the substrate, and a through formed in the substrate And a second semiconductor chip electrically connected through a hole.
[0013]
According to a ninth invention, in the semiconductor device according to the eighth invention, the first semiconductor device is electrically connected to the first external electrode through the first wiring pattern formed on the surface of the substrate. The second semiconductor chip is configured to be electrically connected to the second external electrode through a second wiring pattern formed on the back surface of the substrate.
[0014]
According to a tenth aspect, the second external electrode in the semiconductor device according to the eighth aspect is substantially provided in the vicinity of the corner portion of the substrate. According to an eleventh aspect, in the semiconductor device according to the eighth aspect, a recess is formed in the substrate, and the first semiconductor chip is disposed in the recess. According to a twelfth aspect, in the semiconductor device according to the eighth aspect, the first external electrode and the second external electrode are formed of solder balls. According to the eighth to twelfth aspects, since the semiconductor device is configured as described above, the first external electrode and the second external electrode are formed on the surface of the substrate. A first semiconductor chip is mounted on the front surface of the substrate, and a second semiconductor chip is mounted on the back surface. The first semiconductor chip is electrically connected to the first external electrode, and the second semiconductor chip is electrically connected to the second external electrode through a through hole. Therefore, the second external electrode formed on the surface of the substrate is used for input / output of signals to the second semiconductor chip.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
First Embodiment FIG. 1 is a cross-sectional view of a BGA package showing a first embodiment of the present invention. FIGS. 5A to 5C are diagrams showing a substrate 20 serving as a base of the BGA package of FIG. 1, and common elements to those in FIG. 1 are denoted by common reference numerals. A copper plate 21 having a thickness of 0.3 to 0.4 mm is used as a base material for the substrate 20 serving as a base of the BGA package. An insulating material 22 made of polyimide or the like having a thickness of 10 to 30 μm is pasted on the surface side of the copper plate 21 as in the past, and a copper that is a first wiring pattern having a thickness of 12 to 35 μm is formed on the insulating material 22. A foil wiring 23 is formed. An upper portion of the copper foil wiring 23 is coated with a solder resist 24 except for a part. As shown in FIG. 5B, an insulating material 25 made of polyimide or the like having a thickness of 10 to 30 μm is attached to the back surface side of the copper plate 21, and a second 12 to 35 μm thick second material is formed on the insulating material 25. A copper foil wiring 26 which is a wiring pattern is formed. On the copper foil wiring 26, a solder resist 27 is applied leaving a part.
[0016]
For example, the mounting portion 29 of the first semiconductor chip 28 is formed in a concave shape on the surface side of the copper plate 21 by die drawing. The copper plate 21 is further formed with a through hole 30 that connects the front surface and the back surface. The through hole 30 is insulated from the copper plate 21. One end of each copper foil wiring 23, 26 is a bonding post 25a, 26a connected to a bonding wire described later. The other end of the copper foil wiring 26 on the back side is connected to the through hole 30. For example, an insulating paste 31 is applied to the mounting location 29, and the semiconductor chip 28 is fixed to the mounting location 29 with the back surface opposite to the electrode surface facing. The electrode of the semiconductor chip 28 and the copper foil wiring 23 are connected by a bonding wire 32 which is a first connecting member, and the cavity portion on which the semiconductor chip 28 is mounted is formed by an epoxy resin 33 which is a first sealing resin. It is sealed. On the surface side of the substrate 20, a plurality of solder balls 34 are arranged, for example, in a lattice shape. A solder ball 34 is formed in the opening portion of the solder resist 27 of the copper foil wiring 23, and each through hole 30 is also formed to be electrically connected to the solder ball 34.
[0017]
A conductive or insulating paste 35 is applied to a part of the back side of the substrate 20, and the second semiconductor chip 36 is mounted as shown in FIG. 1, and the back surface of the semiconductor chip 36 is fixed by the paste 35. Has been. The electrode of the semiconductor chip 36 and the bonding post 26a of the copper foil wiring 26 are connected by a bonding wire 37 that is a second connecting member. The semiconductor chip 36 is also sealed with an epoxy resin 38 which is a second sealing resin. In the BGA package of FIG. 1 on which the semiconductor chips 28 and 36 are mounted, not only signals are input to and output from the semiconductor chip 28 via the solder balls 34 and the copper foil wiring 23, but also the solder balls 34, the through holes 30 and the copper. Signals are input to and output from the semiconductor chip 36 through the foil wiring 26.
[0018]
As described above, in the first embodiment, the copper retaining wires 23 and 26 are formed on both the front surface side and the back surface side of the base material 21, and the through holes 30 are provided in the base material 21. Since the electrodes of the semiconductor chip 36 mounted on the back surface side of the semiconductor chip 36 are connected to the solder balls 34 arranged on the front surface side, the solder balls 34 that cannot be connected to the semiconductor chip 28, that is, surplus terminals are effectively used as the terminals of the semiconductor chip 36. Can be used. Further, since the semiconductor chip 28 and the semiconductor chip 36 are mounted on both sides of the base member 21, the mounting area when mounted on the mother board can be reduced, and the area of the mother board can also be reduced.
[0019]
Second Embodiment FIG. 6 is a sectional view of a BGA package showing a second embodiment of the present invention. FIGS. 7A and 7B are views showing a substrate 40 that is a base of the BGA package of FIG. 6, and common elements to those in FIG. 6 are denoted by common reference numerals. The substrate 40 serving as the base of the BGA package uses a copper plate 41 similar to that of the first embodiment as a base material, and an insulating material 42 having a thickness of 10 to 30 μm is attached to the surface side of the copper plate 41. Yes. On the insulating material 42, a copper foil wiring 43 that is a first wiring pattern having a thickness of 12 to 35 μm is formed. The upper part of the copper foil wiring 43 is coated with a solder resist 44 leaving a part.
[0020]
As shown in FIG. 7B, an insulating material 45 made of polyamide or the like having a thickness of 10 to 30 μm is attached to the back surface side of the copper plate 41, and a second 12 to 35 μm thick second material is formed on the insulating material 45. The copper foil wiring 46 which is the wiring pattern is formed. On the copper foil wiring 46, a solder resist 47 is applied leaving a part. A mounting portion 49 of the first semiconductor chip 48 is formed in a concave shape on the surface side of the copper plate 41 by die drawing. The copper plate 41 is further formed with a through hole 50 that is insulated from the copper plate 41 and connects the front surface side and the back surface side. One end of the copper foil wiring 43 is a bonding post 43a connected to the bonding wire. One end of the copper foil wiring 46 on the back surface is a land 46a connected to a gold bump, which will be described later. For example, the land 46a is plated with Ni and further plated with gold. Yes.
[0021]
The other end of the copper foil wiring 46 is connected to the through hole 50. For example, an insulating paste 51 is applied to the bottom of the mounting location 49, and the first semiconductor chip 48 is mounted on the mounting location 49 with the back surface opposite to the electrode surface facing. The electrode of the semiconductor chip 48 and the copper foil wiring 43 are connected by a bonding wire 52 as a first connecting member, and the cavity portion on which the semiconductor chip 48 is mounted is formed by an epoxy resin 53 of the first sealing resin. It is sealed. A plurality of solder balls 54 are arranged on the surface side of the substrate 50 in, for example, a lattice shape. Solder balls 54 are formed in the openings of the solder resists 47 of the copper foil wirings 43, and the through holes 50 are also connected to the solder balls 54.
[0022]
On the back side of the substrate 40 as described above, the second semiconductor chip 56 in which the gold bump 55 as the second connecting member is provided protruding from the electrode is mounted. In this case, since the electrodes of the semiconductor chip 56 are connected to the copper foil wiring 46 by gold bumps, the electrode surface of the semiconductor chip 56 faces the back side of the substrate 40. A space between the back surface of the substrate 40 and the electrode surface of the semiconductor chip 56 is sealed with a second sealing resin 57.
[0023]
8A to 8D are cross-sectional views showing an outline of the manufacturing process of the BGA package of FIG. The BGA package according to the second embodiment is manufactured by the steps shown in FIGS. First, in the step of FIG. 8A, through holes 50 are formed in the copper plate 41 by pattern formation processing, the insulating material 42 is pasted on the surface side of the copper plate 41, and the copper foil wiring 43 is formed thereon, An insulating material 45 is attached to the back side of the copper plate 41, and a copper foil wiring 46 is formed on the insulating material 45. After the solder resists 44 and 47 are applied to the necessary portions of the copper foil wirings 43 and 46, the semiconductor chip 48 is fixed to the mounting location 49 by the first mounting process, and the electrodes of the semiconductor chip 48 are bonded to the copper by the bonding wires 52. Connect to the foil wiring 43. Then, a first sealing process is performed, and the electrode surface of the semiconductor chip 48 is sealed with the epoxy resin 53. On the other hand, gold bumps 55 are projected from the electrodes on the electrode surface of the semiconductor chip 56.
[0024]
In the step of FIG. 8B, the gold bump 55 is brought into contact with the land 46a with the electrode surface of the semiconductor chip 56 facing the back surface of the copper plate 41 by the second mounting process, and is connected by the thermocompression bonding method. Further, a liquid resin 57 is injected from the side surface between the electrode surface of the semiconductor chip 56 and the back surface side of the copper plate 41. In the step of FIG. 8C, a second sealing process is performed, and the injected resin 57 is cured by heating, and the electrode surface of the semiconductor chip 56 is sealed. 8D, solder balls 54 are formed on the copper foil wiring 43 on the surface side of the copper plate 41 and on the surface side of the through hole 50. In the step of FIG. In the BGA package of FIG. 7 in which the semiconductor chips 48 and 56 are mounted, not only signals are input to and output from the semiconductor chip 48 via the solder balls 54 and the copper foil wiring 43, but also the solder balls 54, the through holes 50, and the copper. Signals are input to and output from the semiconductor chip 54 via the foil wiring 46.
[0025]
As described above, in the second embodiment, the copper stay wiring 46 and the through hole 50 formed on the back surface side of the copper plate 41 are provided, and the electrodes of the semiconductor chip 46 mounted on the back surface side of the copper plate 41 are provided on the front surface side. Therefore, the solder balls 54 that could not be connected to the semiconductor chip 48 can be used effectively as the terminals of the semiconductor chip 56. Moreover, since the semiconductor chip 48 and the semiconductor chip 56 are mounted on both sides of the copper plate 41, the mounting area when mounted on the mother board can be reduced, and the area of the mother board can also be reduced. Furthermore, since the semiconductor chip 56 is mounted by the gold bumps 55, the connection can be made in a shorter time than in the first embodiment.
[0026]
Third Embodiment FIGS. 9A to 9D are sectional views of a method for manufacturing a BGA package showing a third embodiment of the present invention, and are common to the elements in FIG. 6 of the second embodiment. These elements are denoted by common reference numerals.
[0027]
In the third embodiment, a manufacturing method different from that of the second embodiment for a BGA package similar to that of FIG. 6 will be described. First, in the process of FIG. 9A, pattern formation processing is performed, the insulating material 42 is pasted on the front surface side of the copper plate 41, the copper foil wiring 43 is formed thereon, and the insulating material 45 is formed on the back surface side of the copper plate 41. The copper foil wiring 46 is formed on the insulating material 45 and the through holes 50 are also formed in the base material 41. Solder resists 44 and 47 are applied to necessary portions of the copper foil wirings 43 and 46. Further, a through hole forming process is performed, and a hole 60 penetrating from the front surface side to the back surface side of the copper plate 41 is formed at the center of the planned mounting position of the semiconductor chip 56. On the other hand, gold bumps 55 are projected from the electrodes on the electrode surface of the semiconductor chip 56.
[0028]
9B, in the first mounting process, the gold bump 55 is brought into contact with the land 46a with the electrode surface of the semiconductor chip 56 opposed to the back surface of the copper plate 41, and is connected by the thermocompression bonding method. Then, liquid resin 57 is injected between the electrode surface of the semiconductor chip 56 and the back surface side of the substrate 40 through the hole 60. In the step of FIG. 9C, a first sealing process is performed to heat and cure the liquid resin 57 and seal the electrode surface of the semiconductor chip 56.
[0029]
In the step of FIG. 9D, the semiconductor chip 48 is fixed to the mounting location 49 by the second mounting process, and the electrode of the semiconductor chip 48 is connected to the copper foil wiring 43 by the bonding wire 52. Then, a second sealing process is performed, and the electrode surface of the semiconductor chip 48 is sealed with the epoxy resin 53. 9E, solder balls 54 are formed on the copper foil wiring 43 on the surface side of the copper plate 41 and on the surface side of the through holes 50 by a solder ball forming process.
[0030]
As described above, in the third embodiment, the copper stay wiring 46 and the through hole 50 formed on the back surface side of the copper plate 41 are provided and mounted on the back surface side of the copper plate 41 as in the second embodiment. Since the electrodes of the semiconductor chip 46 are connected to the solder balls 54 arranged on the surface side, the solder balls 54 that cannot be connected to the semiconductor chip 48 can be used effectively as terminals of the semiconductor chip 56. Since the semiconductor chip 48 and the semiconductor chip 56 are mounted on both sides of the copper plate 41, the mounting area when mounted on the mother board can be reduced, and the area of the mother board can also be reduced. Furthermore, since the semiconductor chip 56 is mounted by the gold bumps 55, the connection can be made in a shorter time than in the first embodiment. In addition, since the resin 57 is injected from the through hole 60, the resin 57 is uniformly distributed, and the connection reliability of the semiconductor chip 56 is deteriorated due to the expansion and contraction of the resin 57 due to the thermal stress after completion. Can be prevented.
[0031]
Fourth Embodiment FIGS. 10A to 10C are sectional views of a method for manufacturing a BGA package showing a fourth embodiment of the present invention, and are common to the elements in FIG. 6 of the second embodiment. These elements are denoted by common reference numerals. In the third embodiment, a manufacturing method different from that of the second embodiment for a BGA package similar to that of FIG. 6 will be described. First, in the process of FIG. 10A, a pattern forming process is performed, an insulating material 42 is pasted on the front surface side of the copper plate 41, a copper foil wiring 43 is formed thereon, and an insulating material 45 is formed on the back surface side of the copper plate 41. The copper foil wiring 46 is formed on the insulating material 45 and the through holes 50 are also formed in the base material 41. Solder resists 44 and 47 are applied to necessary portions of the copper foil wirings 43 and 46. Here, by the first mounting process, the semiconductor chip 48 is fixed to the mounting portion 49, and the electrode of the semiconductor chip 48 is connected to the copper foil wiring 43 by the bonding wire 52. Then, a first sealing process is performed, and the electrode surface of the semiconductor chip 48 is sealed with the epoxy resin 53. On the other hand, a gold bump 55 is projected from the electrode on the electrode surface of the semiconductor chip 56, and a resin 57 formed in a tape shape is prepared.
[0032]
In the step of FIG. 10B, a tape-like resin 57 is placed on the mounting area of the semiconductor chip 56 on the back surface side of the substrate 40 by a tape placement process, followed by a second placement process. The gold bump 55 is brought into contact with the land 46a with the electrode surface of the semiconductor chip 56 opposed to the back surface of the copper plate 41, and is connected by a thermocompression bonding method. At this time, the second sealing process is performed simultaneously, and the tape-shaped resin 57 is heated and melted and cured. Therefore, the electrode surface of the semiconductor chip 56 is sealed. 10C, solder balls 54 are formed on the copper foil wiring 43 on the surface side of the copper plate 41 and on the surface side of the through hole 50. In the step of FIG.
[0033]
As described above, in the fourth embodiment, the copper stay wiring 46 and the through hole 50 formed on the back surface side of the copper plate 41 are provided as in the second and third embodiments, and the back surface of the copper plate 41 is provided. Since the electrodes of the semiconductor chip 46 mounted on the side are connected to the solder balls 54 arranged on the front surface side, the solder balls 54 can be used effectively as terminals of the semiconductor chip 56, and the mounting area when mounted on the motherboard And the area of the motherboard can be reduced. In addition, since the semiconductor chip 56 is mounted by the gold bumps 55, the connection can be made in a shorter time than in the first embodiment. Furthermore, since the semiconductor chip 56 can be sealed simultaneously with the connection of the bumps 55, it can be sealed in a shorter time than in the second and third embodiments.
[0034]
Fifth Embodiment FIG. 11 is a sectional view of a BGA package showing a fifth embodiment of the present invention. FIGS. 12A and 12B are views showing a substrate 70 which is a base of the BGA package of FIG. 11, and common elements to those in FIG. 11 are denoted by common reference numerals. The base plate 70 of this BGA package uses a copper plate 71 similar to that of the first embodiment as a base material, and an insulating material 72 having a thickness of 10 to 30 μm is pasted on the surface side of the copper plate 71. Yes. On the insulating material 72, a copper foil wiring 73 which is a first wiring pattern having a thickness of 12 to 35 μm is formed. An upper portion of the copper foil wiring 73 is coated with a solder resist 74 leaving a part.
[0035]
As shown in FIG. 12B, an insulating material 75 made of polyimide or the like having a thickness of 10 to 30 μm is attached to the back surface side of the copper plate 71. A second 12 to 35 μm thick second material is attached on the insulating material 75. A copper foil wiring 76 which is a wiring pattern of is formed. On the copper foil wiring 76, a solder resist 77 is applied leaving a part. A mounting portion 79 of the first semiconductor chip 78 is formed in a concave shape on the surface side of the copper plate 71 by die drawing. The copper plate 71 is further formed with a through hole 80 connecting the front surface and the back surface. One end of the copper foil wiring 73 is a bonding post 73a connected to the bonding wire. One end of the copper foil wiring 76 on the back surface side is a solder ball connecting land 76a. For example, the land 76a is coated with a heat-resistant preflux, for example.
[0036]
The other end of the copper foil wiring 76 is connected to the through hole 80. For example, an insulating paste 81 is applied to the bottom of the mounting location 79, and the first semiconductor chip 78 is mounted on the mounting location 79 with the back surface opposite to the electrode surface facing. The electrode of the semiconductor chip 78 and the copper foil wiring 73 are connected by a bonding wire 82 as a first connecting member, and the cavity portion on which the semiconductor chip 78 is mounted is formed by an epoxy resin 83 of a first sealing resin. It is sealed. A plurality of solder balls 84 are arranged, for example, in a lattice pattern on the surface side of the substrate 80. Solder balls 84 are formed in the openings of the solder resists 77 of the copper foil wirings 73, and the through holes 80 are also connected to the solder balls 84.
[0037]
On the back side of the substrate 70 as described above, a semiconductor device 86 such as a chip size package in which only the solder balls 85 serving as the second connection members are exposed from the electrode surface is mounted. A terminal of the semiconductor device 86 is connected to a land 76 a of the copper foil wiring 76 by a solder ball 85. When manufacturing such a BGA package, the solder balls 85 of the semiconductor device 86 are heated and reflowed to connect the terminals of the semiconductor device 86 to the lands 76a of the copper foil wiring 76. Finally, the solder balls 84 are connected. By forming, deformation of the solder ball 84 is prevented.
[0038]
As described above, in the fifth embodiment, the copper stay wiring 76 and the through hole 80 formed on the back surface side of the copper plate 71 are provided, and the terminals of the semiconductor device 86 mounted on the back surface side of the copper plate 71 are provided on the front surface side. Since the solder balls 84 connected to the semiconductor chip 78 are connected, the solder balls 84 that cannot be connected to the semiconductor chip 78 can be used effectively as terminals of the semiconductor device 86. In addition, since the semiconductor device 86 is sealed in advance, the resin 57 that is necessary in the second to fourth embodiments is unnecessary, and the member cost can be reduced. In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible. For example, in the first, second, and fourth embodiments, the semiconductor chips 28 and 48 on the front surface side of the substrates 20 and 40 are mounted earlier than the semiconductor chips 36 and 56. It may be installed.
[0039]
【The invention's effect】
As described in detail above, according to the first to seventh inventions, the through hole formed in the base material and the second wiring pattern formed on the back surface side of the base material, A first semiconductor chip is mounted on the front surface side of the material, a second semiconductor chip or semiconductor device is mounted on the back surface side of the base material, and electrodes or terminals of the second semiconductor chip or semiconductor device are connected to the second wiring. Since the solder ball is connected via the pattern and the through hole, the solder ball that cannot be connected to the first semiconductor chip, that is, the surplus terminal can be effectively used as the terminal of the second semiconductor chip or the semiconductor device. . The mounting area when mounted on the motherboard can be reduced, and the area of the motherboard can also be reduced.
[0040]
According to the eighth to twelfth inventions, the first semiconductor chip is mounted on the front surface of the substrate, the second semiconductor chip is mounted on the back surface of the substrate, and signals of the first and second semiconductor chips are input. Since the output is performed both by the first and second external electrodes formed on the surface of the substrate, the mounting area when mounted on the motherboard can be reduced, and the area of the motherboard can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a BGA package showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing an example of a conventional BGA package.
FIG. 3 is a cross-sectional view showing another example of a conventional BGA package.
4 is an explanatory diagram of a problem of the BGA package of FIGS. 2 and 3. FIG.
FIG. 5 is a diagram showing a substrate 20 that is a base of the BGA package of FIG. 1;
FIG. 6 is a cross-sectional view of a BGA package showing a second embodiment of the present invention.
7 is a diagram showing a substrate 40 that is a base of the BGA package of FIG. 6;
8 is a cross-sectional view showing an outline of a manufacturing process of the BGA package of FIG. 6;
FIG. 9 is a cross-sectional view of a method for manufacturing a BGA package showing a third embodiment of the present invention.
FIG. 10 is a cross-sectional view of a method for manufacturing a BGA package showing a fourth embodiment of the present invention.
FIG. 11 is a cross-sectional view of a BGA package showing a fifth embodiment of the present invention.
12 is a diagram showing a substrate 70 which is a base of the BGA package of FIG. 11. FIG.
[Explanation of symbols]
21, 41, 71 Copper plate
23, 26, 43, 46, 73, 76 Copper foil wiring
28, 36, 48, 56 Semiconductor chip
30, 50, 80 Through hole
32, 37, 42, 82 Bonding wire
34, 54, 84 Solder balls
60 Through hole
86 Semiconductor devices

Claims (5)

表面と裏面とを有し、複数の導電性スルーホールが設けられた基板を準備し、
1の配線と、前記スルーホールと接続する第2の配線とを前記表面上に形成し、
記スルーホールと接続する第3の配線を前記裏面上に形成し、
前記表面に第1の半導体チップを搭載し、
前記第1の半導体チップと前記第1の配線とを電気的に接続し、
前記裏面に第2の半導体チップを搭載し、
前記第2の半導体チップと前記第3の配線とを電気的に接続し、
前記第1の配線と電気的に接続される前記第1の外部電極と、前記第2の配線と電気的に接続され、前記基板のコーナー部近傍に位置する前記第2の外部電極とを、格子状の複数電極列を構成するよう形成することを特徴とする半導体装置の製造方法。
And a front surface and a back surface, and providing a substrate conductive through holes multiple is provided,
A first wiring and a second wiring connected with said through hole is formed on said surface,
A third wiring to be connected before SL through hole is formed on the back surface,
A first semiconductor chip is mounted on the surface ;
Electrically connecting the first semiconductor chip and the first wiring;
A second semiconductor chip is mounted on the back surface ;
Electrically connecting the second semiconductor chip and the third wiring;
The first external electrode that is electrically connected to the first wiring, and the second external electrode that is electrically connected to the second wiring and located near a corner of the substrate, A method of manufacturing a semiconductor device , comprising forming a plurality of grid-like electrode arrays.
前記基板は銅で構成され、前記基板の前記表面には凹部が設けられ、前記裏面には前記凹部に対応する凸部が設けられ、前記第1の半導体チップは前記凹部内に配置され、前記第2の半導体チップは前記凸部上に配置されていることを特徴とする請求項1記載の半導体装置の製造方法。The substrate is made of copper, a concave portion is provided on the front surface of the substrate, a convex portion corresponding to the concave portion is provided on the back surface, and the first semiconductor chip is disposed in the concave portion, The method of manufacturing a semiconductor device according to claim 1, wherein the second semiconductor chip is disposed on the convex portion . 前記基板は、前記凸部と凹部とを貫通する貫通孔を有し、前記第2の半導体チップを搭載する際に、前記貫通孔から前記基板と前記第2の半導体チップとの間に樹脂を注入することを含む請求項記載の半導体装置の製造方法。The substrate has a through-hole penetrating the convex portion and the concave portion, and when mounting the second semiconductor chip, a resin is inserted between the substrate and the second semiconductor chip from the through-hole. The method of manufacturing a semiconductor device according to claim 2 , comprising implanting. 前記第2の半導体チップを搭載する際に、前記基板と前記第2の半導体チップとの間に樹脂を注入することを含む請求項1〜3のいずれか記載の半導体装置の製造方法。4. The method of manufacturing a semiconductor device according to claim 1, further comprising injecting a resin between the substrate and the second semiconductor chip when mounting the second semiconductor chip. 5. 前記第2の半導体チップを搭載する際に、前記基板と前記第2の半導体チップとの間にテープ状の樹脂を介在させることを含む請求項1〜3のいずれか記載の半導体装置の製造方法。The method for manufacturing a semiconductor device according to any one of claims 1 to 3, further comprising interposing a tape-like resin between the substrate and the second semiconductor chip when mounting the second semiconductor chip. .
JP2003198678A 2003-07-17 2003-07-17 Manufacturing method of semiconductor device Expired - Fee Related JP3903025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003198678A JP3903025B2 (en) 2003-07-17 2003-07-17 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003198678A JP3903025B2 (en) 2003-07-17 2003-07-17 Manufacturing method of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP30249799A Division JP3485507B2 (en) 1999-10-25 1999-10-25 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2004158825A JP2004158825A (en) 2004-06-03
JP3903025B2 true JP3903025B2 (en) 2007-04-11

Family

ID=32821706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003198678A Expired - Fee Related JP3903025B2 (en) 2003-07-17 2003-07-17 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3903025B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2701589B2 (en) * 1991-06-26 1998-01-21 日本電気株式会社 Semiconductor device and manufacturing method thereof
JPH05226797A (en) * 1992-02-14 1993-09-03 Mitsubishi Plastics Ind Ltd Laminated metallic substrate
JPH1079405A (en) * 1996-09-04 1998-03-24 Hitachi Ltd Semiconductor device and electronic component mounting the same
JPH1093013A (en) * 1996-09-17 1998-04-10 Seiko Epson Corp Semiconductor device
JPH10270497A (en) * 1997-03-27 1998-10-09 Sumitomo Bakelite Co Ltd Semiconductor element fixing method
JPH10270477A (en) * 1997-03-27 1998-10-09 Hitachi Ltd Manufacture of semiconductor package
JPH1174421A (en) * 1997-08-30 1999-03-16 Mitsui High Tec Inc Composite semiconductor device
JPH11233571A (en) * 1998-02-12 1999-08-27 Hitachi Ltd Semiconductor device, underfill material, and thermosetting film material
JPH11251360A (en) * 1998-03-04 1999-09-17 Toshiba Corp Semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JP2004158825A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP3485507B2 (en) Semiconductor device
US6975035B2 (en) Method and apparatus for dielectric filling of flip chip on interposer assembly
US7534660B2 (en) Methods for assembly and packaging of flip chip configured dice with interposer
US7531906B2 (en) Flip chip packaging using recessed interposer terminals
JP2003522401A (en) Stacked integrated circuit package
JP2002353398A (en) Semiconductor device
TWI353046B (en) Land grid array semiconductor device packages, ass
US6489668B1 (en) Semiconductor device and method for manufacturing the same
JP3593833B2 (en) Semiconductor device
JP3228339B2 (en) Semiconductor device and method of manufacturing the same
JP2001085603A (en) Semiconductor device
JP3903025B2 (en) Manufacturing method of semiconductor device
JP3334958B2 (en) Semiconductor package and method of manufacturing semiconductor package
JP3874115B2 (en) Semiconductor device
JPH11163054A (en) Structure of semiconductor device and its manufacture
JPH09148482A (en) Semiconductor device
JP4371238B2 (en) Semiconductor device
JP3527589B2 (en) Semiconductor device package and method of manufacturing the same
JPH1131713A (en) Bga semiconductor device using film carrier tape
JPH0358455A (en) Semiconductor package
JP2000058581A (en) Semiconductor device and its manufacture
JP3910937B2 (en) Semiconductor device
JP3099767B2 (en) Electronic component assembly and method of manufacturing the same
KR101185857B1 (en) Ball grid array type stack package and multi package using of the same
JP3063733B2 (en) Semiconductor package

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060923

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060929

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees