JPH05256406A - Catalyst combustor - Google Patents

Catalyst combustor

Info

Publication number
JPH05256406A
JPH05256406A JP4052816A JP5281692A JPH05256406A JP H05256406 A JPH05256406 A JP H05256406A JP 4052816 A JP4052816 A JP 4052816A JP 5281692 A JP5281692 A JP 5281692A JP H05256406 A JPH05256406 A JP H05256406A
Authority
JP
Japan
Prior art keywords
catalyst
fuel
preheater
air
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4052816A
Other languages
Japanese (ja)
Other versions
JP2745352B2 (en
Inventor
Noriyuki Kishi
則行 岸
Naomi Warashina
直美 藁科
Shunpei Hasegawa
俊平 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP4052816A priority Critical patent/JP2745352B2/en
Publication of JPH05256406A publication Critical patent/JPH05256406A/en
Application granted granted Critical
Publication of JP2745352B2 publication Critical patent/JP2745352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve combustion efficiency of mixture in a gas turbine engine in which a preheater is provided in the upstream of a catalyst combustor. CONSTITUTION:An electric preheater 45 connected to a power source 44 is provided in a small diameter part 42 on the upstream side of a catalyst combustor 12, and a catalyst carrying part 46 to carry a catalyst and a fuel nozzle 47 are provided at the downstream side. At a time of engine start, suction air sucked through an air inlet 421 is heated by a preheater 45 until the air temperature becomes higher than a catalyst activation temperature. The high temperature air is mixed with fuel jetted from the fuel nozzle 47, and then supplied to the catalyst carrying part 46, where it comes into contact with the catalyst so that it burns. The fuel supplied from the fuel nozzle 47 is mixed with the high temperature airstream having passed through the preheater 45. By this, vaporization of the fuel is promoted and uniform mixture of air and fuel is obtained. Thus. combustion efficiency is greatly improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、触媒燃焼器の触媒担持
部に担持した触媒に燃料と空気の混合気を接触させて燃
焼させる触媒燃焼器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst combustor which causes a mixture of fuel and air to come into contact with a catalyst carried by a catalyst supporting portion of the catalyst combustor to burn the catalyst.

【0002】[0002]

【従来の技術】レシプロエンジンと同様にガスタービン
エンジンにおいても排気ガス中に有害な窒素酸化物(以
下NOX という)が発生し、そのNOX の排出量は混合
気の燃焼温度が高いほど増加する。従来のガスタービン
エンジン用燃焼器では、混合気の燃焼温度が極めて高温
(例えば2000°C)に達するために、NOX の排出
量を低減することが困難であった。そこで、燃焼器の内
部に設けた触媒に混合気を接触させて燃焼させる、所謂
触媒燃焼方式の燃焼器が提案されている。かかる触媒燃
焼方式によれば、燃焼器における混合気の燃焼が比較的
低温で行われるため、排気ガス中のNOX を大幅に削減
することが可能となる。
2. Description of the Related Art As in a reciprocating engine, a gas turbine engine produces harmful nitrogen oxides (hereinafter referred to as NO X ) in the exhaust gas, and the NO X emission amount increases as the combustion temperature of the air-fuel mixture increases. To do. In the conventional combustor for a gas turbine engine, since the combustion temperature of the air-fuel mixture reaches an extremely high temperature (for example, 2000 ° C), it has been difficult to reduce the NO X emission amount. Therefore, a so-called catalytic combustion type combustor has been proposed in which the air-fuel mixture is brought into contact with a catalyst provided inside the combustor to burn the air-fuel mixture. According to the catalytic combustion method, since the combustion of the mixture in the combustor is relatively carried out at low temperatures, it is possible to significantly reduce the NO X in the exhaust gas.

【0003】ところで、前記触媒はその温度が所定の触
媒活性化温度(通常400°C〜500°C程度)以上
にならないと機能しないため、触媒温度が常温状態にあ
るガスタービンエンジンの始動時には、何らかの方法で
触媒あるいは該触媒に接触する混合気の温度を前記触媒
活性化温度以上に高めてやる必要がある。そのために、
ガスタービンエンジンの始動時に触媒担持部の上流にプ
リヒータを設け、触媒担持部に供給される混合気の温度
を触媒活性化温度以上に予熱するものが知られている
(例えば、特公平3−36139号公報参照)。
By the way, since the catalyst does not function unless its temperature exceeds a predetermined catalyst activation temperature (usually about 400 ° C. to 500 ° C.), when the gas turbine engine is started at a normal temperature, It is necessary to raise the temperature of the catalyst or the air-fuel mixture that comes into contact with the catalyst to a temperature above the catalyst activation temperature by some method. for that reason,
It is known that a preheater is provided upstream of the catalyst supporting part at the time of starting the gas turbine engine to preheat the temperature of the air-fuel mixture supplied to the catalyst supporting part to the catalyst activation temperature or higher (for example, Japanese Patent Publication No. 3-36139). (See the official gazette).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、単に触
媒担持部の上流にプリヒータを設けるだけでは、混合気
の燃焼効率を充分に高めることができなかった。
However, the combustion efficiency of the air-fuel mixture cannot be sufficiently increased simply by providing the preheater upstream of the catalyst supporting portion.

【0005】本発明は前述の事情に鑑みてなされたもの
で、触媒担持部の上流にプリヒータを設けた触媒燃焼器
において、混合気の燃焼効率を一層向上させることを目
的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to further improve the combustion efficiency of an air-fuel mixture in a catalytic combustor in which a preheater is provided upstream of a catalyst supporting portion.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、触媒燃焼器の触媒担持部に担持した触媒
に燃料と空気の混合気を接触させて燃焼させるガスター
ビンエンジン用触媒燃焼器において、前記触媒担持部の
上流に電気式のプリヒータを設け、このプリヒータの下
流に燃料を供給することを第1の特徴とする。
To achieve the above object, the present invention is directed to a catalyst for a gas turbine engine, in which a mixture of fuel and air is brought into contact with a catalyst carried in a catalyst supporting portion of a catalytic combustor and burned. A first feature of the combustor is that an electric preheater is provided upstream of the catalyst supporting portion and fuel is supplied downstream of the preheater.

【0007】また本発明は前述の第1の特徴に加えて、
前記触媒担持部の少なくとも一部に触媒ヒータを設けた
ことを第2の特徴とする。
In addition to the first feature described above, the present invention also provides
A second feature is that a catalyst heater is provided on at least a part of the catalyst supporting portion.

【0008】また本発明は前述の第2の特徴に加えて、
前記プリヒータの下流から前記触媒ヒータに向けて燃料
を噴霧することを第3の特徴とする。
In addition to the above-mentioned second feature, the present invention also provides:
A third feature is that fuel is sprayed from the downstream of the preheater toward the catalyst heater.

【0009】また本発明は、触媒燃焼器の触媒担持部に
担持した触媒に燃料と空気の混合気を接触させて燃焼さ
せるガスタービンエンジン用触媒燃焼器において、前記
触媒担持部の上流に電気式のプリヒータを設けて該プリ
ヒータの上流に燃料を供給するとともに、前記プリヒー
タをハニカム構造として混合気の整流機能を持たせたこ
とを第4の特徴とする。
Further, according to the present invention, in a catalytic combustor for a gas turbine engine, in which a mixture of fuel and air is brought into contact with a catalyst carried in a catalyst carrying portion of the catalyst combustor to burn, an electric type is provided upstream of the catalyst carrying portion. The fourth feature is that the preheater is provided to supply the fuel upstream of the preheater and the preheater has a honeycomb structure to have a function of rectifying the air-fuel mixture.

【0010】また本発明は前述の第4の特徴に加えて、
前記プリヒータの上流から該プリヒータに向けて燃料を
噴霧することを第5の特徴とする。
The present invention, in addition to the above-mentioned fourth feature,
A fifth feature is that fuel is sprayed from upstream of the preheater toward the preheater.

【0011】[0011]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1〜図5は本発明の第1実施例を示すも
ので、図1はガスタービンエンジンの縦断面図、図2は
図1の2−2線断面図、図3は図2の要部拡大断面図、
図4は図3の4−4線拡大断面図、図5は図3の5−5
線拡大断面図である。
1 to 5 show a first embodiment of the present invention. FIG. 1 is a vertical sectional view of a gas turbine engine, FIG. 2 is a sectional view taken along line 2-2 of FIG. 1, and FIG. An enlarged cross-sectional view of the main part of
4 is an enlarged sectional view taken along line 4-4 of FIG. 3, and FIG.
It is a line expansion sectional view.

【0013】図1および図2に示すように、2軸式のガ
スタービンエンジンGは有底円筒状のアウタケーシング
1と、このアウタケーシング1の後部開口に接続される
環状の熱交換器ハウジング2と、この熱交換器ハウジン
グ2の後部を覆うエグゾーストハウジング3とを備え
る。アウタケーシング1の前部にはエアクリーナ4とサ
イレンサ5を備えた吸気通路6が接続され、またエグゾ
ーストハウジング3の中心には減速機ボックス7が配設
されるとともに、そのエグゾーストハウジング3の下部
には排気ダクト8が接続される。
As shown in FIGS. 1 and 2, a two-shaft type gas turbine engine G has a bottomed cylindrical outer casing 1 and an annular heat exchanger housing 2 connected to a rear opening of the outer casing 1. And an exhaust housing 3 that covers the rear part of the heat exchanger housing 2. An intake passage 6 having an air cleaner 4 and a silencer 5 is connected to the front portion of the outer casing 1, a reduction gear box 7 is arranged at the center of the exhaust housing 3, and a lower portion of the exhaust housing 3 is provided. The exhaust duct 8 is connected.

【0014】アウタケーシング1に形成した中央開口部
の前後には、前記吸気通路6から吸入した空気を圧縮す
る遠心式のコンプレッサ9と、このコンプレッサ9を駆
動する遠心式の高圧タービン10が配設されるととも
に、その後方には出力を取り出すための軸流式の低圧タ
ービン11が配設され、更にアウタケーシング1の上部
空間には前記高圧タービン10と低圧タービン11を駆
動するための燃焼ガスを発生させる触媒燃焼器12が配
設される。アウタケーシング1には筒状の燃焼器ハウジ
ング41が貫通するように固着され(図2参照)、この
燃焼器ハウジング41を介してアウタケーシング1の外
部から触媒燃焼器12が着脱自在に装着される。また熱
交換器ハウジング2に内部には、前記両タービン10,
11を通過した排気ガスの熱エネルギーを回収して吸入
空気を加熱するための環状の熱交換器13が前記減速機
ボックス7を外周を囲繞するように配設され、その減速
機ボックス7の内部には低圧タービン11の出力を減速
して外部に取り出す遊星歯車式の減速機14が配設され
る。
A centrifugal compressor 9 for compressing the air taken in from the intake passage 6 and a centrifugal high-pressure turbine 10 for driving the compressor 9 are arranged before and after the central opening formed in the outer casing 1. In addition, an axial flow type low pressure turbine 11 for taking out the output is arranged behind the high pressure turbine 10 and a combustion gas for driving the low pressure turbine 11 in the upper space of the outer casing 1. A catalytic combustor 12 for generating is disposed. A cylindrical combustor housing 41 is fixed to the outer casing 1 so as to penetrate therethrough (see FIG. 2), and the catalytic combustor 12 is detachably mounted from the outside of the outer casing 1 via the combustor housing 41. .. Further, inside the heat exchanger housing 2, the two turbines 10,
An annular heat exchanger 13 for recovering the heat energy of the exhaust gas that has passed through 11 and heating the intake air is arranged so as to surround the speed reducer box 7 and the inside of the speed reducer box 7. A planetary gear type speed reducer 14 that decelerates the output of the low-pressure turbine 11 and takes it out is disposed therein.

【0015】アウタケーシング1に設けられたコンプレ
ッサケーシング15の中央部には高圧タービン軸16が
回転自在に支持され、その高圧タービン軸16には外周
に多数のブレードを形成したコンプレッサロータ17が
固定される。そして、前記吸気通路6からコンプレッサ
ケーシング15に吸入された空気はコンプレッサロータ
17で圧縮され、アウタケーシング1とインナケーシン
グ18との間に形成された放射状の空気通路19を通っ
て後方に供給される。なお、高圧タービン軸16の前端
は図示せぬ補器ハウジングに収納された発電機やスター
タ等の補機類に接続される。
A high-pressure turbine shaft 16 is rotatably supported in the center of a compressor casing 15 provided in the outer casing 1, and a compressor rotor 17 having a large number of blades on its outer periphery is fixed to the high-pressure turbine shaft 16. It The air sucked into the compressor casing 15 from the intake passage 6 is compressed by the compressor rotor 17 and is supplied rearward through a radial air passage 19 formed between the outer casing 1 and the inner casing 18. .. The front end of the high-pressure turbine shaft 16 is connected to auxiliary equipment such as a generator and a starter housed in an auxiliary equipment housing (not shown).

【0016】高圧タービン軸16の後端には外周に多数
のブレードを形成した高圧タービンロータ20が固着さ
れ、その高圧タービンロータ20はバックプレート21
と高圧タービンシュラウド22の間に収納される。高圧
タービンシュラウド22の外側には触媒燃焼器12にト
ランジェントダクト23を介して接続された同じくスク
ロール24が配設され、そのスクロール24の内周と前
記高圧タービンロータ20の外周との間には複数のノズ
ルベーン25が設けられる。スクロール24は複数のサ
ポート機構26により外周から支持され、トランジェン
トダクト23は他のサポート機構27,28により支持
される。
A high pressure turbine rotor 20 having a large number of blades formed on its outer periphery is fixed to the rear end of the high pressure turbine shaft 16, and the high pressure turbine rotor 20 has a back plate 21.
And the high pressure turbine shroud 22. A scroll 24, which is connected to the catalytic combustor 12 via a transient duct 23, is also provided outside the high-pressure turbine shroud 22, and a plurality of scrolls are provided between the inner periphery of the scroll 24 and the outer periphery of the high-pressure turbine rotor 20. Nozzle vanes 25 are provided. The scroll 24 is supported from the outer periphery by a plurality of support mechanisms 26, and the transient duct 23 is supported by other support mechanisms 27 and 28.

【0017】アウタケーシング1の後部に接続された熱
交換器ハウジング2の前端にはコレクタハウジング29
が支持され、その中央部には低圧タービン軸30が支持
される。低圧タービン軸30の先端には低圧タービンロ
ータ31が固着され、その外周に形成した多数のブレー
ドは低圧タービンシュラウド32の内面に嵌合する。低
圧タービンシュラウド32と前記高圧タービンシュラウ
ド22の間は、後端に可変静翼33を有する低圧タービ
ンダクト34によって接続される。そして低圧タービン
軸30は前記減速機14を介して出力軸35に接続され
る。
A collector housing 29 is provided at the front end of the heat exchanger housing 2 connected to the rear portion of the outer casing 1.
Is supported, and the low-pressure turbine shaft 30 is supported in the center thereof. A low pressure turbine rotor 31 is fixed to the tip of the low pressure turbine shaft 30, and a large number of blades formed on the outer periphery of the low pressure turbine rotor 31 are fitted to the inner surface of the low pressure turbine shroud 32. The low pressure turbine shroud 32 and the high pressure turbine shroud 22 are connected by a low pressure turbine duct 34 having a variable vane 33 at the rear end. The low-pressure turbine shaft 30 is connected to the output shaft 35 via the speed reducer 14.

【0018】コレクタハウジング29の上半部には円弧
状の開口291 が形成され、前記空気通路19からエグ
ゾーストハウジング3の上部に集合した後に熱交換器1
3の上半部を通過して加熱された空気が、この開口29
1 を介してインナケーシング18の内部に供給される。
一方、コレクタハウジング29の下半部には、低圧ター
ビンシュラウド32を通過した排気ガスを熱交換器13
の下半部に導くための排気ガス通路292 が形成され
る。
A circular arc-shaped opening 29 1 is formed in the upper half of the collector housing 29, and the heat exchanger 1 is assembled from the air passage 19 to the upper part of the exhaust housing 3.
The air that has been heated by passing through the upper half of
It is supplied to the inside of the inner casing 18 via 1 .
On the other hand, in the lower half of the collector housing 29, the exhaust gas that has passed through the low-pressure turbine shroud 32 is placed in the heat exchanger 13.
An exhaust gas passage 29 2 for leading to the lower half portion is formed.

【0019】熱交換器13の外周には360°にわたっ
てリングギヤ36が装着され、そのリングギヤ36の前
部に形成された平坦な支持面が熱交換器ハウジング2の
内周に設けた複数のガイドローラ37により回転自在に
支持される。1個のガイドローラ37を支持する回転軸
38には前記リングギヤ36に噛合するピニオン39が
固着され、その回転軸38を熱交換器駆動モータ40で
回転させることにより熱交換器13が回転駆動される。
A ring gear 36 is mounted on the outer circumference of the heat exchanger 13 over 360 °, and a flat supporting surface formed on the front portion of the ring gear 36 is provided with a plurality of guide rollers provided on the inner circumference of the heat exchanger housing 2. It is rotatably supported by 37. A pinion 39 that meshes with the ring gear 36 is fixed to a rotary shaft 38 that supports one guide roller 37, and the heat exchanger 13 is rotated by rotating the rotary shaft 38 by a heat exchanger drive motor 40. It

【0020】図3に示すように、触媒燃焼器12は上流
側の小径部42と下流側の大径部43とを有し、大径部
43の末端は前記トランジェントダクト23に接続され
る。小径部42の外周には、熱交換器13を通過して加
熱された高温空気を触媒燃焼器12の内部に導入するた
めの複数の空気導入口421 が形成される。小径部42
には触媒燃焼器12に導入された吸入空気を加熱すべ
く、電源44に接続されたプリヒータ45が設けられ
る。大径部43には触媒担持部46と、その触媒担持部
46に向けて燃料を噴霧する燃料ノズル47が配設され
る。
As shown in FIG. 3, the catalytic combustor 12 has a small diameter portion 42 on the upstream side and a large diameter portion 43 on the downstream side, and the end of the large diameter portion 43 is connected to the transient duct 23. A plurality of air introduction ports 42 1 for introducing high temperature air, which has passed through the heat exchanger 13 and heated, into the catalytic combustor 12 is formed on the outer periphery of the small diameter portion 42. Small diameter part 42
In order to heat the intake air introduced into the catalytic combustor 12, a preheater 45 connected to a power source 44 is provided. The large diameter portion 43 is provided with a catalyst supporting portion 46 and a fuel nozzle 47 for spraying fuel toward the catalyst supporting portion 46.

【0021】図4に示すように、プリヒータ45はハニ
カム状に形成され、そこを通過する空気を整流する作用
を有する。
As shown in FIG. 4, the preheater 45 is formed in a honeycomb shape and has a function of rectifying the air passing therethrough.

【0022】図5に示すように、触媒担持部46もまた
ハニカム状に形成され、混合気と接触する表面には触媒
49が担持される。前記触媒49には貴金属系のものと
非貴金属系のものが使用可能であり、貴金属系触媒とし
てはPt,Pt−Ir,Pt−Pd,Pt−NiO,P
t−Co2 2 ,Pt−Pd−NiO,Pt−Ag等が
あり、また非貴金属系触媒としてはMnO2 ,Co2
2 ,Co2 4 ,CuO等がある。
As shown in FIG. 5, the catalyst carrying portion 46 is also formed in a honeycomb shape, and the catalyst 49 is carried on the surface which comes into contact with the air-fuel mixture. As the catalyst 49, a noble metal-based catalyst and a non-noble metal-based catalyst can be used. As the noble metal-based catalyst, Pt, Pt-Ir, Pt-Pd, Pt-NiO, P is used.
t-Co 2 O 2, Pt -Pd-NiO, there is Pt-Ag, etc., and as the non-noble metal-based catalyst MnO 2, Co 2 O
2 , Co 2 O 4 , CuO and the like.

【0023】次に、前述の構成を備えた本発明の実施例
の作用について説明する。
Next, the operation of the embodiment of the present invention having the above construction will be described.

【0024】ガスタービンエンジンGが通常運転状態に
あるとき、エアクリーナ4およびサイレンサ5を通過し
て吸気通路6に流入した空気は、コンプレッサケーシン
グ15内部に配設したコンプレッサロータ17により高
温高圧に圧縮され、アウタケーシング1とインナケーシ
ング18間に形成された放射状の空気通路19を介して
後方に送られる。前記空気通路19からエグゾーストハ
ウジング3の内部に達した吸入空気は、そのエグゾース
トハウジング3の上部空間に集合した後、前方に向きを
変えて回転式の熱交換器13のコア面の上半部を後から
前に通過する。このように熱交換器13を通過して更に
高温に加熱された空気は、コレクタハウジング29の上
部に形成した開口部291 を通ってインナケーシング1
8の内部空間に流入する。
When the gas turbine engine G is in a normal operating state, the air that has passed through the air cleaner 4 and the silencer 5 and has flowed into the intake passage 6 is compressed to a high temperature and high pressure by the compressor rotor 17 disposed inside the compressor casing 15. , Is sent rearward through a radial air passage 19 formed between the outer casing 1 and the inner casing 18. The intake air that has reached the inside of the exhaust housing 3 from the air passage 19 gathers in the upper space of the exhaust housing 3 and then turns to the front to move the upper half of the core surface of the rotary heat exchanger 13 to the front side. Pass from the back to the front. The air that has passed through the heat exchanger 13 and has been heated to a higher temperature in this way passes through the opening 29 1 formed in the upper portion of the collector housing 29 and the inner casing 1
8 flows into the internal space.

【0025】インナケーシング18の内部空間に供給さ
れた吸入空気は空気導入口421 から触媒燃焼器12の
小径部42に導入され、そこで通電されていないプリヒ
ータ45を素通りして大径部43に流入する。大径部4
3において燃料ノズル47から供給される燃料と吸入空
気が混合した混合気は触媒担持部46に流入し、そこで
触媒49と接触して燃焼する。混合気の燃焼により発生
した燃焼ガスはトランジェントダクト23からスクロー
ル24に流入し、そこから6枚のノズルベーン25を通
って高圧タービンロータ20に吹き付けられる。
The intake air supplied to the inner space of the inner casing 18 is introduced from the air inlet 42 1 into the small diameter portion 42 of the catalytic combustor 12, and passes through the preheater 45 which is not energized there to the large diameter portion 43. Inflow. Large diameter part 4
In 3, the air-fuel mixture in which the fuel supplied from the fuel nozzle 47 and the intake air are mixed flows into the catalyst supporting portion 46, where it comes into contact with the catalyst 49 and burns. Combustion gas generated by the combustion of the air-fuel mixture flows into the scroll 24 from the transient duct 23, and then is blown to the high-pressure turbine rotor 20 through the six nozzle vanes 25.

【0026】このようにして高圧タービンロータ20が
回転すると、その駆動力により高圧タービン軸16に設
けた前記コンプレッサロータ17が回転する。高圧ター
ビンロータ20を通過した燃焼ガスは、低圧タービンダ
クト34および可変静翼33を介して低圧タービンロー
タ31に吹き付けられ、低圧タービン軸30を回転駆動
する。そして低圧タービン軸30の回転は減速機14に
より減速され、出力軸35から外部に取り出される。低
圧タービンロータ31を通過した排気ガスはコレクタハ
ウジング29の下部に形成した排気ガス通路292 によ
って集められた後、回転式の熱交換器13のコア面の下
半部を前から後ろに通過して該熱交換器13を加熱し、
排気ダクト8に排出される。このようにして排気ガスで
加熱された熱交換器13は、熱交換器駆動モータ40に
よりピニオン39およびリングギヤ36を介して回転駆
動され、前記加熱されたコア面が順次吸入空気の通路に
対向して吸入空気を加熱する。
When the high-pressure turbine rotor 20 rotates in this way, the driving force thereof causes the compressor rotor 17 provided on the high-pressure turbine shaft 16 to rotate. The combustion gas that has passed through the high-pressure turbine rotor 20 is blown onto the low-pressure turbine rotor 31 via the low-pressure turbine duct 34 and the variable vanes 33, and rotationally drives the low-pressure turbine shaft 30. The rotation of the low-pressure turbine shaft 30 is decelerated by the speed reducer 14 and taken out from the output shaft 35. After the exhaust gas passing through the low-pressure turbine rotor 31 is collected by the exhaust gas passage 29 2 formed in the lower portion of the collector housing 29, it passes from the front lower half of the core surface of the rotary heat exchanger 13 back To heat the heat exchanger 13,
It is discharged to the exhaust duct 8. The heat exchanger 13 thus heated by the exhaust gas is rotationally driven by the heat exchanger drive motor 40 via the pinion 39 and the ring gear 36, and the heated core surface sequentially faces the passage of the intake air. To heat the intake air.

【0027】ところで、ガスタービンエンジンGの始動
時には熱交換器13が低温状態にあるため、触媒燃焼器
12に供給される吸入空気の温度は触媒49が機能する
触媒活性化温度以下の状態にある。そこで、始動時に電
源44から前記プリヒータ45に通電してそこを通過す
る空気を触媒活性化温度以上に加熱し、その加熱された
空気に燃料を混合した混合気を触媒担持部46に供給し
て着火させる。このようにして混合気が燃焼を開始する
と、排気ガスの熱が熱交換器13を介して吸入空気を加
熱するようになり、やがて触媒燃焼器12に供給される
吸入空気の温度が触媒活性化温度以上に上昇すれば、前
記プリヒータ45への通電を停止してもガスタービンエ
ンジンGの運転を継続することができる。
By the way, since the heat exchanger 13 is in a low temperature state when the gas turbine engine G is started, the temperature of the intake air supplied to the catalyst combustor 12 is below the catalyst activation temperature at which the catalyst 49 functions. .. Therefore, at the time of start-up, the preheater 45 is energized from the power source 44 to heat the air passing therethrough to the catalyst activation temperature or higher, and the mixture of the heated air and the fuel is supplied to the catalyst carrier 46. Ignite. When the air-fuel mixture starts combustion in this way, the heat of the exhaust gas heats the intake air via the heat exchanger 13, and the temperature of the intake air supplied to the catalytic combustor 12 eventually becomes catalytically activated. When the temperature rises above the temperature, the operation of the gas turbine engine G can be continued even if the power supply to the preheater 45 is stopped.

【0028】上述のように、プリヒータ45を通過した
高温の空気流中に燃料ノズル47で燃料を噴霧すること
により、その燃料の蒸発を促進して燃焼効率を向上させ
ることができる。しかもハニカム構造のプリヒータ45
を通過して流速分布が均一化された空気を触媒担持部4
6に供給することにより、燃料の安定した燃焼が可能と
なる。
As described above, by spraying the fuel with the fuel nozzle 47 into the high temperature air flow passing through the preheater 45, the evaporation of the fuel can be promoted and the combustion efficiency can be improved. Moreover, the preheater 45 having a honeycomb structure
The air having a uniform flow velocity distribution passing through the
By supplying to No. 6, stable combustion of fuel becomes possible.

【0029】図6は前述の第1実施例の変形例を示すも
ので、この変形例では燃料ノズル47をプリヒータ45
の上流に配設し、この燃料ノズル47からプリヒータ4
5に向けて燃料を噴霧するようになっている。これによ
り、燃料はハニカム構造のプリヒータ45の表面に接触
して蒸発が促進されるとともに、ハニカム構造のプリヒ
ータ45の整流作用で生成した混合気の流速分布が均一
化されるため、触媒担持部46において混合気を安定し
て燃焼させることができる。
FIG. 6 shows a modification of the above-described first embodiment. In this modification, the fuel nozzle 47 is connected to the preheater 45.
Disposed upstream of the preheater 4 from the fuel nozzle 47.
The fuel is sprayed toward No. 5. As a result, the fuel comes into contact with the surface of the preheater 45 having a honeycomb structure to promote evaporation, and the flow velocity distribution of the air-fuel mixture generated by the rectifying action of the preheater 45 having a honeycomb structure is made uniform. In, the air-fuel mixture can be burned stably.

【0030】図7は本発明の第2実施例を示すもので、
この第2実施例の触媒燃焼器12は前記触媒担持部46
と燃料ノズル47との間に第2の触媒担持部50を備え
る。この触媒担持部50もハニカム構造体の表面に触媒
49を担持させたものであるが、それに加えて電源51
からの通電により発熱する図示せぬ触媒ヒータを内蔵し
ている。
FIG. 7 shows a second embodiment of the present invention.
The catalyst combustor 12 according to the second embodiment has the catalyst supporting portion 46.
The second catalyst carrier 50 is provided between the fuel nozzle 47 and the fuel nozzle 47. The catalyst supporting portion 50 also has the catalyst 49 supported on the surface of the honeycomb structure.
It has a built-in catalyst heater (not shown) that generates heat when energized from.

【0031】而して、この第2実施例によれば、プリヒ
ータ45により加熱された混合気が上流側の触媒担持部
50に流入する時、その触媒担持部50が電源51から
の通電により触媒活性化温度以上に加熱されているた
め、その混合気を触媒49と充分に反応させて燃焼させ
ることができる。そして前記触媒担持部50を一部未燃
焼のまま通過した混合気も、その下流の触媒担持部46
において完全に燃焼することができる。しかも、燃料ノ
ズル47から噴霧した燃料は触媒ヒータにより加熱され
た触媒担持部50の表面によって蒸発が促進されるた
め、その燃焼効率が向上する。
Thus, according to the second embodiment, when the air-fuel mixture heated by the preheater 45 flows into the catalyst carrying portion 50 on the upstream side, the catalyst carrying portion 50 is energized by the power source 51 to drive the catalyst. Since it is heated to the activation temperature or higher, the air-fuel mixture can be sufficiently reacted with the catalyst 49 and burned. Also, the air-fuel mixture that has passed through the catalyst carrying portion 50 while being partially unburned also has the catalyst carrying portion 46 downstream thereof.
Can completely burn at. Moreover, the fuel sprayed from the fuel nozzle 47 is promoted to evaporate by the surface of the catalyst carrier 50 heated by the catalyst heater, so that the combustion efficiency is improved.

【0032】以上、本発明の実施例を詳述したが、本発
明は、前記実施例に限定されるものでなく、種々の小設
計変更を行うことが可能である。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various small design changes can be made.

【0033】例えば、実施例ではガスタービンエンジン
Gの始動時にプリヒータ45に通電しているが、この始
動時だけでなく、排気ガスの流量が減少するために熱交
換器13を通過する吸入空気の温度が上昇し難い低負荷
運転時にプリヒータ45に通電しても良い。
For example, in the embodiment, the preheater 45 is energized at the time of starting the gas turbine engine G. However, not only at this time of starting but also the intake air passing through the heat exchanger 13 is reduced because the flow rate of the exhaust gas is reduced. The preheater 45 may be energized during low load operation in which the temperature does not easily rise.

【0034】[0034]

【発明の効果】以上のように本発明の第1の特徴によれ
ば、触媒担持部の上流に電気式のプリヒータを設けたの
で、前記触媒担持部に担持した触媒に接触する混合気の
温度を触媒活性化温度以上に上昇させてガスタービンエ
ンジンの運転を開始あるいは継続することが可能とな
る。しかも従来のプリバーナを用いた場合に問題となる
NOX の発生量を大幅に削減することができるばかり
か、従来の触媒ヒータのみを用いて触媒を予熱する場合
に問題となる触媒の劣化をも回避することができる。更
に燃料を前記プリヒータの下流に供給することにより、
プリヒータを通過した高温の空気流で燃料の蒸発を促進
し、均一な混合気を得て燃焼効率を向上させることが可
能となる。
As described above, according to the first feature of the present invention, since the electric preheater is provided upstream of the catalyst supporting portion, the temperature of the air-fuel mixture which comes into contact with the catalyst supported on the catalyst supporting portion is increased. It is possible to start or continue the operation of the gas turbine engine by raising the temperature above the catalyst activation temperature. Moreover, not only the amount of NO x generated, which is a problem when using the conventional preburner, can be significantly reduced, but also the deterioration of the catalyst, which becomes a problem when the catalyst is preheated using only the conventional catalyst heater, It can be avoided. By further supplying fuel downstream of the preheater,
It becomes possible to promote the evaporation of the fuel by the high temperature air flow that has passed through the preheater, obtain a uniform air-fuel mixture, and improve the combustion efficiency.

【0035】また本発明の第2の特徴によれば、前記触
媒担持部の少なくとも一部に触媒ヒータを設けたことに
より、プリヒータによる空気あるいは混合気の加熱と触
媒ヒータによる触媒の加熱との相乗効果で一層安定した
始動性能を得ることができる。しかも、プリヒータを併
用することによって触媒ヒータの負荷を軽減できるの
で、触媒を劣化させる虞れがない。
According to the second aspect of the present invention, by providing a catalyst heater on at least a part of the catalyst supporting portion, the heating of air or air-fuel mixture by the preheater and the heating of the catalyst by the catalyst heater are combined. As a result, more stable starting performance can be obtained. Moreover, since the load of the catalyst heater can be reduced by using the preheater together, there is no risk of degrading the catalyst.

【0036】また本発明の第3の特徴によれば、前記プ
リヒータの下流から燃料を前記触媒ヒータに向けて噴霧
することにより、触媒ヒータの壁面を利用して燃料の蒸
発を促進し、充分にガス化した混合気を触媒に供給する
ことができる。
According to the third aspect of the present invention, the fuel is sprayed from the downstream side of the preheater toward the catalyst heater, and the wall surface of the catalyst heater is used to accelerate the evaporation of the fuel, thereby sufficiently promoting the evaporation of the fuel. The gasified mixture can be supplied to the catalyst.

【0037】また本発明の第4の特徴によれば、触媒担
持部の上流に電気式のプリヒータを設けたので、前記触
媒担持部に担持した触媒に接触する混合気の温度を触媒
活性化温度以上に上昇させてガスタービンエンジンの運
転を開始あるいは継続することが可能となる。しかも従
来のプリバーナを用いた場合に問題となるNOX の発生
量を大幅に削減することができるばかりか、従来の触媒
ヒータのみを用いて触媒を予熱する場合に問題となる触
媒の劣化をも回避することができる。更に燃料を前記プ
リヒータの上流に供給するとともに、前記プリヒータを
ハニカム構造として混合気の整流機能を持たせたことに
より、プリヒータの整流機能で流速分布を均一化した混
合気を触媒担持部に供給して安定した燃焼を行わせるこ
とが可能となる。
Further, according to the fourth aspect of the present invention, since the electric preheater is provided upstream of the catalyst supporting portion, the temperature of the air-fuel mixture contacting the catalyst carried on the catalyst supporting portion is set to the catalyst activation temperature. It is possible to start or continue the operation of the gas turbine engine by raising the temperature above. Moreover, not only the amount of NO x generated, which is a problem when using the conventional preburner, can be significantly reduced, but also the deterioration of the catalyst, which becomes a problem when the catalyst is preheated using only the conventional catalyst heater, It can be avoided. Further, the fuel is supplied upstream of the preheater, and the preheater has a honeycomb structure to have a rectifying function of the air-fuel mixture, so that the air-fuel mixture having a uniform flow velocity distribution by the rectifying function of the preheater is supplied to the catalyst supporting portion. And stable combustion can be performed.

【0038】また本発明の第5の特徴によれば、前記プ
リヒータの上流から燃料を該プリヒータに向けて噴霧す
ることにより、プリヒータの壁面を利用して燃料の蒸発
を促進し、充分にガス化した混合気を触媒に供給するこ
とができる。
According to the fifth feature of the present invention, by spraying fuel from the upstream side of the preheater toward the preheater, the wall surface of the preheater is used to promote the evaporation of the fuel and to sufficiently gasify it. The mixed gas can be supplied to the catalyst.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係るガスタービンエンジ
ンの縦断面図
FIG. 1 is a vertical sectional view of a gas turbine engine according to a first embodiment of the present invention.

【図2】図1の2−2線断面図FIG. 2 is a sectional view taken along line 2-2 of FIG.

【図3】図2の要部拡大断面図FIG. 3 is an enlarged cross-sectional view of the main part of FIG.

【図4】図3の4−4線拡大断面図4 is an enlarged sectional view taken along line 4-4 of FIG.

【図5】図3の5−5線拡大断面図5 is an enlarged sectional view taken along line 5-5 of FIG.

【図6】第1実施例の変形例に係る、前記3に対応する
FIG. 6 is a diagram corresponding to the above 3 according to a modification of the first embodiment.

【図7】本発明の第2実施例に係る、前記図3に対応す
る図
FIG. 7 is a diagram corresponding to FIG. 3 according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

12 触媒燃焼器 45 プリヒータ 46 触媒担持部 49 触媒 50 触媒担持部 12 catalyst combustor 45 preheater 46 catalyst support part 49 catalyst 50 catalyst support part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 触媒燃焼器(12)の触媒担持部(4
6,50)に担持した触媒(49)に燃料と空気の混合
気を接触させて燃焼させる触媒燃焼器において、 前記触媒担持部(46,50)の上流に電気式のプリヒ
ータ(45)を設け、このプリヒータ(45)の下流に
燃料を供給することを特徴とする触媒燃焼器。
1. A catalyst supporting portion (4) of a catalyst combustor (12).
In a catalytic combustor in which a mixture of fuel and air is brought into contact with a catalyst (49) carried by a catalyst (6, 50) and burned, an electric preheater (45) is provided upstream of the catalyst carrying part (46, 50). A catalytic combustor characterized by supplying fuel downstream of the preheater (45).
【請求項2】 前記触媒担持部(46,50)の少なく
とも一部に触媒ヒータを設けたことを特徴とする、請求
項1記載の触媒燃焼器。
2. The catalyst combustor according to claim 1, wherein a catalyst heater is provided on at least a part of the catalyst supporting portion (46, 50).
【請求項3】 前記プリヒータ(45)の下流から前記
触媒ヒータに向けて燃料を噴霧することを特徴とする、
請求項2記載の触媒燃焼器。
3. The fuel is sprayed from the downstream of the preheater (45) toward the catalyst heater.
The catalytic combustor according to claim 2.
【請求項4】 触媒燃焼器(12)の触媒担持部(4
6)に担持した触媒(49)に燃料と空気の混合気を接
触させて燃焼させる触媒燃焼器において、 前記触媒担持部(46)の上流に電気式のプリヒータ
(45)を設けて該プリヒータ(45)の上流に燃料を
供給するとともに、前記プリヒータ(45)をハニカム
構造として混合気の整流機能を持たせたことを特徴とす
る触媒燃焼器。
4. A catalyst supporting portion (4) of a catalyst combustor (12).
In a catalytic combustor in which a mixture of fuel and air is brought into contact with a catalyst (49) carried by 6) and burned, an electric preheater (45) is provided upstream of the catalyst carrying part (46), and the preheater (45) is provided. 45) A catalyst combustor, characterized in that fuel is supplied to the upstream of 45) and the preheater (45) has a honeycomb structure to have a function of rectifying the air-fuel mixture.
【請求項5】 前記プリヒータ(45)の上流から該プ
リヒータに向けて燃料を噴霧することを特徴とする、請
求項4記載の触媒燃焼器。
5. The catalytic combustor according to claim 4, wherein fuel is sprayed from upstream of the preheater (45) toward the preheater.
JP4052816A 1992-03-11 1992-03-11 Gas turbine engine Expired - Fee Related JP2745352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4052816A JP2745352B2 (en) 1992-03-11 1992-03-11 Gas turbine engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4052816A JP2745352B2 (en) 1992-03-11 1992-03-11 Gas turbine engine

Publications (2)

Publication Number Publication Date
JPH05256406A true JPH05256406A (en) 1993-10-05
JP2745352B2 JP2745352B2 (en) 1998-04-28

Family

ID=12925370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4052816A Expired - Fee Related JP2745352B2 (en) 1992-03-11 1992-03-11 Gas turbine engine

Country Status (1)

Country Link
JP (1) JP2745352B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190373A (en) * 1993-12-27 1995-07-28 Honda Motor Co Ltd Catalytic combustor starting method for gas-turbine engine
EP0760178A1 (en) * 1994-05-18 1997-03-05 Rosen Motors L.P. Electric power train control
JP2010526967A (en) * 2007-05-15 2010-08-05 イエフペ A system for generating power, in particular electric power, by means of a gas turbine and a regenerative heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185316U (en) * 1986-05-10 1987-11-25
JPH01139906A (en) * 1987-11-27 1989-06-01 Babcock Hitachi Kk Catalytic combustor
JPH02238204A (en) * 1989-03-10 1990-09-20 Sharp Corp Catalytic combustion device
JPH02242003A (en) * 1989-03-14 1990-09-26 Sharp Corp Device of vaporization combustion and use of the same device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185316U (en) * 1986-05-10 1987-11-25
JPH01139906A (en) * 1987-11-27 1989-06-01 Babcock Hitachi Kk Catalytic combustor
JPH02238204A (en) * 1989-03-10 1990-09-20 Sharp Corp Catalytic combustion device
JPH02242003A (en) * 1989-03-14 1990-09-26 Sharp Corp Device of vaporization combustion and use of the same device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190373A (en) * 1993-12-27 1995-07-28 Honda Motor Co Ltd Catalytic combustor starting method for gas-turbine engine
EP0760178A1 (en) * 1994-05-18 1997-03-05 Rosen Motors L.P. Electric power train control
EP0760178A4 (en) * 1994-05-18 1997-07-23 Rosen Motors Lp Electric power train control
JP2010526967A (en) * 2007-05-15 2010-08-05 イエフペ A system for generating power, in particular electric power, by means of a gas turbine and a regenerative heat exchanger

Also Published As

Publication number Publication date
JP2745352B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US3727401A (en) Rotary turbine engine
EP1934529B1 (en) Fuel nozzle having swirler-integrated radial fuel jet
PL180015B1 (en) Electrical equipment and way of its operation
US20070068135A1 (en) Engine
US3557551A (en) Gas turbine engine with rotating combustion chamber
CN218064968U (en) Combustion nozzle and internal and external mixed combustion engine
EP0539636B1 (en) Gas turbine engine
US6308513B1 (en) Turbine and gas turbine
JPS5993928A (en) Pulse control type gas turbine
US3937009A (en) Torque-jet engine
JPS5891333A (en) Internal combustion engine
US3713294A (en) Auxilliary power unit and regenerative exhaust reactor
EP1828683B1 (en) Combustor for turbine engine
JPH05256406A (en) Catalyst combustor
JPH04314929A (en) Gas generator
CA1147564A (en) Centrifugal chambers gas turbine
JPH05256165A (en) Catalytic burner
JPH05256163A (en) Catalytic burner
JPH05256164A (en) Catalytic burner
JP3200101B2 (en) Twin spool gas turbine engine
US3015211A (en) Radial turbine engine
JP2003328772A (en) Electric generator
JP5173720B2 (en) Combustor connection structure and gas turbine
JPH05256162A (en) Gas-turbine engine
JPH05256161A (en) Gas-turbine engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees