JP3902845B2 - Airflow classifier - Google Patents

Airflow classifier Download PDF

Info

Publication number
JP3902845B2
JP3902845B2 JP30422697A JP30422697A JP3902845B2 JP 3902845 B2 JP3902845 B2 JP 3902845B2 JP 30422697 A JP30422697 A JP 30422697A JP 30422697 A JP30422697 A JP 30422697A JP 3902845 B2 JP3902845 B2 JP 3902845B2
Authority
JP
Japan
Prior art keywords
classification
powder
cover
conical
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30422697A
Other languages
Japanese (ja)
Other versions
JPH11138103A (en
Inventor
洋史 森本
望 織田
弘 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pneumatic Manufacturing Co Ltd
Original Assignee
Nippon Pneumatic Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pneumatic Manufacturing Co Ltd filed Critical Nippon Pneumatic Manufacturing Co Ltd
Priority to JP30422697A priority Critical patent/JP3902845B2/en
Publication of JPH11138103A publication Critical patent/JPH11138103A/en
Application granted granted Critical
Publication of JP3902845B2 publication Critical patent/JP3902845B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、複写機に用いられる現像用トナー等の粉体を微粉と粗粉とに遠心分離する気流分級機に関するものである。
【0002】
【従来の技術】
この種の気流分級機として、図4に示したものが従来から知られている。この気流分級機は、分級カバー30と分級板31間に形成された分級室32の外周に、角度調整自在に設けられた複数のルーバー33を環状に配置して隣接するルーバー33間に二次エアを分級室32内に旋回流入させる流入路を設け、上記分級カバー30上には粉体供給筒34を配置し、その粉体供給筒34の内周下部と分級カバー30の外周間に粉体供給口35を形成している。
【0003】
また、分級板31の中心部に微粉排出筒36を接続し、かつ分級板31の外周囲に粗粉排出口37を設けている。
【0004】
上記気流分級機においては、微粉排出筒36にブロワーの吸引力を付与する状態において、粉体供給筒34内の外周上部に粉体と圧縮エアの固気混合流体を供給し、上記粉体供給筒34内を旋回しつつ下降する固気混合流体を粉体供給口35から分級室32内に供給して、ルーバー33間の流入路から分級室32内に流入する二次エアにより固気混合流体の旋回速度を高めて粉体を遠心分離し、分級室32の中心部に移行する微粉を微粉排出筒36から排出し、分級室32内の外周部で旋回する粗粉を粗粉排出口37から排出させるようにしている。
【0005】
上記の気流分級機を用いる粉体の分級において、粉体の分級点は、分級室32において旋回する気流の旋回速度に影響を受け、上記旋回速度を大きくすることによって分級点を小さくし得ることは従来から知られている。
【0006】
ここで、分級点とは、回収された微粉の粒度分布曲線と粗粉の粒度分布曲線の交点での粒子径をいう。
【0007】
分級室32における気流の旋回速度は、分級室32内に旋回流入させる固気混合流体の供給圧を高くすることによって高めることができるが、供給圧の圧力上昇に限度がある。
【0008】
そこで、この種気流分級機においては、固気混合流体の供給圧を一定とする状態においてルーバー33の角度を調整し、分級室32内に流入する二次エアの流速の変化により分級室32内における気流の旋回速度を調整しており、微粉を製品とする粉体の分級に際しては、ルーバー33間に形成される流通路を小さくして分級室32内における気流の旋回速度を高め、粉体の分級点を下げるようにしている。
【0009】
ここで、図4に示す気流分級機の分級室32における気流の旋回速度を測定したところ、図5に示す結果を得た。
【0010】
試験に使用した気流分級機の各部の寸法を表1に示す。
【0011】
【表1】

Figure 0003902845
【0012】
ここで、D1 =分級室32の内径
2 =分級カバー30の外径
3 =分級板31の外径
1 =微粉排出筒36の内径
1 =ルーバー33の高さ
α1 ,β1 =分級カバー30の円錐形下面および分級板31の円錐形上面の傾斜角度
条件として、微粉排出筒36に−0.3kg/cm2 の吸引力を付与し、かつ粉体供給筒34内に2kg/cm2 の高圧エアを噴射した。
【0013】
図5の(イ) の速度曲線はルーバー33の間隔を1mmとしたときの測定結果を示し、(ロ) 、(ハ) 、(ニ) の速度曲線は上記間隔を3mm、5mm、7mmとしたときの測定結果を示す。
【0014】
【発明が解決しようとする課題】
ところで、従来の気流分級機においては、図4に示すように、分級室32において気流を高速で旋回させることができるため、ガラス粉やトナー等の粉体においては、ミクロンオーダの分級を可能とすることができるという特徴を有するが、現像用トナーにおいては粒子径が小さい程、鮮明な画像が得られるため、分級点をさらに低くして欲しいという要求がある。
【0015】
本件の発明者等は、分級点と相関関係にある気流の旋回速度を高めるため種々の実験を行なったところ、分級カバーにおける円錐形下面の傾斜角を大きくすることにより、分級室内での気流の旋回速度を高めることができることを見出したのである。
【0016】
この発明の課題は、気流分級機における粉体の分級に際し、その分級点の低下を図ることである。
【0017】
【課題を解決するための手段】
上記の課題を解決するために、この発明においては、分級カバーと分級板とを上下に設け、分級カバーの下面および分級板の上面を中心に向けて高くなる円錐形とし、その円錐形下面と円錐形上面間に形成された分級室の外周部に複数のルーバーを環状に配置して隣接するルーバー間に二次エアの流入路を設け、上記分級室内に供給された粉体を高速度で旋回させて微粉と粗粉とに遠心分離し、微粉を分級板の中心部に接続された微粉排出筒から排出し、粗粉を分級板の外周囲に形成された粗粉排出口から排出させるようにした気流分級機において、前記分級カバーにおける円錐形下面の水平線となす傾斜角を、分級板における円錐形上面の水平線となす傾斜角より大きくし、前記分級カバーの円錐形下面の水平線となす傾斜角を45°乃至75°の範囲とした構成を採用している。
【0018】
【発明の実施の形態】
以下、この発明の実施の形態を図1乃至図3に基づいて説明する。
図1に示すように、ケーシング1は、上部ケーシング2と下部ケーシング3とから成り、上部ケーシング2の内部には分級カバー4と分級板5とが上下に設けられている。
【0019】
分級カバー4の下面4aおよび分級板5の上面5aは、中心に向けて高くなる円錐形とされ、分級カバー4における円錐形下面4aの傾斜角αは、分級板5における円錐形上面5aの傾斜角βより大きくなっている。
【0020】
上部ケーシング2は、上下に分割され、その分割面間に複数のルーバー7が分級室6の周方向に間隔をおいて環状に配置されている。
【0021】
ルーバー7は図では省略したが、角度調整自在とされ、隣接するルーバー7間に流通路が形成されている。この流通路は分級室6内において旋回される粉体の旋回方向に向けて分級室6内に二次エアを流入させるようになっている。
【0022】
分級板5の中心部には微粉排出筒8が接続され、この微粉排出筒8は下部ケーシング3を貫通している。また、分級板5の外周と上部ケーシング2の内周面間に環状の粗粉排出口9が設けられている。
【0023】
上部ケーシング2の上部には粉体供給筒10が接続され、その粉体供給筒10の内周下部と分級カバー4の外周間に粉体供給口11が形成されている。粉体供給筒10は、外周上部に接続方向に延びる粉体導入筒12を有し、その粉体導入筒12に粉体と圧縮エアの固気混合流体が供給されるようになっている。
【0024】
実施の形態で示す気流分級機は上記の構造から成り、粉体の供給に際しては、微粉排出筒8内に吸引力を付与する状態で粉体導入筒12から粉体供給筒10内に粉体と圧縮エアの固気混合流体を供給する。
【0025】
粉体供給筒10内に供給された固気混合流体は、粉体供給筒10内を旋回しつつ下降して分級室6内に流入し、その分級室6内で旋回する。
【0026】
このとき、ルーバー7間の流通路から分級室6内に二次エアが流入し、その二次エアによって分級室6で旋回する粉体は加速され、粉体は微粉と粗粉とに遠心分離される。
【0027】
微粉は、分級室6の中心に向けて移動して微粉排出筒8から排出される。一方、粗粉は分級室6の外周部に向けて移動し、粗粉排出口9から下部ケーシング3内に排出される。
【0028】
上記の構成から成る気流分級機と図4に示す気流分級機とは分級カバー4における円錐形下面4aの傾斜角αのみが相違し、実施の形態では、上記傾斜角αを分級板5における円錐形上面5aの傾斜角βより大きくしている。
【0029】
上記の構成を採用することによって、粉体の分級点がどのように変化するかを調べるため、炭酸カルシウムを分級し、その分級点を測定したところ、表2に示す結果を得た。
【0030】
試験条件として、粉体導入筒12に2kg/cm2 の圧縮エアを供給し、炭酸カルシウムの供給量を5kg/hrとした。また、微粉排出筒8内に−0.3kg/cm3 の吸引力を付与した。
【0031】
また、気流分級機における分級カバー4の円錐形下面4aの傾斜角αは60°としており、他の各部の寸法は、図4に示す気流分級機と同じであるため、その寸法の記載を省略する。
【0032】
なお、比較として、図4に示す気流分級機を用い、同じ試験条件でもって炭酸カルシウムを分級した際の分級点の測定結果を表2に示す。
【0033】
【表2】
Figure 0003902845
【0034】
上記表2から理解し得るように、実施の形態における気流分級機においては分級点を小さくすることができる。
【0035】
図2および図3は、この発明に係る気流分級機の他の例を示す。
図2に示す気流分級機においては、分級カバー4を円錐形として分級室6の上部を全体にわたって閉塞している。また、隣接するルーバー7間に粉体噴射ノズル13を設け、その粉体噴射ノズル13から分級室6内の外周部接線方向に粉体と圧縮エアの固気混合流体を供給するようにしている。
【0036】
上記の構成から成る気流分級機の分級カバー4における円錐形下面4aの傾斜角αを24°、45°、60°とした3種類の気流分級機を製作してガラス粉を分級し、その分級点を測定したところ、表3に示す結果を得た。
【0037】
試験条件として、ガラス粉の供給量:5kg/hr、供給圧:2kg/cm2 、微粉排出筒8内の吸引力:−0.3kg/cm2 とした。
【0038】
【表3】
Figure 0003902845
【0039】
上記表3から、分級カバー4の円錐形下面4aの傾斜角αを大きくすることによって分級点を小さくすることが理解できるが、このとき、粒子に働く遠心力は常に水平方向に働いており、上記傾斜角を大きくすると、分級カバー4の円錐形下面4aに対する粒子の接触力が大きくなり、分級カバー4への付着、摩耗が促進される可能性が高くなるため、75°以下とするのが好ましい。
【0040】
図3に示す気流分級機においては、分級室6の上部を全体にわたって閉塞する分級カバー4の中心部上に粉体供給装置14を設けている。粉体供給装置14は、分級カバー4の中心部に接続した粉体供給筒15の上部にホッパ16を接続し、そのホッパ16内に設けたエア噴射ノズル17から粉体供給筒15内に圧縮エアを噴射し、ホッパ16内の粉体を粉体供給筒15内に吸引して送るようにしている。
【0041】
また、粉体供給筒15にはエア噴射孔18を形成し、そのエア噴射孔18から粉体供給筒15内の外周部に向けて圧縮エアを噴射し、その圧縮エアによって粉体供給筒15内を下向きに流れる固気混合流体を旋回させるようにしており、その旋回する固気混合流体を粉体供給筒15の下端開口に設けたコーン19の外周に沿って分級室6内に供給している。
【0042】
ここで、気流分級機においては、図5に示すように、分級室において旋回する気流の旋回速度は微粉排出筒8の内径位置より中心側に少し片寄った位置で大きく、外径方向に至るに従って次第に小さくなるため、図3に示す気流分級機のように、分級室6の中心部に固気混合流体を供給することにより、粉体にきわめて大きい分散力を付与することができ、各粒子に大きい旋回力を付与することができる。
【0043】
このため、粉体の分級室6内での凝集を防止し、粉体を効果的に分級することができると共に、分級点を小さくすることができる。
【0044】
因みに、図3に示す気流分級機を用いて炭酸カルシウムの分級を行ない、その分級点を測定したところ、表4に示す結果を得た。
【0045】
ここで、この気流分級機の各部の寸法を表5に示す。
【0046】
試験条件として、エア噴射ノズル17に2kg/cm2 の圧縮エアを供給し、微粉排出筒8に−0.3kg/cm2 の吸引力を付与した。
【0047】
【表4】
Figure 0003902845
【0048】
【表5】
Figure 0003902845
【0049】
ここで、D4 =分級室6の外径
5 =分級板5の外径
2 =微粉排出筒8の内径
2 =ルーバー7の高さ
表4と表2とから、分級カバー4の円錐形下面4aの傾斜角αを分級板5の円錐形上面5aの傾斜角より大きくし、分級室6の中心部上から固気混合流体を供給することにより、粉体の分級点をさらに小さくすることができることがわかる。
【0050】
【発明の効果】
以上のように、この発明においては、分級カバーの円錐形下面の傾斜角を分級板の円錐形上面の傾斜角より大きくしたので、分級点を小さくすることができると共に、分級された微粉の最大粒子径の縮小化を図ることができる。
【図面の簡単な説明】
【図1】この発明に係る気流分級機の実施の形態を示す縦断正面図
【図2】この発明に係る気流分級機の他の実施の形態を示す縦断正面図
【図3】この発明に係る気流分級機のさらに他の実施の形態を示す縦断正面図
【図4】従来の気流分級機に示す縦断正面図
【図5】同上の気流分級機における分級室内の各半径位置での接線方向流速の測定結果を示すグラフ
【符号の説明】
4 分級カバー
4a 円錐形下面
5 分級板
5a 円錐形上面
6 分級室
7 ルーバー
8 微粉排出筒
9 粗粉排出口
14 粉体供給装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an airflow classifier that centrifuges powders such as developing toner used in a copying machine into fine and coarse powders.
[0002]
[Prior art]
As this type of air classifier, the one shown in FIG. 4 is conventionally known. In this airflow classifier, a plurality of louvers 33 provided in an angle-adjustable manner are arranged on the outer periphery of a classification chamber 32 formed between a classification cover 30 and a classification plate 31 to form a secondary between adjacent louvers 33. An inflow passage through which air is swirled into the classification chamber 32 is provided, and a powder supply cylinder 34 is disposed on the classification cover 30, and a powder is provided between the lower inner periphery of the powder supply cylinder 34 and the outer periphery of the classification cover 30. A body supply port 35 is formed.
[0003]
A fine powder discharge cylinder 36 is connected to the center of the classification plate 31, and a coarse powder discharge port 37 is provided on the outer periphery of the classification plate 31.
[0004]
In the airflow classifier, in the state in which the suction force of the blower is applied to the fine powder discharge cylinder 36, a solid-gas mixed fluid of powder and compressed air is supplied to the upper periphery of the powder supply cylinder 34, and the powder supply A solid-gas mixed fluid descending while swirling in the cylinder 34 is supplied from the powder supply port 35 into the classification chamber 32, and solid-gas mixing is performed by secondary air flowing into the classification chamber 32 from the inflow path between the louvers 33. The powder is centrifuged by increasing the swirling speed of the fluid, the fine powder moving to the center of the classification chamber 32 is discharged from the fine powder discharge cylinder 36, and the coarse powder rotating at the outer periphery of the classification chamber 32 is discharged into the coarse powder discharge port. It is made to discharge from 37.
[0005]
In the classification of powder using the airflow classifier, the powder classification point is affected by the swirling speed of the airflow swirling in the classification chamber 32, and the classification point can be reduced by increasing the swirling speed. Is conventionally known.
[0006]
Here, the classification point refers to the particle diameter at the intersection of the recovered fine particle size distribution curve and the coarse particle size distribution curve.
[0007]
The swirling speed of the airflow in the classification chamber 32 can be increased by increasing the supply pressure of the solid-gas mixed fluid swirled into the classification chamber 32, but there is a limit to the increase in the supply pressure.
[0008]
Therefore, in this kind of airflow classifier, the angle of the louver 33 is adjusted in a state where the supply pressure of the solid-gas mixed fluid is constant, and the inside of the classification chamber 32 is changed by the change in the flow velocity of the secondary air flowing into the classification chamber 32. The airflow swirl speed in the classification chamber 32 is increased by reducing the flow path formed between the louvers 33 when classifying the powder using fine powder as a product. I try to lower the classification point.
[0009]
Here, when the swirling speed of the airflow in the classifying chamber 32 of the airflow classifier shown in FIG. 4 was measured, the result shown in FIG. 5 was obtained.
[0010]
Table 1 shows the dimensions of each part of the air classifier used in the test.
[0011]
[Table 1]
Figure 0003902845
[0012]
Where D 1 = inner diameter D 2 of the classification chamber 32 = outer diameter of the classification cover 30 D 3 = outer diameter of the classification plate 31 d 1 = inner diameter H 1 of the fine powder discharge cylinder 36 = height α 1 , β of the louver 33 1 = As a tilt angle condition for the conical lower surface of the classification cover 30 and the conical upper surface of the classification plate 31, a suction force of −0.3 kg / cm 2 is applied to the fine powder discharge tube 36, and the powder supply tube 34 2 kg / cm 2 of high-pressure air was injected.
[0013]
The speed curve of (a) in FIG. 5 shows the measurement results when the interval between the louvers 33 is 1 mm, and the speed curves of (b), (c) and (d) are the above intervals of 3 mm, 5 mm and 7 mm. The measurement result is shown.
[0014]
[Problems to be solved by the invention]
By the way, in the conventional air classifier, as shown in FIG. 4, since the air current can be swirled at high speed in the classification chamber 32, it is possible to classify micron order powders such as glass powder and toner. However, in developing toners, the smaller the particle size, the clearer the image, the higher the classification point.
[0015]
The inventors of the present invention conducted various experiments to increase the swirling speed of the airflow correlated with the classification point. By increasing the inclination angle of the conical bottom surface of the classification cover, the airflow in the classification chamber was increased. They found that the turning speed could be increased.
[0016]
The subject of this invention is aiming at the fall of the classification point in the case of the classification of the powder in an airflow classifier.
[0017]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention, a classification cover and a classification plate are provided above and below to form a conical shape with the lower surface of the classification cover and the upper surface of the classification plate becoming higher toward the center. A plurality of louvers are annularly arranged on the outer periphery of the classification chamber formed between the conical upper surfaces, and an inflow path for secondary air is provided between adjacent louvers, and the powder supplied into the classification chamber is fed at a high speed. It is swirled and centrifuged into fine powder and coarse powder, fine powder is discharged from the fine powder discharge cylinder connected to the center of the classification plate, and coarse powder is discharged from the coarse powder discharge port formed on the outer periphery of the classification plate In the airflow classifier configured as described above, the inclination angle formed with the horizontal line of the conical lower surface of the classification cover is made larger than the inclination angle formed with the horizontal line of the conical upper surface of the classification plate so as to be the horizontal line of the conical lower surface of the classification cover. Inclination angle from 45 ° to It is employed in a range of 5 ° to the configuration.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3.
As shown in FIG. 1, the casing 1 includes an upper casing 2 and a lower casing 3, and a classification cover 4 and a classification plate 5 are provided vertically inside the upper casing 2.
[0019]
The lower surface 4a of the classification cover 4 and the upper surface 5a of the classification plate 5 have a conical shape that increases toward the center, and the inclination angle α of the conical lower surface 4a of the classification cover 4 is the inclination of the conical upper surface 5a of the classification plate 5. It is larger than the angle β.
[0020]
The upper casing 2 is divided into upper and lower parts, and a plurality of louvers 7 are annularly arranged between the divided surfaces at intervals in the circumferential direction of the classification chamber 6.
[0021]
Although the louver 7 is omitted in the drawing, the angle can be adjusted, and a flow passage is formed between adjacent louvers 7. The flow passage is configured to allow the secondary air to flow into the classification chamber 6 in the direction in which the powder swirled in the classification chamber 6 rotates.
[0022]
A fine powder discharge cylinder 8 is connected to the center of the classification plate 5, and this fine powder discharge cylinder 8 penetrates the lower casing 3. An annular coarse powder discharge port 9 is provided between the outer periphery of the classification plate 5 and the inner peripheral surface of the upper casing 2.
[0023]
A powder supply cylinder 10 is connected to the upper part of the upper casing 2, and a powder supply port 11 is formed between the lower inner periphery of the powder supply cylinder 10 and the outer periphery of the classification cover 4. The powder supply cylinder 10 has a powder introduction cylinder 12 extending in the connecting direction at the upper outer periphery, and a solid-gas mixed fluid of powder and compressed air is supplied to the powder introduction cylinder 12.
[0024]
The airflow classifier shown in the embodiment has the above-described structure, and when supplying powder, the powder is introduced from the powder introduction cylinder 12 into the powder supply cylinder 10 with a suction force applied to the fine powder discharge cylinder 8. And a solid-air mixed fluid of compressed air.
[0025]
The solid-gas mixed fluid supplied into the powder supply cylinder 10 descends while rotating in the powder supply cylinder 10 and flows into the classification chamber 6, and rotates in the classification chamber 6.
[0026]
At this time, secondary air flows into the classification chamber 6 from the flow path between the louvers 7, and the powder swirling in the classification chamber 6 is accelerated by the secondary air, and the powder is centrifuged into fine powder and coarse powder. Is done.
[0027]
The fine powder moves toward the center of the classification chamber 6 and is discharged from the fine powder discharge cylinder 8. On the other hand, the coarse powder moves toward the outer periphery of the classification chamber 6 and is discharged into the lower casing 3 from the coarse powder discharge port 9.
[0028]
The airflow classifier configured as described above and the airflow classifier shown in FIG. 4 are different only in the inclination angle α of the conical lower surface 4a in the classification cover 4, and in the embodiment, the inclination angle α is set to the cone in the classification plate 5. It is larger than the inclination angle β of the top surface 5a.
[0029]
In order to investigate how the classification point of the powder changes by adopting the above configuration, calcium carbonate was classified and the classification point was measured. The results shown in Table 2 were obtained.
[0030]
As test conditions, 2 kg / cm 2 of compressed air was supplied to the powder introducing cylinder 12 and the supply amount of calcium carbonate was 5 kg / hr. A suction force of −0.3 kg / cm 3 was applied to the fine powder discharge cylinder 8.
[0031]
Further, the inclination angle α of the conical lower surface 4a of the classifying cover 4 in the air classifier is 60 °, and the dimensions of the other parts are the same as those of the air classifier shown in FIG. To do.
[0032]
For comparison, Table 2 shows the measurement results of the classification points when calcium carbonate is classified under the same test conditions using the air classifier shown in FIG.
[0033]
[Table 2]
Figure 0003902845
[0034]
As can be understood from Table 2 above, the classification point can be reduced in the airflow classifier in the embodiment.
[0035]
2 and 3 show another example of the air classifier according to the present invention.
In the airflow classifier shown in FIG. 2, the classification cover 4 is conical and the upper part of the classification chamber 6 is closed over the whole. Further, a powder injection nozzle 13 is provided between adjacent louvers 7, and a solid-gas mixed fluid of powder and compressed air is supplied from the powder injection nozzle 13 in the tangential direction of the outer peripheral portion in the classification chamber 6. .
[0036]
Three types of airflow classifiers with the inclination angle α of the conical lower surface 4a in the classifying cover 4 of the airflow classifier having the above-described configuration being 24 °, 45 °, and 60 ° are manufactured to classify the glass powder, and the classification is performed. When the points were measured, the results shown in Table 3 were obtained.
[0037]
As test conditions, the supply amount of glass powder was 5 kg / hr, the supply pressure was 2 kg / cm 2 , and the suction force in the fine powder discharge cylinder 8 was −0.3 kg / cm 2 .
[0038]
[Table 3]
Figure 0003902845
[0039]
From Table 3 above, it can be understood that the classification point can be reduced by increasing the inclination angle α of the conical lower surface 4a of the classification cover 4, but at this time, the centrifugal force acting on the particles always works in the horizontal direction, When the inclination angle is increased, the contact force of the particles with the conical lower surface 4a of the classification cover 4 increases, and the possibility of adhesion and wear to the classification cover 4 increases. preferable.
[0040]
In the airflow classifier shown in FIG. 3, a powder supply device 14 is provided on the central portion of the classification cover 4 that closes the entire upper portion of the classification chamber 6. The powder supply device 14 has a hopper 16 connected to the upper part of a powder supply cylinder 15 connected to the center of the classification cover 4 and compressed into the powder supply cylinder 15 from an air injection nozzle 17 provided in the hopper 16. Air is injected, and the powder in the hopper 16 is sucked into the powder supply cylinder 15 and sent.
[0041]
An air injection hole 18 is formed in the powder supply cylinder 15, and compressed air is injected from the air injection hole 18 toward the outer periphery of the powder supply cylinder 15, and the powder supply cylinder 15 is generated by the compressed air. The solid-gas mixed fluid flowing downward is swirled, and the swirling solid-gas mixed fluid is supplied into the classification chamber 6 along the outer periphery of the cone 19 provided at the lower end opening of the powder supply cylinder 15. ing.
[0042]
Here, in the airflow classifier, as shown in FIG. 5, the swirling speed of the airflow swirling in the classification chamber is large at a position slightly deviated toward the center side from the inner diameter position of the fine powder discharge cylinder 8, and as it goes in the outer diameter direction. Since it gradually becomes smaller, by supplying a solid-gas mixed fluid to the central part of the classification chamber 6 as in the air classifier shown in FIG. 3, a very large dispersion force can be imparted to the powder, A large turning force can be applied.
[0043]
For this reason, aggregation of the powder in the classification chamber 6 can be prevented, the powder can be classified effectively, and the classification point can be reduced.
[0044]
Incidentally, calcium carbonate was classified using the air classifier shown in FIG. 3, and the classification point was measured. The results shown in Table 4 were obtained.
[0045]
Here, Table 5 shows the dimensions of each part of the air classifier.
[0046]
As a test condition, and supplying compressed air of 2 kg / cm 2 in the air injection nozzle 17, and applying a suction force of -0.3kg / cm 2 to a fine powder discharge tube 8.
[0047]
[Table 4]
Figure 0003902845
[0048]
[Table 5]
Figure 0003902845
[0049]
Here, D 4 = outer diameter of the classification chamber 6 D 5 = outer diameter of the classification plate 5 d 2 = inner diameter H 2 of the fine powder discharge cylinder 8 = height of the louver 7 From Table 4 and Table 2, the classification cover 4 The inclination angle α of the conical lower surface 4a is made larger than the inclination angle of the conical upper surface 5a of the classifying plate 5, and the solid-gas mixed fluid is supplied from the central part of the classification chamber 6, thereby further reducing the classification point of the powder. You can see that you can.
[0050]
【The invention's effect】
As described above, in the present invention, since the inclination angle of the conical lower surface of the classification cover is made larger than the inclination angle of the conical upper surface of the classification plate, the classification point can be reduced and the maximum classified fine powder can be reduced. The particle size can be reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal front view showing an embodiment of an airflow classifier according to the present invention. FIG. 2 is a longitudinal front view showing another embodiment of an airflow classifier according to the present invention. Fig. 4 is a longitudinal front view showing still another embodiment of the air classifier. Fig. 4 is a longitudinal front view showing a conventional air classifier. Fig. 5 is a tangential flow velocity at each radial position in the air classifier. Graph showing the measurement results of [Signs]
4 Classification cover 4a Conical bottom surface 5 Classification plate 5a Conical top surface 6 Classification chamber 7 Louver 8 Fine powder discharge tube 9 Coarse powder discharge port 14 Powder supply device

Claims (2)

分級カバーと分級板とを上下に設け、分級カバーの下面および分級板の上面を中心に向けて高くなる円錐形とし、その円錐形下面と円錐形上面間に形成された分級室の外周部に複数のルーバーを環状に配置して隣接するルーバー間に二次エアの流入路を設け、上記分級室内に供給された粉体を高速度で旋回させて微粉と粗粉とに遠心分離し、微粉を分級板の中心部に接続された微粉排出筒から排出し、粗粉を分級板の外周囲に形成された粗粉排出口から排出させるようにした気流分級機において、前記分級カバーにおける円錐形下面の水平線となす傾斜角を、分級板における円錐形上面の水平線となす傾斜角より大きくし、前記分級カバーの円錐形下面の水平線となす傾斜角を45°乃至75°の範囲としたことを特徴とする気流分級機。A classification cover and a classification plate are provided on the top and bottom, and a conical shape is formed so that the lower surface of the classification cover and the upper surface of the classification plate are raised toward the center, and the outer periphery of the classification chamber formed between the conical lower surface and the conical upper surface. A plurality of louvers are arranged in an annular shape and an inflow path for secondary air is provided between adjacent louvers. The powder supplied into the classification chamber is swirled at a high speed and centrifuged into fine powder and coarse powder. In the airflow classifier that discharges the fine powder from the fine powder discharge cylinder connected to the center of the classification plate and discharges the coarse powder from the coarse powder discharge port formed on the outer periphery of the classification plate, the conical shape in the classification cover The inclination angle formed with the horizontal line of the lower surface is larger than the inclination angle formed with the horizontal line of the conical upper surface of the classification plate, and the inclination angle formed with the horizontal line of the conical lower surface of the classification cover is in the range of 45 ° to 75 °. A featured air classifier. 前記分級カバーの上方に、粉体と圧縮エアの固気混合流体を旋回させ乍ら分級室内の中心部に供給する粉体供給装置を設けたことを特徴とする請求項1に記載の気流分級機。The airflow classification according to claim 1, wherein a powder supply device is provided above the classification cover to supply a solid gas mixed fluid of powder and compressed air to the center of the classification chamber while swirling. Machine.
JP30422697A 1997-11-06 1997-11-06 Airflow classifier Expired - Lifetime JP3902845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30422697A JP3902845B2 (en) 1997-11-06 1997-11-06 Airflow classifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30422697A JP3902845B2 (en) 1997-11-06 1997-11-06 Airflow classifier

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5574899A Division JP3752096B2 (en) 1999-03-03 1999-03-03 Airflow classifier

Publications (2)

Publication Number Publication Date
JPH11138103A JPH11138103A (en) 1999-05-25
JP3902845B2 true JP3902845B2 (en) 2007-04-11

Family

ID=17930533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30422697A Expired - Lifetime JP3902845B2 (en) 1997-11-06 1997-11-06 Airflow classifier

Country Status (1)

Country Link
JP (1) JP3902845B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818807B2 (en) * 2005-05-26 2011-11-16 日本ニューマチック工業株式会社 Airflow classifier and classification plant
JP4907655B2 (en) * 2006-06-13 2012-04-04 日本ニューマチック工業株式会社 Airflow classifier and classification plant
JP4785802B2 (en) 2007-07-31 2011-10-05 株式会社日清製粉グループ本社 Powder classifier
JP4972577B2 (en) 2008-02-15 2012-07-11 株式会社リコー Airflow classifier
CA2629493A1 (en) * 2008-04-18 2009-10-18 Mabe Canada Inc. Clothes dryer with louvre cover
JP5889205B2 (en) 2010-11-16 2016-03-22 株式会社日清製粉グループ本社 Powder classifier
JP5820684B2 (en) * 2011-10-14 2015-11-24 日本ニューマチック工業株式会社 Airflow classifier

Also Published As

Publication number Publication date
JPH11138103A (en) 1999-05-25

Similar Documents

Publication Publication Date Title
JP3752096B2 (en) Airflow classifier
EP0673288B1 (en) Rotor for mechanical air classifiers
JP3902845B2 (en) Airflow classifier
JP4907655B2 (en) Airflow classifier and classification plant
JP2001232296A (en) Classifying device and toner manufacturing method
US4523990A (en) Particulate classifying apparatus
JP2766790B2 (en) Raw material supply device in airflow classifier
JP3752068B2 (en) Airflow classifier
JP2011045819A (en) Powder classifying apparatus
JP4747130B2 (en) Powder classifier
JP7137378B2 (en) Air classifier
JPH031098Y2 (en)
JP3176779B2 (en) Airflow classifier and airflow classification method
JP3185065B2 (en) Collision type air crusher
JP3091289B2 (en) Collision type air crusher
JPH06277629A (en) Spiral flow type air classification machine
JP2967304B2 (en) Classification crusher
KR840001165B1 (en) Sorting device
JP2581135Y2 (en) Classifier structure
JPH01207152A (en) Gaseous flow classifier
JPH051071B2 (en)
JPH06121940A (en) Particulate matter classifier
JPH0534977A (en) Production of electrostatic charge image developing toner
JPH01245869A (en) Pneumatic classifier
JPS5845777Y2 (en) Air flow classifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term