JPH05256165A - Catalytic burner - Google Patents

Catalytic burner

Info

Publication number
JPH05256165A
JPH05256165A JP5281992A JP5281992A JPH05256165A JP H05256165 A JPH05256165 A JP H05256165A JP 5281992 A JP5281992 A JP 5281992A JP 5281992 A JP5281992 A JP 5281992A JP H05256165 A JPH05256165 A JP H05256165A
Authority
JP
Japan
Prior art keywords
catalyst
fuel
air
passage cross
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5281992A
Other languages
Japanese (ja)
Inventor
Naomi Warashina
直美 藁科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP5281992A priority Critical patent/JPH05256165A/en
Publication of JPH05256165A publication Critical patent/JPH05256165A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform stable combustion without causing the increase of pressure loss in various load regions in a burner for an gas-turbine engine of a catalytic combustion system. CONSTITUTION:A small diameter part 42 positioned upstream of a catalytic burner 12 is provided with a catalyst bearing part 44 of small passage cross-sectional, area, and a large diameter part 43 positioned downstream of the catalytic burner 12 is provided with a catalyst bearing part 45 of large passage cross-sectional area. Fuel nozzles 46, 47 are then disposed in correspondence with both catalyst bearing parts 44, 45. At the time of low load operation, fuel is injected from the upstream fuel nozzle 46 so as to be mixed with intake air taken in from an air lead-in port 423 and burnt being brought into contact with a catalyst at the catalyst bearing part 44 of small passage cross-sectional area. At the time of high load operation, fuel is injected from the downstream fuel nozzle 47 so as to be mixed with intake air taken in from the air lead-in port 421 and burnt being brought into contact with a catalyst at the catalyst bearing part 45 of large passage cross-sectional area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、触媒燃焼器の触媒担持
部に担持した触媒に燃料と空気の混合気を接触させて燃
焼させる触媒燃焼器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst combustor which causes a mixture of fuel and air to come into contact with a catalyst carried by a catalyst supporting portion of the catalyst combustor to burn the catalyst.

【0002】[0002]

【従来の技術】レシプロエンジンと同様にガスタービン
エンジンにおいても排気ガス中に有害な窒素酸化物(以
下NOX という)が発生し、そのNOX の排出量は混合
気の燃焼温度が高いほど増加する。従来のガスタービン
エンジン用燃焼器では、混合気の燃焼温度が極めて高温
(例えば2000°C)に達するために、NOX の排出
量を低減することが困難であった。そこで、燃焼器の内
部に設けた触媒に混合気を接触させて燃焼させる、所謂
触媒燃焼方式のガスタービンエンジン用燃焼器が提案さ
れている。かかる触媒燃焼方式によれば、燃焼器におけ
る混合気の燃焼が比較的低温で行われるため、排気ガス
中のNOX を大幅に削減することが可能となる。
2. Description of the Related Art As in a reciprocating engine, a gas turbine engine produces harmful nitrogen oxides (hereinafter referred to as NO X ) in the exhaust gas, and the NO X emission amount increases as the combustion temperature of the air-fuel mixture increases. To do. In the conventional combustor for a gas turbine engine, since the combustion temperature of the air-fuel mixture reaches an extremely high temperature (for example, 2000 ° C), it has been difficult to reduce the NO X emission amount. Therefore, a combustor for a gas turbine engine of a so-called catalytic combustion system has been proposed, in which the air-fuel mixture is brought into contact with a catalyst provided inside the combustor and burned. According to the catalytic combustion method, since the combustion of the mixture in the combustor is relatively carried out at low temperatures, it is possible to significantly reduce the NO X in the exhaust gas.

【0003】上記触媒燃焼方式のガスタービンエンジン
用燃焼器において、触媒燃焼器の内部に複数の触媒担持
部を直列に配設し、それら触媒担持部の流路断面積を上
流側のものから下流側のものに移行するにつれて順次小
さくなるように形成したものが、特開昭63−2137
23号公報により公知である。この触媒燃焼器によれ
ば、各触媒担持部における混合気の流速が異なるため、
エンジンの運転状態に応じて混合気の流速が適切となる
触媒担持部を選択し、その触媒担持部において混合気を
安定した状態で燃焼させることができる。
In the above-mentioned catalytic combustion type gas turbine engine combustor, a plurality of catalyst supporting portions are arranged in series inside the catalyst combustor, and the flow passage cross-sectional areas of the catalyst supporting portions are changed from upstream to downstream. The one formed so as to become gradually smaller as it shifts to the one on the side is disclosed in JP-A-63-2137.
It is known from Japanese Patent Publication No. 23. According to this catalytic combustor, since the flow velocity of the air-fuel mixture in each catalyst supporting portion is different,
It is possible to select a catalyst supporting portion in which the flow rate of the air-fuel mixture is appropriate according to the operating state of the engine, and burn the air-fuel mixture in a stable state in the catalyst supporting portion.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来のガスタービンエンジン用燃焼器は、複数の触媒担持
部の流路断面積が上流側のものから下流側のものへと次
第に小さくなるように形成されているため、上流側の触
媒担持部において燃料が触媒と接触して燃焼することに
より発生した燃焼ガスが、必ず下流側の流路断面積が小
さい触媒担持部を通過することになる。その結果、触媒
燃焼器における圧損が増加してエンジンの出力に悪影響
を及ぼす問題がある。
However, the above-described conventional gas turbine engine combustor is formed so that the flow passage cross-sectional areas of the plurality of catalyst carrying portions gradually decrease from the upstream side to the downstream side. Therefore, the combustion gas generated by the combustion of the fuel in contact with the catalyst in the upstream catalyst supporting portion always passes through the downstream catalyst supporting portion having a small flow passage cross-sectional area. As a result, there is a problem that the pressure loss in the catalytic combustor increases and the output of the engine is adversely affected.

【0005】本発明は前述の事情に鑑みてなされたもの
で、例えばガスタービンエンジンの種々の負荷領域にお
いて、触媒燃焼器での圧損の増加を招くことなく安定し
た燃焼を行わせることを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to perform stable combustion in various load regions of a gas turbine engine without increasing pressure loss in the catalytic combustor. To do.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、触媒燃焼器の触媒担持部に担持した触媒
に燃料と空気の混合気を接触させて燃焼させる触媒燃焼
器において、前記触媒燃焼器を流れる空気流の方向に沿
って直列に配設され、その流路断面積が上流側のものか
ら下流側のものへと次第に大きくなるように形成された
複数の触媒担持部と、前記複数の触媒担持部にそれぞれ
対応して設けられ、低負荷運転時に前記流路断面積の小
さい触媒担持部に燃料を供給するとともに高負荷運転時
に前記流路断面積の大きい触媒担持部に燃料を供給する
複数の燃料ノズルとを備えたことを第1の特徴とする。
In order to achieve the above object, the present invention provides a catalytic combustor in which a mixture of fuel and air is brought into contact with a catalyst carried by a catalyst supporting portion of the catalyst combustor to burn the catalyst. A plurality of catalyst supporting portions which are arranged in series along the direction of the air flow flowing through the catalytic combustor, and whose flow passage cross-sectional areas gradually increase from upstream to downstream. A plurality of catalyst supporting portions are provided corresponding to each of the catalyst supporting portions, and fuel is supplied to the catalyst supporting portion having a small flow passage cross-sectional area during low load operation, and to the catalyst supporting portion having a large flow passage cross sectional area during high load operation. The first feature is that a plurality of fuel nozzles for supplying fuel are provided.

【0007】また本発明は前述の第1の特徴に加えて、
前記各触媒担持部の上流にそれぞれ空気導入口を設けた
ことを第2の特徴とする。
In addition to the first feature described above, the present invention also provides
A second feature is that an air inlet is provided upstream of each catalyst supporting portion.

【0008】[0008]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1〜図4は本発明の第1実施例を示すも
ので、図1はガスタービンエンジンの縦断面図、図2は
図1の2−2線断面図、図3は図2の要部拡大断面図、
図4は図3の4−4線拡大断面図である。
1 to 4 show a first embodiment of the present invention. FIG. 1 is a vertical sectional view of a gas turbine engine, FIG. 2 is a sectional view taken along line 2-2 of FIG. 1, and FIG. 3 is FIG. An enlarged cross-sectional view of the main part of
FIG. 4 is an enlarged sectional view taken along line 4-4 of FIG.

【0010】図1および図2に示すように、2軸式のガ
スタービンエンジンGは有底円筒状のアウタケーシング
1と、このアウタケーシング1の後部開口に接続される
環状の熱交換器ハウジング2と、この熱交換器ハウジン
グ2の後部を覆うエグゾーストハウジング3とを備え
る。アウタケーシング1の前部にはエアクリーナ4とサ
イレンサ5を備えた吸気通路6が接続され、またエグゾ
ーストハウジング3の中心には減速機ボックス7が配設
されるとともに、そのエグゾーストハウジング3の下部
には排気ダクト8が接続される。
As shown in FIGS. 1 and 2, a two-shaft gas turbine engine G has a bottomed cylindrical outer casing 1 and an annular heat exchanger housing 2 connected to a rear opening of the outer casing 1. And an exhaust housing 3 that covers the rear part of the heat exchanger housing 2. An intake passage 6 having an air cleaner 4 and a silencer 5 is connected to the front portion of the outer casing 1, a reduction gear box 7 is arranged at the center of the exhaust housing 3, and a lower portion of the exhaust housing 3 is provided. The exhaust duct 8 is connected.

【0011】アウタケーシング1に形成した中央開口部
の前後には、前記吸気通路6から吸入した空気を圧縮す
る遠心式のコンプレッサ9と、このコンプレッサ9を駆
動する遠心式の高圧タービン10が配設されるととも
に、その後方には出力を取り出すための軸流式の低圧タ
ービン11が配設され、更にアウタケーシング1の上部
空間には前記高圧タービン10と低圧タービン11を駆
動するための燃焼ガスを発生させる触媒燃焼器12が配
設される。アウタケーシング1には筒状の燃焼器ハウジ
ング41が貫通するように固着され(図2参照)、この
燃焼器ハウジング41を介してアウタケーシング1の外
部から触媒燃焼器12が着脱自在に装着される。また熱
交換器ハウジング2に内部には、前記両タービン10,
11を通過した排気ガスの熱エネルギーを回収して吸入
空気を加熱するための環状の熱交換器13が前記減速機
ボックス7を外周を囲繞するように配設され、その減速
機ボックス7の内部には低圧タービン11の出力を減速
して外部に取り出す遊星歯車式の減速機14が配設され
る。
A centrifugal compressor 9 for compressing the air sucked from the intake passage 6 and a centrifugal high-pressure turbine 10 for driving the compressor 9 are arranged before and after the central opening formed in the outer casing 1. In addition, an axial flow type low pressure turbine 11 for taking out the output is arranged behind the high pressure turbine 10 and a combustion gas for driving the low pressure turbine 11 in the upper space of the outer casing 1. A catalytic combustor 12 for generating is disposed. A cylindrical combustor housing 41 is fixed to the outer casing 1 so as to penetrate therethrough (see FIG. 2), and the catalytic combustor 12 is detachably mounted from the outside of the outer casing 1 via the combustor housing 41. .. Further, inside the heat exchanger housing 2, the two turbines 10,
An annular heat exchanger 13 for recovering the heat energy of the exhaust gas that has passed through 11 and heating the intake air is arranged so as to surround the speed reducer box 7 and the inside of the speed reducer box 7. A planetary gear type speed reducer 14 that decelerates the output of the low-pressure turbine 11 and takes it out is disposed therein.

【0012】アウタケーシング1に設けられたコンプレ
ッサケーシング15の中央部には高圧タービン軸16が
回転自在に支持され、その高圧タービン軸16には外周
に多数のブレードを形成したコンプレッサロータ17が
固定される。そして、前記吸気通路6からコンプレッサ
ケーシング15に吸入された空気はコンプレッサロータ
17で圧縮され、アウタケーシング1とインナケーシン
グ18との間に形成された放射状の空気通路19を通っ
て後方に供給される。なお、高圧タービン軸16の前端
は図示せぬ補器ハウジングに収納された発電機やスター
タ等の補機類に接続される。
A high-pressure turbine shaft 16 is rotatably supported at the center of a compressor casing 15 provided in the outer casing 1, and a compressor rotor 17 having a large number of blades on its outer periphery is fixed to the high-pressure turbine shaft 16. It The air sucked into the compressor casing 15 from the intake passage 6 is compressed by the compressor rotor 17 and is supplied rearward through a radial air passage 19 formed between the outer casing 1 and the inner casing 18. .. The front end of the high-pressure turbine shaft 16 is connected to auxiliary equipment such as a generator and a starter housed in an auxiliary equipment housing (not shown).

【0013】高圧タービン軸16の後端には外周に多数
のブレードを形成した高圧タービンロータ20が固着さ
れ、その高圧タービンロータ20はバックプレート21
と高圧タービンシュラウド22の間に収納される。高圧
タービンシュラウド22の外側には触媒燃焼器12にト
ランジェントダクト23を介して接続された同じくスク
ロール24が配設され、そのスクロール24の内周と前
記高圧タービンロータ20の外周との間には複数のノズ
ルベーン25が設けられる。スクロール24は複数のサ
ポート機構26により外周から支持され、トランジェン
トダクト23は他のサポート機構27,28により支持
される。
A high pressure turbine rotor 20 having a large number of blades formed on its outer periphery is fixed to the rear end of the high pressure turbine shaft 16, and the high pressure turbine rotor 20 has a back plate 21.
And the high pressure turbine shroud 22. A scroll 24, which is connected to the catalytic combustor 12 via a transient duct 23, is also provided outside the high-pressure turbine shroud 22, and a plurality of scrolls are provided between the inner periphery of the scroll 24 and the outer periphery of the high-pressure turbine rotor 20. Nozzle vanes 25 are provided. The scroll 24 is supported from the outer periphery by a plurality of support mechanisms 26, and the transient duct 23 is supported by other support mechanisms 27 and 28.

【0014】アウタケーシング1の後部に接続された熱
交換器ハウジング2の前端にはコレクタハウジング29
が支持され、その中央部には低圧タービン軸30が支持
される。低圧タービン軸30の先端には低圧タービンロ
ータ31が固着され、その外周に形成した多数のブレー
ドは低圧タービンシュラウド32の内面に嵌合する。低
圧タービンシュラウド32と前記高圧タービンシュラウ
ド22の間は、後端に可変静翼33を有する低圧タービ
ンダクト34によって接続される。そして低圧タービン
軸30は前記減速機14を介して出力軸35に接続され
る。
A collector housing 29 is provided at the front end of the heat exchanger housing 2 connected to the rear portion of the outer casing 1.
Is supported, and the low-pressure turbine shaft 30 is supported in the center thereof. A low pressure turbine rotor 31 is fixed to the tip of the low pressure turbine shaft 30, and a large number of blades formed on the outer periphery of the low pressure turbine rotor 31 are fitted to the inner surface of the low pressure turbine shroud 32. The low pressure turbine shroud 32 and the high pressure turbine shroud 22 are connected by a low pressure turbine duct 34 having a variable vane 33 at the rear end. The low-pressure turbine shaft 30 is connected to the output shaft 35 via the speed reducer 14.

【0015】コレクタハウジング29の上半部には円弧
状の開口291 が形成され、前記空気通路19からエグ
ゾーストハウジング3の上部に集合した後に熱交換器1
3の上半部を通過して加熱された空気が、この開口29
1 を介してインナケーシング18の内部に供給される。
一方、コレクタハウジング29の下半部には、低圧ター
ビンシュラウド32を通過した排気ガスを熱交換器13
の下半部に導くための排気ガス通路292 が形成され
る。
An arcuate opening 29 1 is formed in the upper half of the collector housing 29, and the heat exchanger 1 is assembled from the air passage 19 to the upper part of the exhaust housing 3.
The air that has been heated by passing through the upper half of
It is supplied to the inside of the inner casing 18 via 1 .
On the other hand, in the lower half of the collector housing 29, the exhaust gas that has passed through the low-pressure turbine shroud 32 is placed in the heat exchanger 13.
An exhaust gas passage 29 2 for leading to the lower half portion is formed.

【0016】熱交換器13の外周には360°にわたっ
てリングギヤ36が装着され、そのリングギヤ36の前
部に形成された平坦な支持面が熱交換器ハウジング2の
内周に設けた複数のガイドローラ37により回転自在に
支持される。1個のガイドローラ37を支持する回転軸
38には前記リングギヤ36に噛合するピニオン39が
固着され、その回転軸38を熱交換器駆動モータ40で
回転させることにより熱交換器13が回転駆動される。
A ring gear 36 is mounted on the outer circumference of the heat exchanger 13 over 360 °, and a flat support surface formed on the front portion of the ring gear 36 has a plurality of guide rollers provided on the inner circumference of the heat exchanger housing 2. It is rotatably supported by 37. A pinion 39 that meshes with the ring gear 36 is fixed to a rotary shaft 38 that supports one guide roller 37, and the heat exchanger 13 is rotated by rotating the rotary shaft 38 by a heat exchanger drive motor 40. It

【0017】図3に示すように、触媒燃焼器12は上流
側の小径部42と下流側の大径部43とを有し、大径部
43の末端は前記トランジェントダクト23に接続され
る。小径部42の外周には、熱交換器13を通過して加
熱された高温空気を触媒燃焼器12の内部に導入するた
めの複数の空気導入口421 が形成される。小径部42
と大径部43にはそれぞれ触媒担持部44,45が設け
られ、各触媒担持部44,45の上流にそれぞれ燃料ノ
ズル46,47が配設される。下流側の触媒担持部45
の流路断面積は、上流側の触媒担持部44の流路断面積
に比べて大きく形成される。また前記小径部42の上流
端には、ガスタービンエンジンGの始動時に燃料を供給
する燃料ノズル51と混合気を着火するための点火プラ
グ48が設けられる。
As shown in FIG. 3, the catalytic combustor 12 has a small diameter portion 42 on the upstream side and a large diameter portion 43 on the downstream side, and the end of the large diameter portion 43 is connected to the transient duct 23. A plurality of air introduction ports 42 1 for introducing high temperature air, which has passed through the heat exchanger 13 and heated, into the catalytic combustor 12 is formed on the outer periphery of the small diameter portion 42. Small diameter part 42
The large diameter portion 43 is provided with catalyst carrying portions 44 and 45, respectively, and the fuel nozzles 46 and 47 are provided upstream of the catalyst carrying portions 44 and 45, respectively. Downstream catalyst carrier 45
The cross-sectional area of the channel is larger than the cross-sectional area of the catalyst supporting portion 44 on the upstream side. At the upstream end of the small diameter portion 42, a fuel nozzle 51 for supplying fuel and a spark plug 48 for igniting the air-fuel mixture when the gas turbine engine G is started are provided.

【0018】図4に示すように、下流側の触媒担持部4
5はハニカム状に形成され、混合気と接触する表面には
触媒49が担持される。前記触媒49には貴金属系のも
のと非貴金属系のものが使用可能であり、貴金属系触媒
としてはPt,Pt−Ir,Pt−Pd,Pt−Ni
O,Pt−Co2 2 ,Pt−Pd−NiO,Pt−A
g等があり、また非貴金属系触媒としてはMnO2 ,C
2 2 ,Co2 4 ,CuO等がある。尚、上流側の
触媒担持部44の構造も上述と同様であり、その流路断
面積のみが異なっている。
As shown in FIG. 4, the catalyst carrier 4 on the downstream side
The numeral 5 is formed in a honeycomb shape, and the catalyst 49 is carried on the surface in contact with the air-fuel mixture. As the catalyst 49, noble metal-based catalysts and non-noble metal-based catalysts can be used, and Pt, Pt—Ir, Pt—Pd, Pt—Ni can be used as the noble metal catalysts.
O, Pt-Co 2 O 2 , Pt-Pd-NiO, Pt-A
g, etc., and as a non-precious metal type catalyst, MnO 2 , C
There are o 2 O 2 , Co 2 O 4 , CuO and the like. The structure of the upstream catalyst support portion 44 is the same as that described above, and only the flow passage cross-sectional area is different.

【0019】次に、前述の構成を備えた本発明の実施例
の作用について説明する。
Next, the operation of the embodiment of the present invention having the above construction will be described.

【0020】エアクリーナ4およびサイレンサ5を通過
して吸気通路6に流入した空気は、コンプレッサケーシ
ング15内部に配設したコンプレッサロータ17により
高温高圧に圧縮され、アウタケーシング1とインナケー
シング18間に形成された放射状の空気通路19を介し
て後方に送られる。前記空気通路19からエグゾースト
ハウジング3の内部に達した吸入空気は、そのエグゾー
ストハウジング3の上部空間に集合した後、前方に向き
を変えて回転式の熱交換器13のコア面の上半部を後か
ら前に通過する。このように熱交換器13を通過して更
に高温に加熱された空気は、コレクタハウジング29の
上部に形成した開口部291 を通ってインナケーシング
18の内部空間に流入する。
The air that has passed through the air cleaner 4 and the silencer 5 and has flowed into the intake passage 6 is compressed into high temperature and high pressure by the compressor rotor 17 disposed inside the compressor casing 15, and is formed between the outer casing 1 and the inner casing 18. It is sent to the rear via a radial air passage 19. The intake air that has reached the inside of the exhaust housing 3 from the air passage 19 gathers in the upper space of the exhaust housing 3 and then turns to the front to move the upper half of the core surface of the rotary heat exchanger 13 to the front side. Pass from the back to the front. The air that has passed through the heat exchanger 13 and is heated to a higher temperature in this way flows into the inner space of the inner casing 18 through the opening 29 1 formed in the upper portion of the collector housing 29.

【0021】インナケーシング18の内部空間に供給さ
れた吸入空気は、空気導入口421から触媒燃焼器12
の小径部42に導入される。低負荷運転時には上流側の
燃料ノズル46から燃料が供給され、燃料と高温空気が
混合した混合気は上流側の触媒担持部44に流入し、そ
こで触媒49と接触して燃焼する。混合気の燃焼により
発生した燃焼ガスは触媒燃焼器12の大径部43に流入
し、そこに設けられた下流側の触媒担持部45を素通り
してトランジェントダクト23に流入する。燃焼ガスは
更にスクロール24に流入し、そこから6枚のノズルベ
ーン25を通って高圧タービンロータ20に吹き付けら
れる。
The intake air supplied to the inner space of the inner casing 18 is supplied from the air inlet 42 1 to the catalytic combustor 12
Is introduced into the small diameter portion 42 of the. During low load operation, fuel is supplied from the fuel nozzle 46 on the upstream side, and the air-fuel mixture in which the fuel and high temperature air are mixed flows into the catalyst carrier 44 on the upstream side, where it comes into contact with the catalyst 49 and burns. The combustion gas generated by the combustion of the air-fuel mixture flows into the large-diameter portion 43 of the catalyst combustor 12, passes through the downstream catalyst support portion 45 provided therein, and flows into the transient duct 23. The combustion gas further flows into the scroll 24, from which it is sprayed onto the high-pressure turbine rotor 20 through the six nozzle vanes 25.

【0022】このようにして高圧タービンロータ20が
回転すると、その駆動力により高圧タービン軸16に設
けた前記コンプレッサロータ17が回転する。高圧ター
ビンロータ20を通過した燃焼ガスは、低圧タービンダ
クト34および可変静翼33を介して低圧タービンロー
タ31に吹き付けられ、低圧タービン軸30を回転駆動
する。そして低圧タービン軸30の回転は減速機14に
より減速され、出力軸35から外部に取り出される。低
圧タービンロータ31を通過した排気ガスはコレクタハ
ウジング29の下部に形成した排気ガス通路292 によ
って集められた後、回転式の熱交換器13のコア面の下
半部を前から後ろに通過して該熱交換器13を加熱し、
排気ダクト8に排出される。このようにして排気ガスで
加熱された熱交換器13は、熱交換器駆動モータ40に
よりピニオン39およびリングギヤ36を介して回転駆
動され、前記加熱されたコア面が順次吸入空気の通路に
対向して吸入空気を加熱する。
When the high-pressure turbine rotor 20 rotates in this manner, the driving force thereof causes the compressor rotor 17 provided on the high-pressure turbine shaft 16 to rotate. The combustion gas that has passed through the high-pressure turbine rotor 20 is blown onto the low-pressure turbine rotor 31 via the low-pressure turbine duct 34 and the variable vanes 33, and rotationally drives the low-pressure turbine shaft 30. The rotation of the low-pressure turbine shaft 30 is decelerated by the speed reducer 14 and taken out from the output shaft 35. After the exhaust gas passing through the low-pressure turbine rotor 31 is collected by the exhaust gas passage 29 2 formed in the lower portion of the collector housing 29, it passes from the front lower half of the core surface of the rotary heat exchanger 13 back To heat the heat exchanger 13,
It is discharged to the exhaust duct 8. The heat exchanger 13 thus heated by the exhaust gas is rotationally driven by the heat exchanger drive motor 40 via the pinion 39 and the ring gear 36, and the heated core surface sequentially faces the passage of the intake air. To heat the intake air.

【0023】高負荷運転時には下流側の燃料ノズル47
から燃料が供給される。したがって、空気導入口421
から触媒燃焼器12の小径部42に導入された高温空気
は、上流側の触媒担持部44を素通りして大径部43に
達し、前記燃料ノズル47からの燃料と混合する。混合
気は下流側の触媒担持部45に流入し、そこで触媒49
と接触して燃焼する。
During high load operation, the fuel nozzle 47 on the downstream side
Fuel is supplied from. Therefore, the air inlet 42 1
The high-temperature air introduced into the small-diameter portion 42 of the catalytic combustor 12 from the above reaches the large-diameter portion 43 without passing through the catalyst supporting portion 44 on the upstream side, and is mixed with the fuel from the fuel nozzle 47. The air-fuel mixture flows into the catalyst supporting portion 45 on the downstream side, where the catalyst 49
Burns in contact with.

【0024】上述のように、低負荷運転時には上流側の
触媒担持部44で混合気の燃焼が行われ、また高負荷運
転時には下流側の触媒担持部45で混合気の燃焼が行わ
れるため、触媒燃焼器12における圧損を軽減すること
ができる。すなわち、低負荷運転時に上流側の触媒担持
部44で発生する燃焼ガスは比較的少量であるため、そ
の燃焼ガスが充分に大きい流路断面積を有する下流側の
触媒担持部45を素通りする際の圧損は極僅かなもので
済む。一方、高負荷運転時に上流側の触媒担持部44を
素通りする吸入空気の量は燃焼ガスの量に比べて遙かに
少量であるため、その上流側の触媒担持部44における
圧損も僅かなものとなる。
As described above, the air-fuel mixture is burned in the upstream catalyst carrying portion 44 during the low load operation, and the air-fuel mixture is burned in the downstream catalyst carrying portion 45 during the high load operation. The pressure loss in the catalytic combustor 12 can be reduced. That is, since a relatively small amount of combustion gas is generated in the upstream catalyst support portion 44 during low load operation, when the combustion gas passes through the downstream catalyst support portion 45 having a sufficiently large flow passage cross-sectional area. The pressure loss of is very small. On the other hand, since the amount of intake air passing through the upstream catalyst support portion 44 during high load operation is much smaller than the amount of combustion gas, the pressure loss in the upstream catalyst support portion 44 is also small. Becomes

【0025】更に、低負荷運転時には触媒燃焼器12に
導入される吸入空気量が少いために発生する混合気量も
少なくなるが、混合気が燃焼する上流側の触媒担持部4
4の流路断面積も前記混合気量に見合って小さくなる。
一方、高負荷運転時には触媒燃焼器12に導入される吸
入空気量が多いために発生する混合気量も多くなるが、
混合気が燃焼する下流側の触媒担持部45の流路断面積
も前記混合気量に見合って大きくなる。したがって、低
負荷運転時および高負荷運転時の何れの場合にも、両触
媒担持部44,45を通過する混合気の流速と空燃比を
適切な値に保持し、安定した燃焼性能を確保することが
可能となる。
Further, at the time of low load operation, the amount of the air-fuel mixture generated is small because the amount of intake air introduced into the catalyst combustor 12 is small, but the catalyst carrier 4 on the upstream side where the air-fuel mixture burns.
The cross-sectional area of the flow path of No. 4 also becomes small in proportion to the amount of the air-fuel mixture.
On the other hand, during high load operation, the amount of intake air introduced into the catalytic combustor 12 is large, so the amount of air-fuel mixture generated is also large,
The flow passage cross-sectional area of the catalyst supporting portion 45 on the downstream side where the air-fuel mixture burns also increases in proportion to the air-fuel mixture amount. Therefore, in both cases of low load operation and high load operation, the flow velocity and air-fuel ratio of the air-fuel mixture passing through both catalyst supporting portions 44, 45 are maintained at appropriate values, and stable combustion performance is secured. It becomes possible.

【0026】図5は本発明の第2実施例を示すもので、
この実施例の触媒燃焼器12は、その大径部43に設け
た下流側の触媒担持部45に対応して空気導入口431
を備える。この空気導入口431 は大径部43の外周に
摺動自在に支持されて図示せぬアクチュエータで駆動さ
れるリング状のシャッタ50によって開閉される。
FIG. 5 shows a second embodiment of the present invention.
The catalyst combustor 12 of this embodiment has an air inlet 43 1 corresponding to the downstream side catalyst carrying portion 45 provided in the large diameter portion 43.
Equipped with. The air inlet 43 1 is slidably supported on the outer circumference of the large diameter portion 43 and is opened and closed by a ring-shaped shutter 50 driven by an actuator (not shown).

【0027】而して、上流側の触媒担持部44において
混合気の燃焼が行われる低負荷運転時には、前記シャッ
タ50は閉じられ、前述の第1実施例と同様の運転が行
われる。高負荷運転時には前記前記シャッタ50が開か
れ、吸入空気は小径部42の空気導入口421 を通過す
ることなく、大径部43の空気導入口431 から直接下
流側の触媒担持部45に供給される。これにより、吸入
空気が上流側の触媒担持部44を通過する必要がなくな
り、その触媒担持部44における圧損を回避することが
可能となる。
Thus, during a low load operation in which the air-fuel mixture is burned in the upstream catalyst carrier 44, the shutter 50 is closed and the same operation as in the first embodiment is performed. During high-load operation, the shutter 50 is opened, and the intake air does not pass through the air introduction port 42 1 of the small diameter portion 42 but directly flows from the air introduction port 43 1 of the large diameter portion 43 to the catalyst carrying portion 45 on the downstream side. Supplied. This eliminates the need for the intake air to pass through the upstream catalyst support portion 44, so that the pressure loss in the catalyst support portion 44 can be avoided.

【0028】以上、本発明の実施例を詳述したが、本発
明は、前記実施例に限定されるものでなく、種々の小設
計変更を行うことが可能である。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various small design changes can be made.

【0029】例えば、実施例では2個の触媒担持部4
4,45を直列に設けているが、3個以上の触媒担持部
を直列に設けることも可能である。
For example, in the embodiment, two catalyst supporting parts 4 are used.
Although 4, 45 are provided in series, it is also possible to provide three or more catalyst supporting portions in series.

【0030】[0030]

【発明の効果】以上のように本発明の第1の特徴によれ
ば、空気流量の小さい低負荷運転時には上流側に設けた
流路断面積の小さい触媒担持部に燃料を供給して燃焼さ
せ、また空気流量の大きい高負荷運転時には下流側に設
けた流路断面積の大きい触媒担持部に燃料を供給して燃
焼させることにより、各触媒担持部において触媒と接触
する混合気の流速および空燃比を均一化して安定した燃
焼を行わしめることが可能となる。しかも、燃焼ガスが
通過する下流側の触媒担持部の流路断面積が上流側の触
媒担持部の流路断面積よりも大きく形成されているた
め、触媒燃焼器における圧損を最小限に止めることがで
きる。
As described above, according to the first feature of the present invention, at the time of low load operation with a small air flow rate, fuel is supplied to the catalyst supporting portion provided on the upstream side and having a small flow passage cross-sectional area for combustion. During high-load operation with a large air flow rate, the fuel is supplied to the catalyst-supporting portion with a large flow passage cross-sectional area provided on the downstream side to burn the catalyst-supporting portion. It is possible to make the fuel ratio uniform and perform stable combustion. Moreover, since the flow passage cross-sectional area of the downstream catalyst support portion through which the combustion gas passes is formed larger than the flow passage cross-sectional area of the upstream catalyst support portion, the pressure loss in the catalyst combustor should be minimized. You can

【0031】また本発明の第2の特徴によれば、各触媒
担持部の上流にそれぞれ空気導入口を設けたので、燃料
が供給される触媒担持部に直接空気を導入することによ
り、その上流側の触媒燃焼器における圧損を回避するこ
とが可能となる。
Further, according to the second aspect of the present invention, since the air inlets are provided upstream of the respective catalyst supporting portions, the air is directly introduced into the catalyst supporting portion to which the fuel is supplied, so that the air is introduced upstream. It is possible to avoid pressure loss in the side catalytic combustor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係るガスタービンエンジ
ンの縦断面図
FIG. 1 is a vertical sectional view of a gas turbine engine according to a first embodiment of the present invention.

【図2】図1の2−2線断面図FIG. 2 is a sectional view taken along line 2-2 of FIG.

【図3】図2の要部拡大断面図FIG. 3 is an enlarged cross-sectional view of the main part of FIG.

【図4】図3の4−4線拡大断面図4 is an enlarged sectional view taken along line 4-4 of FIG.

【図5】本発明の第2実施例に係る、前記図3に対応す
る図
FIG. 5 is a diagram corresponding to FIG. 3 according to a second embodiment of the present invention.

【符号の説明】 12 触媒燃焼器 421 空気導入口 431 空気導入口 44 触媒担持部 45 触媒担持部 46 燃料ノズル 47 燃料ノズル 49 触媒[Description of Reference Signs] 12 catalyst combustor 42 1 air inlet 43 1 air inlet 44 catalyst carrier 45 catalyst carrier 46 fuel nozzle 47 fuel nozzle 49 catalyst

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 触媒燃焼器(12)の触媒担持部(4
4,45)に担持した触媒(49)に燃料と空気の混合
気を接触させて燃焼させる触媒燃焼器において、 前記触媒燃焼器(12)を流れる空気流の方向に沿って
直列に配設され、その流路断面積が上流側のものから下
流側のものへと次第に大きくなるように形成された複数
の触媒担持部(44,45)と、前記複数の触媒担持部
(44,45)にそれぞれ対応して設けられ、低負荷運
転時に前記流路断面積の小さい触媒担持部(44)に燃
料を供給するとともに高負荷運転時に前記流路断面積の
大きい触媒担持部(45)に燃料を供給する複数の燃料
ノズル(46,47)とを備えたことを特徴とする触媒
燃焼器。
1. A catalyst supporting portion (4) of a catalyst combustor (12).
A catalyst combustor in which a mixture of fuel and air is brought into contact with a catalyst (49) carried on a catalyst (4, 45) to burn, the catalyst combustors (12) being arranged in series along a direction of an air flow flowing through the catalyst combustor (12). , A plurality of catalyst supporting parts (44, 45) formed so that their flow passage cross-sectional areas gradually increase from upstream side to downstream side, and the plurality of catalyst supporting parts (44, 45) Fuel is supplied to the catalyst carrying portion (44) having a small flow passage cross-sectional area, which is provided corresponding to each other, at the time of low load operation, and fuel is supplied to the catalyst carrying portion (45) having a large flow passage cross-sectional area during high load operation. A catalytic combustor comprising a plurality of fuel nozzles (46, 47) for supplying.
【請求項2】 前記各触媒担持部(44,45)の上流
にそれぞれ空気導入口(421 ,431 )を設けたこと
を特徴とする、請求項1記載の触媒燃焼器。
2. The catalytic combustor according to claim 1 , wherein air inlets (42 1 , 43 1 ) are provided upstream of each of the catalyst supporting parts (44, 45).
JP5281992A 1992-03-11 1992-03-11 Catalytic burner Pending JPH05256165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5281992A JPH05256165A (en) 1992-03-11 1992-03-11 Catalytic burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5281992A JPH05256165A (en) 1992-03-11 1992-03-11 Catalytic burner

Publications (1)

Publication Number Publication Date
JPH05256165A true JPH05256165A (en) 1993-10-05

Family

ID=12925456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5281992A Pending JPH05256165A (en) 1992-03-11 1992-03-11 Catalytic burner

Country Status (1)

Country Link
JP (1) JPH05256165A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729967A (en) * 1995-10-02 1998-03-24 Abb Research Ltd. Method of operating a gas turbine on reformed fuel
US10941701B2 (en) 2016-07-15 2021-03-09 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Supercharging system and internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729967A (en) * 1995-10-02 1998-03-24 Abb Research Ltd. Method of operating a gas turbine on reformed fuel
US10941701B2 (en) 2016-07-15 2021-03-09 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Supercharging system and internal combustion engine

Similar Documents

Publication Publication Date Title
US9726113B2 (en) Turbine engine assembly and methods of assembling same
EP1403485B1 (en) Gas turbine engine with low pressure turbine comprising counter rotatable low pressure inner and outer shaft turbines
CA2435360C (en) Aircraft gas turbine engine with control vanes for counter rotating low pressure turbines
JP4920228B2 (en) Method and apparatus for assembling a gas turbine engine
EP2351967B1 (en) Connecting structure for combustor
US20040055275A1 (en) Counter rotating fan aircraft gas turbine engine with aft booster
US11549686B2 (en) Combustor for a gas turbine engine
US5274997A (en) Gas turbine engine
US6308513B1 (en) Turbine and gas turbine
US3937009A (en) Torque-jet engine
US8024931B2 (en) Combustor for turbine engine
EP1828591A1 (en) Peripheral combustor for tip turbine engine
JPH05256165A (en) Catalytic burner
JPH05256164A (en) Catalytic burner
JP2745352B2 (en) Gas turbine engine
JP5173720B2 (en) Combustor connection structure and gas turbine
JP3924826B2 (en) Engine with catalyst
JPH05256163A (en) Catalytic burner
US4757682A (en) Axial flow turbine
CN110848026A (en) Turbofan aircraft engine and combustion chamber thereof
JPH05256162A (en) Gas-turbine engine
JPH05256161A (en) Gas-turbine engine
JPH0476231A (en) Gas turbine engine
JP2012180843A (en) Design method of combustor tail pipe
JPH0476230A (en) Gas turbine engine