JP3901579B2 - Power generator - Google Patents

Power generator Download PDF

Info

Publication number
JP3901579B2
JP3901579B2 JP2002141039A JP2002141039A JP3901579B2 JP 3901579 B2 JP3901579 B2 JP 3901579B2 JP 2002141039 A JP2002141039 A JP 2002141039A JP 2002141039 A JP2002141039 A JP 2002141039A JP 3901579 B2 JP3901579 B2 JP 3901579B2
Authority
JP
Japan
Prior art keywords
fuel cell
solid oxide
oxide fuel
compressed air
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002141039A
Other languages
Japanese (ja)
Other versions
JP2003328773A (en
Inventor
正 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002141039A priority Critical patent/JP3901579B2/en
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to CA002484988A priority patent/CA2484988A1/en
Priority to AT03723372T priority patent/ATE500630T1/en
Priority to DE60336223T priority patent/DE60336223D1/en
Priority to AU2003230244A priority patent/AU2003230244B2/en
Priority to EP03723372A priority patent/EP1504488B1/en
Priority to PCT/JP2003/005991 priority patent/WO2003097394A2/en
Priority to KR1020047018041A priority patent/KR100558575B1/en
Priority to US10/438,918 priority patent/US7166380B2/en
Publication of JP2003328773A publication Critical patent/JP2003328773A/en
Application granted granted Critical
Publication of JP3901579B2 publication Critical patent/JP3901579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【発明の属する技術分野】
本発明は、ガスタービンエンジンと固体電解質型燃料電池とを一体に備えた発電装置に関する。
【0002】
【従来の技術】
特表2001−516935号公報には、ターボマシンと燃料電池とを組み合わせたハイブリッド電力システムが記載されている。ターボマシンはコンバスタで燃料を燃焼させて発生した高圧ガスでパワータービンを回転させることでジェネレータを駆動して発電を行い、燃料電池はターボマシンのコンプレッサおよび復熱器を通過して加熱された空気と燃料とを反応させて発電を行う。
【0003】
米国特許第6213234号明細書には、ガスタービンエンジンで駆動される燃料電池およびジェネレータを備えた車両が記載されている。車両を駆動するのに必要な最大電力の約50%未満を燃料電池から供給することで、燃料電池を無闇に大型化することなく燃料消費量の節減を図り、また車両の必要電力が小さいときに、燃料電池は必要電力の全てあるいは大部分を効率的に供給する。
【0004】
米国特許第6255010号明細書には、ガスタービンエンジン、燃料電池およびジェネレータを含む発電装置を共通の圧力容器内に収納して加圧状態で運転するものが記載されている。
【0005】
【発明が解決しようとする課題】
ところで、ガスタービンエンジンと固体電解質型燃料電池とを一体に備えた発電装置の燃料消費量を削減して発電効率を向上させるには、その廃熱を有効に利用することが必要であるが、ガスタービンエンジンと固体電解質型燃料電池とを離間して配置したり、ガスタービンエンジンに燃料電池を単純に組み合わるだけでは廃熱を有効に利用することは困難である。
【0006】
本発明は前述の事情に鑑みてなされたもので、ガスタービンエンジンと固体電解質型燃料電池とを一体に備えた発電装置において、廃熱を有効利用して発電効率の向上を図ることを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載された発明によれば、ガスタービンエンジンと固体電解質型燃料電池とを一体に備えた発電装置であって、ガスタービンエンジンはコンプレッサホイール、タービンホイール、熱交換器および燃焼器を含み、コンプレッサホイールは圧縮空気を熱交換器を介して固体電解質型燃料電池および燃焼器に供給し、タービンホイールは固体電解質型燃料電池および燃焼器からの排ガスにより駆動されてコンプレッサホイールを駆動し、熱交換器はタービンホイールからの排ガスとコンプレッサホイールからの圧縮空気との間で熱交換を行うものにおいて、熱交換器、燃焼器および固体電解質型燃料電池をコンプレッサホイールおよびタービンホイールよりなる回転部の軸線上に配置し、タービンホイールと燃焼器との間に固体電解質型燃料電池あるいは燃焼器からタービンホイールに向けて排ガスを排出する空間を形成し、この空間の半径方向外側に熱交換器および固体電解質型燃料電池を配置したことを特徴とする発電装置が提案される。
【0008】
上記構成によれば、コンプレッサホイールおよびタービンホイールよりなる回転部の軸線上に熱交換器、燃焼器および固体電解質型燃料電池を配置し、固体電解質型燃料電池あるいは燃焼器からタービンホイールに向けて排ガスを排出する空間の半径方向外側に熱交換器および固体電解質型燃料電池を配置したので、前記空間に排出される固体電解質型燃料電池あるいは燃焼器の廃熱を熱交換器および固体電解質型燃料電池で効果的に回収して外部への熱逃げを抑制し、発電装置の発電効率を向上させて燃料消費量を削減することができる。
【0009】
また請求項2に記載された発明によれば、請求項1の構成に加えて、コンプレッサホイールから熱交換器に圧縮空気を導く第1圧縮空気通路を、タービンホイールから熱交換器に排ガスを導く排ガス通路の半径方向外側に配置するとともに、熱交換器から固体電解質型燃料電池に圧縮空気を導く第2圧縮空気通路を前記空間の半径方向外側に配置したことを特徴とする発電装置が提案される。
【0010】
上記構成によれば、コンプレッサホイールから熱交換器に圧縮空気を導く第1圧縮空気通路をタービンホイールから熱交換器に排ガスを導く排ガス通路の半径方向外側に配置したので、比較的高温の排ガスが通る排ガス通路から逃げる熱を比較的低温の圧縮空気が通る圧縮空気通路で回収して発電効率を一層高めることができ、更に熱交換器から固体電解質型燃料電池に圧縮空気を導く第2圧縮空気通路を前記空間の半径方向外側に配置したので、前記空間に排出される排ガスの熱を第2圧縮空気通路で回収して発電効率を一層高めることができる。
【0011】
また請求項3に記載された発明によれば、請求項2の構成に加えて、第2圧縮空気通路を固体電解質型燃料電池の半径方向外側に配置したことを特徴とする発電装置が提案される。
【0012】
上記構成によれば、第2圧縮空気通路を固体電解質型燃料電池の半径方向外側に配置したので、固体電解質型燃料電池が発生する熱を第2圧縮空気通路で回収して発電効率を一層高めることができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面に示した本発明の実施例に基づいて説明する。
【0014】
図1および図2は本発明の第1実施例を示すもので、図1は発電装置の縦断面図、図2は図1の2−2線断面図である。
【0015】
図1および図2には、ガスタービンエンジンGTに固体電解質型燃料電池FCを一体化した発電装置が示される。ガスタービンエンジンGTは概略カップ状の前部ケーシング11を備えており、前部ケーシング11の内面に沿うように形成された第1圧縮空気通路12の上流側に、図示せぬエアクリーナおよびサイレンサに連なる吸気通路13が接続される。吸気通路13の中央を貫通して一対のベアリング14,15で支持された回転軸16には、遠心式のコンプレッサホイール17と遠心式のタービンホイール18とが隣接して同軸に固定される。コンプレッサホイール17の外周に放射状に形成された複数のコンプレッサブレード17a…は前記吸気通路13に臨んでおり、これらコンプレッサブレード17a…の直下流に位置する第1圧縮空気通路12に複数のコンプレッサディフューザ19…が設けられる。回転軸16の前端にはタービンホイール18により駆動されるジェネレータGEが設けられる。
【0016】
前部ケーシング11の後端に円環状に形成された伝熱型の熱交換器20が配置される。熱交換器20は多数枚の金属薄板を放射方向に配置することで圧縮空気通路と排ガス通路とを円周方向に交互に形成したもので、後端外周寄りの位置に第1圧縮空気通路12の下流端に連なる圧縮空気入口21を備えるとともに前端内周寄りの位置に圧縮空気出口22を備え、前端外周寄りの位置に排ガス入口23を備えるとともに後端内周寄りの位置に大気に連なる排ガス出口24を備える。熱交換器20は、実線矢印で示す比較的に低温の圧縮空気と、破線矢印で示す比較的に高温の排ガスとを相互に逆方向に流すことにより、その流路の全長に亘って圧縮空気および排ガス間の温度差を大きく保って熱交換効率を向上させている。
【0017】
熱交換器20の内周面から後方に向けて段付き円筒状の後部ケーシング25が接続されており、後部ケーシング25の後半部に円環状に形成された固体電解質型燃料電池FCが収納される。後部ケーシング25の内周面に沿って形成された第2圧縮空気通路26は、その上流端が熱交換器20の圧縮空気出口22に連なり、その下流端が固体電解質型燃料電池FCの外周部に連なっている。固体電解質型燃料電池FCの半径方向内側に単缶型の燃焼器27が配置されており、その後端に燃料噴射ノズル28が設けられる。第2圧縮空気通路26の中間部分に固体電解質型燃料電池FCをバイパスする開口を開閉する開閉弁29…が設けられる。
【0018】
回転軸16の後端に設けられたタービンホイール18の外周に放射状に形成された複数のタービンブレード18a…から延びる排ガス通路30が熱交換器20の排ガス入口23に接続されており、この排ガス通路30の半径方向外側が前記第1圧縮空気通路12によって覆われる。タービンホイール18の後面を覆うように遮熱板31が配置されており、遮熱板31の外周部にタービンブレード18a…に臨むタービンノズル32…が設けられる。
【0019】
コンプレッサホイール17およびタービンホイール18で構成される回転部33を支持する回転軸16の軸線Lに対して、ガスタービンエンジンGTの構成要素(つまりコンプレッサホイール17、タービンホイール18、熱交換器20および燃焼器27)および固体電解質型燃料電池FCは軸対称な形状を有している。そして回転部33の軸線L方向後方に形成された空間34の半径方向外側に円環状の熱交換器20が配置され、更に熱交換器20の軸線L方向後方に円環状の固体電解質型燃料電池FCが配置され、固体電解質型燃料電池FCの半径方向内側に燃焼器27が配置される。
【0020】
公知の固体電解質型燃料電池FCは、円環状の薄板よりなる多数のセルを、それと同形のセパレータを挟んで軸線L方向に重ね合わせたもので、各々のセルはセラミックス系の固体電解質の両側面にカソード(空気極)およびアノード(燃料極)を積層してなる。セパレータに形成した通路を通してカソードおよびアノードにそれぞれ空気および燃料を供給し、それらが固体電解質の界面で反応することで電気エネルギーが発生する。
【0021】
次に、上記構成を備えた本発明の実施例の作用について説明する。
【0022】
発電装置の運転中に、吸気通路13から吸い込まれてコンプレッサホイール17により圧縮された空気は第1圧縮空気通路12を経て熱交換器20に送られ、そこで高温の排ガス(約800°C)との間で熱交換することにより排ガスの温度近くまで加熱される。熱交換器20を通過した高温の圧縮空気は第2圧縮空気通路26を経て固体電解質型燃料電池FCに達し、固体電解質型燃料電池FCを半径方向外側から半径方向内側に通過する。一方、固体電解質型燃料電池FCに供給された天然ガス等の燃料(白抜き矢印参照)は、高温の固体電解質型燃料電池FCにおいてH2 およびCOに内部改質され、熱交換器20から供給された空気と反応することで発電が行われる。
【0023】
発電装置の始動時には固体電解質型燃料電池FCが活性化していないため、燃焼器27を一時的に作動させて固体電解質型燃料電池FCを活性化温度まで昇温させる。即ち、コンプレッサホイール17からの圧縮空気を熱交換器20から固体電解質型燃料電池FCを経て燃焼器27に供給し、その圧縮空気に燃料噴射ノズル28から噴射した燃料を混合して燃焼させると、高温の排ガスが熱交換器20に供給されて熱交換が行われるようになり、固体電解質型燃料電池FCに供給される圧縮空気の温度が上昇する。また燃焼器27で発生した排ガスによりタービンホイール18が駆動されるため、コンプレッサホイール17による空気の吸入および圧縮が有効に行われて固体電解質型燃料電池FCに供給される圧縮空気の温度が更に上昇する。
【0024】
その結果、固体電解質型燃料電池FCに供給される圧縮空気の温度が所定温度(例えば、500°C〜600°C)に達すると、燃料噴射ノズル28からの燃料の噴射を停止して燃焼器27を不作動にしても、固体電解質型燃料電池FCの温度が活性化温度に達することで発電装置の運転が継続される。また開閉弁29…の開度を変化させて固体電解質型燃料電池FCを通過する圧縮空気量とバイパスする圧縮空気量との比率を制御することで、固体電解質型燃料電池FCの温度を制御したり、固体電解質型燃料電池FCにおける圧力損失を低減したりすることができる。
【0025】
尚、燃焼器27を軸線L方向に移動自在に設け、始動時に燃焼器27を後部ケーシング25の内部に突出させ、始動後に燃焼器27を後部ケーシング25の外部に退避させれば、始動後の発電装置の運転中に固体電解質型燃料電池FCからの排ガスが燃焼器27と干渉せずにスムーズに流れるようになり、発電効率の更なる向上を期待することができる。
【0026】
しかして、タービンホイール18の回転軸16により駆動されるジェネレータGEで発電された電力と、固体電解質型燃料電池FCで発電された電力とが統合されて出力される。燃料の持つ化学エネルギーのうち、約50%が固体電解質型燃料電池FCで電気エネルギーに変換され、約15%がジェネレータGEで電気エネルギーに変換されるため、発電装置の効率は65%に達して極めて高いものとなる。
【0027】
さて、コンプレッサホイール17およびタービンホイール18よりなる回転部33の軸線Lに対して、コンプレッサホイール17、タービンホイール18、熱交換器20、燃焼器27および固体電解質型燃料電池FCが軸対称に配置されているため、ガスタービンエンジンGTおよび固体電解質型燃料電池FCの内部の圧縮空気や排ガスの流れが軸対称になって円周方向に均一化されるため、熱交換器20に流入する圧縮空気および排ガスの流速を均一化し、かつ固体電解質型燃料電池FCに流入する圧縮空気の流速を均一化することができるので、熱交換器20における熱交換効率の向上および固体電解質型燃料電池FCにおける発電効率の向上に寄与することができる。また発電装置の前記軸対称配置により、圧力損失が減少して発電効率の向上および燃料消費量の低減が可能となる。更に、ガスタービンエンジンGTおよび固体電解質型燃料電池FCの内部の温度分布も軸対称になって各部材の熱歪みが最小限に抑えられ、コンプレッサホイール17やタービンホイール18のスムーズな回転が確保されるとともに、熱応力によるセラミック製部品の損傷等が防止されて耐久性が向上する。更に、ケーシングや通路のような部品も軸対称化することができるので、それらを板金等の薄肉材料で製作することが可能となって軽量化が達成されるばかりか、ヒートマスの減少によって冷間始動時の熱損失を減少させて燃費消費量の更なる低減が可能となる。
【0028】
また円環状に形成した熱交換器20および固体電解質型燃料電池FCを発電装置の最外層部に配置したので、その半径方向内側の空間34にガスタービンエンジンGTの燃焼器27等の構成要素を収納してコンパクト化を図ることができ、かつガスタービンエンジンGTが発生する熱を外側の熱交換器20および固体電解質型燃料電池FCで回収することができる。特に、固体電解質型燃料電池FCの半径方向内側の空間34に燃焼器27を配置したので、発電装置の軸線L方向線向寸法をコンパクト化することができるだけでなく、固体電解質型燃料電池FCで熱を回収することができる。特に、発電装置を始動すべく燃焼器27を作動させたときに、半径方向外側に位置する固体電解質型燃料電池FCを効果的に加熱して早期の活性化を可能にするとともに、燃料消費量の低減に寄与することができる。
【0029】
また軸線Lに沿って前方から後方にコンプレッサホイール17およびタービンホイール18よりなる回転部33と、熱交換器20と、固体電解質型燃料電池FCとが順次配置されているため、発電装置の半径方向寸法をコンパクト化することができるだけでなく、圧縮空気や排ガスの流速を均一化し、流れをスムーズにして圧力損失を減少させ、発電効率を高めることができる。
【0030】
またコンプレッサホイール17から熱交換器20に比較的に低温の圧縮空気を導く第1圧縮空気通路12を、タービンホイール18から熱交換器20に比較的に高温の排ガスを導く排ガス通路30の半径方向外側を覆うように配置したので、高温の排ガス通路30から逃げる熱を低温の第1圧縮空気通路12で回収することで、前部ケーシング11からの熱逃げを防止して発電効率を一層高めることができる。更に、第2圧縮空気通路26が固体電解質型燃料電池FCの半径方向外側を覆うように配置されているので、固体電解質型燃料電池FCが発生する熱を第2圧縮空気通路26で回収して、後部ケーシング25から外部に逃げないようにして発電効率を一層高めることができる。
【0031】
次に、図3および図4に基づいて本発明の第2実施例を説明する。第2実施例は固体電解質型燃料電池FCの形状が第1実施例と異なっており、その他の構成は第1実施例と同一である。
【0032】
第2実施例は、円環状に形成された複数個(例えば、8個)の固体電解質型燃料電池FC…を、回転部33の軸線Lの周囲を囲むように円周方向に等間隔で配置したものである。各々の固体電解質型燃料電池FCはその軸線L1を回転部33の軸線Lと平行にした状態で、後部ケーシング25と円筒状の隔壁41とによって区画された円環状の空間42に収納される。
【0033】
この第2実施例によっても、8個の固体電解質型燃料電池FC…が回転部33の軸線Lに対して軸対称に配置されるため、前述した第1実施例と同様の作用効果を達成することができる。それに加えて、各々の固体電解質型燃料電池FCの直径が第1実施例のものに比べて小さくなるため、そのセルおよびセパレータが小型になって製造が容易になる。
【0034】
次に、図5および図6に基づいて本発明の第3実施例を説明する。第3実施例も固体電解質型燃料電池FCの形状が第1実施例と異なっており、その他の構成は第1実施例と同一である。
【0035】
第3実施例は、円環状に形成された複数個(例えば、12個)の固体電解質型燃料電池FC…を、回転部33の軸線Lの周囲を囲むように軸線L方向に2列に、かつ円周方向に等間隔で配置したものである。各列の6個の固体電解質型燃料電池FC…はその軸線L2…を回転部33の軸線Lに対して放射方向にした状態で、後部ケーシング25と円筒状の隔壁41とによって区画された円環状の空間42に収納される。
【0036】
この第3実施例によっても、12個の固体電解質型燃料電池FC…が回転部33の軸線Lに対して軸対称に配置されるため、前述した第1実施例と同様の作用効果を達成することができる。それに加えて、各々の固体電解質型燃料電池FCの直径が第1実施例のものに比べて小さくなるため、そのセルおよびセパレータが小型になって製造が容易になるだけなく、軸線L方向の固体電解質型燃料電池FC…の列数を任意に増加させることで、同じ発電容量を確保しながら発電装置の外径をコンパクト化することができる。
【0037】
以上、本発明の実施例を詳述したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
【0038】
【発明の効果】
以上のように請求項1に記載された発明によれば、コンプレッサホイールおよびタービンホイールよりなる回転部の軸線上に熱交換器、燃焼器および固体電解質型燃料電池を配置し、固体電解質型燃料電池あるいは燃焼器からタービンホイールに向けて排ガスを排出する空間の半径方向外側に熱交換器および固体電解質型燃料電池を配置したので、前記空間に排出される固体電解質型燃料電池あるいは燃焼器の廃熱を熱交換器および固体電解質型燃料電池で効果的に回収して外部への熱逃げを抑制し、発電装置の発電効率を向上させて燃料消費量を削減することができる。
【0039】
また請求項2に記載された発明によれば、コンプレッサホイールから熱交換器に圧縮空気を導く第1圧縮空気通路をタービンホイールから熱交換器に排ガスを導く排ガス通路の半径方向外側に配置したので、比較的高温の排ガスが通る排ガス通路から逃げる熱を比較的低温の圧縮空気が通る圧縮空気通路で回収して発電効率を一層高めることができ、更に熱交換器から固体電解質型燃料電池に圧縮空気を導く第2圧縮空気通路を前記空間の半径方向外側に配置したので、前記空間に排出される排ガスの熱を第2圧縮空気通路で回収して発電効率を一層高めることができる。
【0040】
また請求項3に記載された発明によれば、第2圧縮空気通路を固体電解質型燃料電池の半径方向外側に配置したので、固体電解質型燃料電池が発生する熱を第2圧縮空気通路で回収して発電効率を一層高めることができる。
【図面の簡単な説明】
【図1】発電装置の縦断面図
【図2】図1の2−2線断面図
【図3】第2実施例に係る発電装置の縦断面図
【図4】図3の4−4線断面図
【図5】第3実施例に係る発電装置の縦断面図
【図6】図5の6−6線断面図
【符号の説明】
12 第1圧縮空気通路
17 コンプレッサホイール
18 タービンホイール
20 熱交換器
26 第2圧縮空気通路
27 燃焼器
30 排ガス通路
33 回転部
34 空間
FC 固体電解質型燃料電池
GT ガスタービンエンジン
L 軸線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power generation apparatus that integrally includes a gas turbine engine and a solid oxide fuel cell.
[0002]
[Prior art]
Japanese Patent Application Publication No. 2001-516935 discloses a hybrid power system in which a turbo machine and a fuel cell are combined. Turbomachines generate power by driving a generator by rotating a power turbine with high-pressure gas generated by combusting fuel with a combustor, and a fuel cell is heated by passing through a turbomachine compressor and recuperator. To generate electricity.
[0003]
U.S. Pat. No. 6,213,234 describes a vehicle with a fuel cell and generator driven by a gas turbine engine. When less than 50% of the maximum power required to drive the vehicle is supplied from the fuel cell, fuel consumption can be reduced without increasing the size of the fuel cell, and when the required power of the vehicle is low In addition, the fuel cell efficiently supplies all or most of the required power.
[0004]
U.S. Pat. No. 6,255,010 describes a power generator including a gas turbine engine, a fuel cell and a generator housed in a common pressure vessel and operated in a pressurized state.
[0005]
[Problems to be solved by the invention]
By the way, in order to improve the power generation efficiency by reducing the fuel consumption of the power generation device integrally provided with the gas turbine engine and the solid oxide fuel cell, it is necessary to effectively use the waste heat. It is difficult to effectively use the waste heat by simply disposing the gas turbine engine and the solid oxide fuel cell, or simply combining the fuel cell with the gas turbine engine.
[0006]
The present invention has been made in view of the above circumstances, and aims to improve power generation efficiency by effectively utilizing waste heat in a power generation apparatus integrally including a gas turbine engine and a solid oxide fuel cell. To do.
[0007]
[Means for Solving the Problems]
To achieve the above object, according to the first aspect of the present invention, there is provided a power generation apparatus integrally including a gas turbine engine and a solid oxide fuel cell, the gas turbine engine comprising a compressor wheel and a turbine wheel. , Including a heat exchanger and a combustor, the compressor wheel supplies compressed air through the heat exchanger to the solid oxide fuel cell and the combustor, and the turbine wheel is driven by exhaust gas from the solid oxide fuel cell and the combustor The compressor wheel is driven, and the heat exchanger exchanges heat between the exhaust gas from the turbine wheel and the compressed air from the compressor wheel. The compressor wheel includes the heat exchanger, the combustor, and the solid oxide fuel cell. And the turbine wheel arranged on the axis of the rotating part consisting of the turbine wheel A space where exhaust gas is discharged from the combustor or the combustor toward the turbine wheel is formed between the combustor and the heat exchanger and the solid oxide fuel cell are placed outside the space in the radial direction. A featured power generator is proposed.
[0008]
According to the above configuration, the heat exchanger, the combustor, and the solid oxide fuel cell are disposed on the axis of the rotating portion including the compressor wheel and the turbine wheel, and the exhaust gas is directed from the solid oxide fuel cell or the combustor toward the turbine wheel. Since the heat exchanger and the solid oxide fuel cell are arranged radially outside the space for discharging the heat, the waste heat of the solid oxide fuel cell or the combustor discharged to the space is used as the heat exchanger and the solid oxide fuel cell. Thus, it is possible to effectively recover and suppress heat escape to the outside, improve the power generation efficiency of the power generation device, and reduce fuel consumption.
[0009]
According to the second aspect of the present invention, in addition to the configuration of the first aspect, the first compressed air passage that guides the compressed air from the compressor wheel to the heat exchanger is guided, and the exhaust gas is guided from the turbine wheel to the heat exchanger. A power generation device is proposed, which is arranged outside the exhaust gas passage in the radial direction and a second compressed air passage leading the compressed air from the heat exchanger to the solid oxide fuel cell outside the space. The
[0010]
According to the above configuration, the first compressed air passage that guides the compressed air from the compressor wheel to the heat exchanger is disposed radially outside the exhaust passage that guides the exhaust gas from the turbine wheel to the heat exchanger. Heat that escapes from the exhaust gas passage that passes through the compressed air passage through which relatively low-temperature compressed air passes can be further improved in power generation efficiency, and second compressed air that leads the compressed air from the heat exchanger to the solid oxide fuel cell Since the passage is arranged on the outer side in the radial direction of the space, the heat of the exhaust gas discharged into the space can be recovered by the second compressed air passage to further increase the power generation efficiency.
[0011]
According to the invention described in claim 3, in addition to the structure of claim 2, there is proposed a power generator characterized in that the second compressed air passage is arranged radially outside the solid oxide fuel cell. The
[0012]
According to the above configuration, since the second compressed air passage is disposed radially outside the solid oxide fuel cell, the heat generated by the solid oxide fuel cell is recovered by the second compressed air passage to further increase the power generation efficiency. be able to.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples of the present invention shown in the accompanying drawings.
[0014]
1 and 2 show a first embodiment of the present invention. FIG. 1 is a longitudinal sectional view of a power generator, and FIG. 2 is a sectional view taken along line 2-2 of FIG.
[0015]
1 and 2 show a power generation apparatus in which a solid oxide fuel cell FC is integrated with a gas turbine engine GT. The gas turbine engine GT includes a substantially cup-shaped front casing 11, and is connected to an air cleaner and a silencer (not shown) on the upstream side of the first compressed air passage 12 formed along the inner surface of the front casing 11. An intake passage 13 is connected. A centrifugal compressor wheel 17 and a centrifugal turbine wheel 18 are adjacently and coaxially fixed to a rotating shaft 16 that passes through the center of the intake passage 13 and is supported by a pair of bearings 14 and 15. A plurality of compressor blades 17a formed radially on the outer periphery of the compressor wheel 17 face the intake passage 13, and a plurality of compressor diffusers 19 are disposed in the first compressed air passage 12 located immediately downstream of the compressor blades 17a. ... are provided. A generator GE driven by a turbine wheel 18 is provided at the front end of the rotating shaft 16.
[0016]
A heat transfer type heat exchanger 20 formed in an annular shape is disposed at the rear end of the front casing 11. The heat exchanger 20 is formed by arranging a plurality of thin metal plates in the radial direction so that compressed air passages and exhaust gas passages are alternately formed in the circumferential direction, and the first compressed air passage 12 is positioned near the outer periphery of the rear end. The compressed air inlet 21 is connected to the downstream end of the engine, the compressed air outlet 22 is provided at a position near the front end inner periphery, the exhaust gas inlet 23 is provided at a position near the front end outer periphery, and the exhaust gas is connected to the atmosphere at a position near the rear end inner periphery. An outlet 24 is provided. The heat exchanger 20 has a relatively low temperature compressed air indicated by a solid arrow and a relatively high temperature exhaust gas indicated by a broken arrow flowing in opposite directions, thereby compressing the compressed air over the entire length of the flow path. In addition, the temperature difference between the exhaust gases is kept large to improve the heat exchange efficiency.
[0017]
A stepped cylindrical rear casing 25 is connected to the rear from the inner peripheral surface of the heat exchanger 20, and a solid oxide fuel cell FC formed in an annular shape is accommodated in the rear half of the rear casing 25. . The second compressed air passage 26 formed along the inner peripheral surface of the rear casing 25 has an upstream end connected to the compressed air outlet 22 of the heat exchanger 20 and a downstream end connected to the outer peripheral portion of the solid oxide fuel cell FC. It is connected to. A single can type combustor 27 is disposed radially inward of the solid oxide fuel cell FC, and a fuel injection nozzle 28 is provided at the rear end thereof. An open / close valve 29 for opening and closing an opening for bypassing the solid oxide fuel cell FC is provided at an intermediate portion of the second compressed air passage 26.
[0018]
An exhaust gas passage 30 extending from a plurality of turbine blades 18 a formed radially on the outer periphery of a turbine wheel 18 provided at the rear end of the rotary shaft 16 is connected to an exhaust gas inlet 23 of the heat exchanger 20. The radially outer side of 30 is covered by the first compressed air passage 12. A heat shield plate 31 is disposed so as to cover the rear surface of the turbine wheel 18, and turbine nozzles 32 facing the turbine blades 18 a are provided on the outer periphery of the heat shield plate 31.
[0019]
Components of the gas turbine engine GT (that is, the compressor wheel 17, the turbine wheel 18, the heat exchanger 20, and the combustion) with respect to the axis L of the rotating shaft 16 that supports the rotating portion 33 including the compressor wheel 17 and the turbine wheel 18. The container 27) and the solid oxide fuel cell FC have an axisymmetric shape. An annular heat exchanger 20 is disposed radially outside a space 34 formed behind the rotating portion 33 in the direction of the axis L, and an annular solid oxide fuel cell is further provided behind the heat exchanger 20 in the direction of the axis L. FC is disposed, and the combustor 27 is disposed radially inward of the solid oxide fuel cell FC.
[0020]
A known solid oxide fuel cell FC is formed by stacking a large number of cells made of annular thin plates in the direction of the axis L with separators of the same shape sandwiched between them, and each cell is formed on both sides of a ceramic solid electrolyte. Are laminated with a cathode (air electrode) and an anode (fuel electrode). Air and fuel are respectively supplied to the cathode and the anode through a passage formed in the separator, and electric energy is generated by the reaction at the interface of the solid electrolyte.
[0021]
Next, the operation of the embodiment of the present invention having the above configuration will be described.
[0022]
During operation of the power generation apparatus, air sucked from the intake passage 13 and compressed by the compressor wheel 17 is sent to the heat exchanger 20 through the first compressed air passage 12, where high-temperature exhaust gas (about 800 ° C.) and By exchanging heat between the two, it is heated to near the temperature of the exhaust gas. The high-temperature compressed air that has passed through the heat exchanger 20 reaches the solid oxide fuel cell FC through the second compressed air passage 26, and passes through the solid oxide fuel cell FC from the radially outer side to the radially inner side. On the other hand, the fuel such as natural gas (see the white arrow) supplied to the solid oxide fuel cell FC is internally reformed to H 2 and CO in the high-temperature solid electrolyte fuel cell FC and supplied from the heat exchanger 20. Electricity is generated by reacting with the generated air.
[0023]
Since the solid oxide fuel cell FC is not activated at the time of starting the power generator, the combustor 27 is temporarily operated to raise the temperature of the solid oxide fuel cell FC to the activation temperature. That is, when compressed air from the compressor wheel 17 is supplied from the heat exchanger 20 to the combustor 27 via the solid oxide fuel cell FC, the fuel injected from the fuel injection nozzle 28 is mixed with the compressed air and burned. Hot exhaust gas is supplied to the heat exchanger 20 to perform heat exchange, and the temperature of the compressed air supplied to the solid oxide fuel cell FC rises. Further, since the turbine wheel 18 is driven by the exhaust gas generated in the combustor 27, the intake and compression of air by the compressor wheel 17 is effectively performed, and the temperature of the compressed air supplied to the solid oxide fuel cell FC further increases. To do.
[0024]
As a result, when the temperature of the compressed air supplied to the solid oxide fuel cell FC reaches a predetermined temperature (for example, 500 ° C. to 600 ° C.), the fuel injection from the fuel injection nozzle 28 is stopped and the combustor is stopped. Even if 27 is not operated, the operation of the power generator is continued when the temperature of the solid oxide fuel cell FC reaches the activation temperature. Further, the temperature of the solid oxide fuel cell FC is controlled by changing the opening degree of the on-off valve 29 to control the ratio of the compressed air amount passing through the solid oxide fuel cell FC and the compressed air amount bypassing. Or pressure loss in the solid oxide fuel cell FC can be reduced.
[0025]
If the combustor 27 is provided so as to be movable in the direction of the axis L, the combustor 27 protrudes into the rear casing 25 at the start, and the combustor 27 is retracted to the outside of the rear casing 25 after the start. During operation of the power generation apparatus, exhaust gas from the solid oxide fuel cell FC flows smoothly without interfering with the combustor 27, and further improvement in power generation efficiency can be expected.
[0026]
Accordingly, the electric power generated by the generator GE driven by the rotating shaft 16 of the turbine wheel 18 and the electric power generated by the solid oxide fuel cell FC are integrated and output. About 50% of the chemical energy of the fuel is converted to electrical energy by the solid oxide fuel cell FC, and about 15% is converted to electrical energy by the generator GE. Therefore, the efficiency of the power generator reaches 65%. Extremely expensive.
[0027]
The compressor wheel 17, the turbine wheel 18, the heat exchanger 20, the combustor 27, and the solid oxide fuel cell FC are arranged symmetrically with respect to the axis L of the rotating unit 33 including the compressor wheel 17 and the turbine wheel 18. Therefore, the flow of compressed air and exhaust gas inside the gas turbine engine GT and the solid oxide fuel cell FC are made axially symmetric and uniform in the circumferential direction, so that the compressed air flowing into the heat exchanger 20 and Since the flow rate of the exhaust gas can be made uniform and the flow rate of the compressed air flowing into the solid oxide fuel cell FC can be made uniform, the heat exchange efficiency in the heat exchanger 20 can be improved and the power generation efficiency in the solid oxide fuel cell FC It can contribute to improvement. Further, the axially symmetric arrangement of the power generation apparatus can reduce pressure loss and improve power generation efficiency and fuel consumption. Furthermore, the temperature distribution inside the gas turbine engine GT and the solid oxide fuel cell FC is also axisymmetric, so that thermal distortion of each member is minimized, and smooth rotation of the compressor wheel 17 and the turbine wheel 18 is ensured. In addition, the ceramic parts are prevented from being damaged by thermal stress, and the durability is improved. In addition, parts such as casings and passages can be symmetrized so that they can be manufactured from thin materials such as sheet metal, which not only achieves weight reduction, but also reduces cold mass by reducing heat mass. It is possible to further reduce fuel consumption by reducing heat loss at start-up.
[0028]
Since the heat exchanger 20 and the solid oxide fuel cell FC formed in an annular shape are arranged in the outermost layer portion of the power generation device, the components such as the combustor 27 of the gas turbine engine GT are placed in the radially inner space 34. The housing can be made compact and the heat generated by the gas turbine engine GT can be recovered by the outer heat exchanger 20 and the solid oxide fuel cell FC. In particular, since the combustor 27 is arranged in the space 34 on the radially inner side of the solid oxide fuel cell FC, not only can the axial dimension of the power generator in the direction of the axis L direction be reduced, but also the solid oxide fuel cell FC can be used. Heat can be recovered. In particular, when the combustor 27 is operated to start the power generator, the solid oxide fuel cell FC located radially outside can be effectively heated to enable early activation and fuel consumption. It can contribute to the reduction of.
[0029]
Further, since the rotating portion 33 including the compressor wheel 17 and the turbine wheel 18, the heat exchanger 20, and the solid oxide fuel cell FC are sequentially arranged along the axis L from the front to the rear, the radial direction of the power generator Not only can the dimensions be reduced, but also the flow rate of compressed air and exhaust gas can be made uniform, the flow can be made smooth, pressure loss can be reduced, and power generation efficiency can be increased.
[0030]
Further, the first compressed air passage 12 that guides relatively low temperature compressed air from the compressor wheel 17 to the heat exchanger 20 and the exhaust gas passage 30 that guides relatively high temperature exhaust gas from the turbine wheel 18 to the heat exchanger 20 in the radial direction. Since it is arranged so as to cover the outside, the heat escape from the high temperature exhaust gas passage 30 is recovered by the low temperature first compressed air passage 12, thereby preventing the heat escape from the front casing 11 and further improving the power generation efficiency. Can do. Further, since the second compressed air passage 26 is disposed so as to cover the radially outer side of the solid oxide fuel cell FC, the heat generated by the solid oxide fuel cell FC is recovered by the second compressed air passage 26. The power generation efficiency can be further increased by preventing the rear casing 25 from escaping to the outside.
[0031]
Next, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, the shape of the solid oxide fuel cell FC is different from that of the first embodiment, and other configurations are the same as those of the first embodiment.
[0032]
In the second embodiment, a plurality of (for example, eight) solid oxide fuel cells FC... Formed in an annular shape are arranged at equal intervals in the circumferential direction so as to surround the periphery of the axis L of the rotating portion 33. It is a thing. Each solid oxide fuel cell FC is housed in an annular space 42 defined by a rear casing 25 and a cylindrical partition wall 41 with its axis L1 parallel to the axis L of the rotating portion 33.
[0033]
Also according to the second embodiment, since the eight solid oxide fuel cells FC are arranged symmetrically with respect to the axis L of the rotating portion 33, the same effects as the first embodiment described above are achieved. be able to. In addition, since the diameter of each solid oxide fuel cell FC is smaller than that of the first embodiment, its cells and separators are small and easy to manufacture.
[0034]
Next, a third embodiment of the present invention will be described with reference to FIGS. Also in the third embodiment, the shape of the solid oxide fuel cell FC is different from that of the first embodiment, and other configurations are the same as those of the first embodiment.
[0035]
In the third embodiment, a plurality of (for example, twelve) solid oxide fuel cells FC formed in an annular shape are arranged in two rows in the direction of the axis L so as to surround the axis L of the rotating portion 33. In addition, they are arranged at equal intervals in the circumferential direction. Each of the six solid oxide fuel cells FC in each row is a circle defined by the rear casing 25 and the cylindrical partition wall 41 in a state where the axis L2 is in a radial direction with respect to the axis L of the rotating portion 33. It is stored in the annular space 42.
[0036]
Also according to the third embodiment, the twelve solid oxide fuel cells FC are arranged symmetrically with respect to the axis L of the rotating portion 33, so that the same effect as the first embodiment is achieved. be able to. In addition, since the diameter of each solid oxide fuel cell FC is smaller than that of the first embodiment, not only the cells and separators are reduced in size but also easy to manufacture. By arbitrarily increasing the number of columns of the electrolyte fuel cells FC, the outer diameter of the power generator can be made compact while ensuring the same power generation capacity.
[0037]
As mentioned above, although the Example of this invention was explained in full detail, this invention can perform a various design change in the range which does not deviate from the summary.
[0038]
【The invention's effect】
As described above, according to the first aspect of the present invention, the heat exchanger, the combustor, and the solid oxide fuel cell are arranged on the axis of the rotating portion including the compressor wheel and the turbine wheel, and the solid oxide fuel cell is provided. Alternatively, since the heat exchanger and the solid oxide fuel cell are arranged radially outside the space where exhaust gas is discharged from the combustor toward the turbine wheel, the waste heat of the solid oxide fuel cell or combustor discharged into the space Can be effectively recovered by the heat exchanger and the solid oxide fuel cell to suppress heat escape to the outside, and the power generation efficiency of the power generation device can be improved to reduce fuel consumption.
[0039]
According to the second aspect of the present invention, the first compressed air passage for guiding the compressed air from the compressor wheel to the heat exchanger is disposed outside the exhaust gas passage for guiding the exhaust gas from the turbine wheel to the heat exchanger. The heat escaped from the exhaust gas passage through which the relatively high temperature exhaust gas passes can be recovered in the compressed air passage through which the relatively low temperature compressed air passes, and the power generation efficiency can be further improved, and further compressed from the heat exchanger to the solid oxide fuel cell Since the second compressed air passage for guiding the air is arranged on the outer side in the radial direction of the space, the heat of the exhaust gas discharged into the space can be recovered by the second compressed air passage to further increase the power generation efficiency.
[0040]
According to the invention described in claim 3, since the second compressed air passage is disposed radially outside the solid oxide fuel cell, the heat generated by the solid oxide fuel cell is recovered by the second compressed air passage. Thus, power generation efficiency can be further increased.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a power generator. FIG. 2 is a sectional view taken along line 2-2 of FIG. 1. FIG. 3 is a longitudinal sectional view of a power generator according to a second embodiment. Sectional view [FIG. 5] Longitudinal sectional view of the power generator according to the third embodiment [FIG. 6] Sectional view taken along line 6-6 of FIG.
12 First compressed air passage 17 Compressor wheel 18 Turbine wheel 20 Heat exchanger 26 Second compressed air passage 27 Combustor 30 Exhaust gas passage 33 Rotating part 34 Space FC Solid oxide fuel cell GT Gas turbine engine L Axis

Claims (3)

ガスタービンエンジン(GT)と固体電解質型燃料電池(FC)とを一体に備えた発電装置であって、
ガスタービンエンジン(GT)はコンプレッサホイール(17)、タービンホイール(18)、熱交換器(20)および燃焼器(27)を含み、コンプレッサホイール(17)は圧縮空気を熱交換器(20)を介して固体電解質型燃料電池(FC)および燃焼器(27)に供給し、タービンホイール(18)は固体電解質型燃料電池(FC)および燃焼器(27)からの排ガスにより駆動されてコンプレッサホイール(17)を駆動し、熱交換器(20)はタービンホイール(18)からの排ガスとコンプレッサホイール(17)からの圧縮空気との間で熱交換を行うものにおいて、
熱交換器(20)、燃焼器(27)および固体電解質型燃料電池(FC)をコンプレッサホイール(17)およびタービンホイール(18)よりなる回転部(33)の軸線(L)上に配置し、タービンホイール(18)と燃焼器(27)との間に固体電解質型燃料電池(FC)あるいは燃焼器(27)からタービンホイール(18)に向けて排ガスを排出する空間(34)を形成し、この空間(34)の半径方向外側に熱交換器(20)および固体電解質型燃料電池(FC)を配置したことを特徴とする発電装置。
A power generation apparatus integrally including a gas turbine engine (GT) and a solid oxide fuel cell (FC),
The gas turbine engine (GT) includes a compressor wheel (17), a turbine wheel (18), a heat exchanger (20) and a combustor (27), and the compressor wheel (17) removes compressed air from the heat exchanger (20). To the solid oxide fuel cell (FC) and the combustor (27), and the turbine wheel (18) is driven by the exhaust gas from the solid oxide fuel cell (FC) and the combustor (27), and the compressor wheel ( 17), and the heat exchanger (20) exchanges heat between the exhaust gas from the turbine wheel (18) and the compressed air from the compressor wheel (17).
A heat exchanger (20), a combustor (27), and a solid oxide fuel cell (FC) are arranged on an axis (L) of a rotating part (33) comprising a compressor wheel (17) and a turbine wheel (18); A space (34) for discharging exhaust gas from the solid oxide fuel cell (FC) or the combustor (27) toward the turbine wheel (18) is formed between the turbine wheel (18) and the combustor (27); A power generator comprising a heat exchanger (20) and a solid oxide fuel cell (FC) arranged outside the space (34) in the radial direction.
コンプレッサホイール(17)から熱交換器(20)に圧縮空気を導く第1圧縮空気通路(12)を、タービンホイール(18)から熱交換器(20)に排ガスを導く排ガス通路(30)の半径方向外側に配置するとともに、熱交換器(20)から固体電解質型燃料電池(FC)に圧縮空気を導く第2圧縮空気通路(26)を前記空間(34)の半径方向外側に配置したことを特徴とする、請求項1に記載の発電装置。A radius of the first compressed air passage (12) that guides compressed air from the compressor wheel (17) to the heat exchanger (20) and an exhaust gas passage (30) that guides exhaust gas from the turbine wheel (18) to the heat exchanger (20) And the second compressed air passage (26) for guiding the compressed air from the heat exchanger (20) to the solid oxide fuel cell (FC) is disposed radially outside the space (34). The power generation device according to claim 1, wherein the power generation device is characterized. 第2圧縮空気通路(26)を固体電解質型燃料電池(FC)の半径方向外側に配置したことを特徴とする、請求項2に記載の発電装置。The power generator according to claim 2, wherein the second compressed air passage (26) is arranged radially outside the solid oxide fuel cell (FC).
JP2002141039A 2002-05-16 2002-05-16 Power generator Expired - Fee Related JP3901579B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2002141039A JP3901579B2 (en) 2002-05-16 2002-05-16 Power generator
AT03723372T ATE500630T1 (en) 2002-05-16 2003-05-14 EXHAUST GAS TURBINE GENERATOR SYSTEM WITH FUEL CELL
DE60336223T DE60336223D1 (en) 2002-05-16 2003-05-14 DRAIN TURBINE GENERATOR PLANT WITH FUEL CELL
AU2003230244A AU2003230244B2 (en) 2002-05-16 2003-05-14 Gas turbine power generating system with fuel cell
CA002484988A CA2484988A1 (en) 2002-05-16 2003-05-14 Gas turbine power generating system with fuel cell
EP03723372A EP1504488B1 (en) 2002-05-16 2003-05-14 Gas turbine power generating system with fuel cell
PCT/JP2003/005991 WO2003097394A2 (en) 2002-05-16 2003-05-14 Gas turbine power generating system with fuel cell
KR1020047018041A KR100558575B1 (en) 2002-05-16 2003-05-14 Power generating system
US10/438,918 US7166380B2 (en) 2002-05-16 2003-05-16 Power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002141039A JP3901579B2 (en) 2002-05-16 2002-05-16 Power generator

Publications (2)

Publication Number Publication Date
JP2003328773A JP2003328773A (en) 2003-11-19
JP3901579B2 true JP3901579B2 (en) 2007-04-04

Family

ID=29701738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002141039A Expired - Fee Related JP3901579B2 (en) 2002-05-16 2002-05-16 Power generator

Country Status (1)

Country Link
JP (1) JP3901579B2 (en)

Also Published As

Publication number Publication date
JP2003328773A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
ES2287507T3 (en) A SOLID OXIDE FUEL CELL SYSTEM.
RU2227348C2 (en) Energy system with fuel elements (variants) and process of generation of electric energy by given system (variants)
KR101025773B1 (en) Turbo generator apparatus and fuel cell system with the same
JP5318959B2 (en) AIR SUPPLY DEVICE FOR FUEL CELL STACK AND FUEL CELL SYSTEM
KR100558575B1 (en) Power generating system
JP2008537055A (en) Energy recovery system
WO1995011375B1 (en) Performance enhanced gas turbine powerplants
EP1426576B1 (en) Tank/manifold for internally mounted radial flow intercooler for a combustion air charger
US20190277199A1 (en) Turbo engine, in particular turbo generator and exchanger for such turbo engine
JP2004214193A5 (en)
JP3901578B2 (en) Power generator
JP4129144B2 (en) Power generation device and method for starting power generation device
JP3901579B2 (en) Power generator
EP0811752B1 (en) Centrifugal gas turbine
JP2003193865A (en) Gas turbine power generation system, gas turbine power system, and starting method therefor
US8448447B2 (en) Gas turbine engine with fuel booster
CA2433636A1 (en) Installation for the generation of energy
JP2600367B2 (en) Air turbo ram jet engine
Muller et al. Wave disc engine apparatus
TH59918A (en) Power generation system
JPH05256406A (en) Catalyst combustor
JPH05256162A (en) Gas-turbine engine
JPH05256165A (en) Catalytic burner
JPH0476230A (en) Gas turbine engine
JPH0472428A (en) Gas-turbine engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees