JP3901021B2 - Group III nitride semiconductor light-emitting device, manufacturing method thereof, and LED - Google Patents

Group III nitride semiconductor light-emitting device, manufacturing method thereof, and LED Download PDF

Info

Publication number
JP3901021B2
JP3901021B2 JP2002166407A JP2002166407A JP3901021B2 JP 3901021 B2 JP3901021 B2 JP 3901021B2 JP 2002166407 A JP2002166407 A JP 2002166407A JP 2002166407 A JP2002166407 A JP 2002166407A JP 3901021 B2 JP3901021 B2 JP 3901021B2
Authority
JP
Japan
Prior art keywords
type
barrier layer
group iii
iii nitride
nitride semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002166407A
Other languages
Japanese (ja)
Other versions
JP2004014810A (en
Inventor
隆 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2002166407A priority Critical patent/JP3901021B2/en
Publication of JP2004014810A publication Critical patent/JP2004014810A/en
Application granted granted Critical
Publication of JP3901021B2 publication Critical patent/JP3901021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体発光素子に係り、特にリン化硼素系半導体をダブルヘテロ構造の発光部の障壁層に用いて電気特性を改良したIII族窒化物半導体発光素子に関する。
【0002】
【従来の技術】
従来より、青色帯或いは緑色帯などの比較的短波長の可視光を発する半導体発光素子、例えば発光ダイオード(LED)は、窒化ガリウム(GaN)等のIII族窒化物半導体を発光部の材料に用いて構成されている。III族窒化物半導体は、一般式AlαGaβIn1- α - β1- δδ(0≦α≦1、0≦β≦1、0≦α+β≦1、0≦δ<1、記号Vは窒素(N)以外の第V族元素を表す)で表される。半導体発光素子の発光部の構成から観るに、発光部は、高強度の発光を得るために発光層を両側から障壁層で挟んだダブルヘテロ(Double Hetero:DH)接合構造とするのがもっぱらである。発光部とは、障壁(クラッド)層と発光層とを含む、半導体発光素子の発光を担う機能部位である。
【0003】
従来のIII族窒化物半導体を発光部に用いたLEDにあって、pn接合型DH接合構造の発光部をなす下部障壁層は、一般にn形のIII族窒化物半導体から構成されている。例えば、n形の窒化ガリウムから構成されている。また発光層は、n形の窒化ガリウム・インジウム(GaXIn1-XN:0≦X≦1)等のインジウム(In)を含むIII族窒化物半導体から構成されている。また、発光層を挟んで下部障壁層に対向して設けられている上部障壁層は、p形の窒化アルミニウム・ガリウム(AlXGa1-XN:0≦X≦1)等から構成されている。さらに基板としてサファイアが通常用いられるため、n形下部障壁層の表面にはn形オーミック電極が配置され、また、p形上部障壁層の表面には、p形のオーミック電極が配置されて、LEDが構成されている。
【0004】
【発明が解決しようとする課題】
しかしながら、p形の上部障壁層に用いられるp形窒化アルミニウム・ガリウム(AlXGa1-XN:0≦X≦1)は電気抵抗が高いため、III族窒化物半導体発光素子にあって、LEDの順方向電圧(所謂、Vf)を低くする、或いはレーザダイオード(LD)の閾値電圧(所謂、Vth)を低減させることが困難となっていた。また、p形上部障壁層を構成するに適する低抵抗のp形窒化アルミニウム・ガリウム層を得るには、II族の不純物を故意に添加(doping)して該半導体層を気相成長させた後に、更に、熱処理或いは電子線照射を施すことが必要であり、半導体素子の作製が煩雑となっていた。
【0005】
そのため、VfやVthが充分低いIII族窒化物半導体発光素子を安価に提供するためには、p形オーミック電極を配置するp形の上部障壁層或いはオーミックコンタクト層を、抵抗が充分に低く且つ簡便に形成できるp形半導体層から構成する必要がある。本発明は、III族窒化物半導体を発光部に用いた半導体発光素子において、従来のp形の上部障壁層に用いられるp形窒化アルミニウム・ガリウムの代わりに、抵抗が充分に低く且つ簡便に形成できる新たなp形半導体を上部障壁層に用い、VfやVthが充分下がったIII族窒化物半導体発光素子を安価に提供することを目的とする。
【0006】
【課題を解決するための手段】
即ち、本発明は、
(1)結晶基板と、該結晶基板上に順次設けられた、n形のIII族窒化物半導体からなる下部障壁層とIII族窒化物半導体からなる発光層とp形の上部障壁層とから構成されるpn接合型ダブルヘテロ構造の発光部とを備えたIII族窒化物半導体発光素子に於いて、上部障壁層が、硼素(B)とリン(P)とを構成元素として含むp形のリン化硼素(BP)系半導体からなることを特徴とするIII族窒化物半導体発光素子。
(2)上部障壁層が、不純物を故意に添加していないアンドープ(undope)のp形のリン化硼素系半導体からなることを特徴とする上記(1)に記載のIII族窒化物半導体発光素子。
(3)上部障壁層が、非晶質のp形のリン化硼素系半導体からなることを特徴とする上記(1)または(2)に記載のIII族窒化物発光素子。
(4)上部障壁層が、p形のリン化硼素からなることを特徴とする上記(3)に記載のIII族窒化物半導体発光素子。
(5)上部障壁層上に、p形のリン化硼素系半導体からなるオーミックコンタクト層が設けられていることを特徴とする上記(1)乃至(4)の何れか1項に記載のIII族窒化物半導体発光素子。
(6)オーミックコンタクト層が、非晶質のp形リン化硼素系半導体からなることを特徴とする上記(5)に記載のIII族窒化物半導体素子。
(7)上記(1)乃至(6)の何れか1項に記載のIII族窒化物半導体素子からなるLED。
(8)結晶基板上に、n形のIII族窒化物半導体からなる下部障壁層とIII族窒化物半導体からなる発光層とp形の上部障壁層とを順次積層し、pn接合型ダブルヘテロ構造の発光部を形成するIII族窒化物半導体発光素子の製造方法に於いて、上部障壁層が硼素とリンとを構成元素として含むp形のリン化硼素系半導体からなり、有機金属熱分解(MOCVD)法により、結晶基板温度を1000〜1200℃としV/III比率を150未満として、該上部障壁層を形成することを特徴とするIII族窒化物半導体発光素子の製造方法。
(9)上部障壁層が、非晶質のp形のリン化硼素系半導体からなり、V/III比率を50未満として該上部障壁層を形成することを特徴とする上記(8)に記載のIII族窒化物半導体発光素子の製造方法。
(10)上部障壁層が、p形のリン化硼素からなることを特徴とする上記(8)または(9)に記載のIII族窒化物半導体発光素子の製造方法。
(11)上部障壁層上に、非晶質のp形のリン化硼素系半導体からなるオーミックコンタクト層を、MOCVD法によりV/III比率を50未満として形成することを特徴とする上記(8)乃至(10)の何れか1項に記載のIII族窒化物半導体発光素子の製造方法。
である。
【0007】
【発明の実施の形態】
本発明の第1の実施形態として、上部障壁層を、硼素(B)とリン(P)とを構成元素として含むBαAlβGaγIn1- α - β - γ1- δAsδ(0<α≦1、0≦β<1、0≦γ<1、0<α+β+γ≦1、0≦δ<1)やBαAlβGaγIn1- α - β - γ1- δδ(0<α≦1、0≦β<1、0≦γ<1、0<α+β+γ≦1、0≦δ<1)等のリン化硼素系半導体から構成する例を挙げられる。p形のリン化硼素系半導体層は、三塩化硼素(BCl3)や三塩化リン(PCl3)等を原料とするハロゲン法、ジボラン(B26)及びホスフィン(PH3)等を原料とするハイドライド(hydride)法、またはトリエチル硼素((C253B)等を原料とする有機金属熱分解(MOCVD)法等の気相成長手段に依り気相成長できる。これらの手段に依りリン化硼素系半導体層を気相成長させるに際し、II族または両性不純物として働くIV族不純物を故意に添加(doping)すれば、p形のリン化硼素系半導体層が得られる。また、イオン注入手段に依り、p形不純物を注入しても得られる。代表的なリン化硼素系半導体である単量体リン化硼素(BP)では、マグネシウム(Mg)よりも硼素との化合性が少ない亜鉛(Zn)やベリリウム(Be)がp形不純物として適する。
【0008】
p形上部障壁層をなすリン化硼素系半導体層のキャリア(正孔)濃度は大凡、5×1017cm-3以上で5×1019cm-3以下の範囲内とするのが好適である。5×1017cm-3未満の低い正孔濃度のリン化硼素系半導体層からは、Vf或いはVthを低減するに充分に貢献できるp形上部障壁層を構成し難い。リン化硼素系半導体層の正孔濃度は、気相成長時またはイオン注入時に添加または注入するp形不純物の量を制御して調整する。p形不純物の添加量を増量すれば正孔濃度は増加する。即ち、低抵抗となる傾向にはある。しかし、5×1019cm-3を超える正孔濃度を得るために過剰にp形不純物を添加すると、逆にリン化硼素系半導体層の結晶が劣化し高抵抗となるため、本発明に係わるp形上部障壁層或いはp形オーミックコンタクト層を構成するための好材料とは成り難い。キャリア濃度は通常のホール(Hall)効果測定等により測定できる。
【0009】
特に単量体のリン化硼素(BP)にあっては、p形或いは両性不純物を故意に添加せず(undope)とも、上記の好適な正孔濃度の低抵抗のp形半導体層を得ることができる。従って、従来のIII族窒化物半導体の場合とは相違し、添加されたp形不純物を電気的に活性化させるための熱処理等の後工程が不要である。このためリン化硼素は、p形上部障壁層を簡便に構成するに好都合な材料となる。アンドープのp形リン化硼素層を例えば、ハイドライド法やMOCVD法に依る気相成長手段で形成するには、結晶基板の温度を約1000〜1200℃とするのが適する。1200℃を超える高温は、B132等の多量体のリン化硼素(J.Am.Ceramic Soc.,47(1)(1964)、44〜46頁参照)が帰結され易くなるため不都合である。トリエチル硼素((C253B)とホスフィン(PH3)とを原料とするMOCVD手段にあっては、気相成長時のIII族元素の原料供給量(単位は、例えばモル/分で表わされる。)に対するV族元素の原料供給量(単位は、例えばモル/分で表される。)の比率、いわゆるV/III比率(=PH3/(C253B供給比率)を約150未満の低比率に設定すると、p形のリン化硼素層を安定して形成できる。本発明の第2の実施形態の好例として、温度1050℃に於いて、PH3/(C253B供給比率を約120として、MOCVD手段により形成したアンドープでp形のリン化硼素層から、p形の上部障壁層を構成する例を挙げられる。
【0010】
本発明の第3の実施形態では、非晶質(amorphous)のリン化硼素系半導体層からp形上部障壁層を構成する。例えば、非晶質のリン化硼素・ガリウム(BαGaγP:0<α≦1、0≦γ<1、α+γ=1)、或いは窒化リン化硼素(BP1- δδ:0≦δ<1)等の混晶からなる非晶質層から構成する。非晶質のリン化硼素系半導体層は、表面の平坦性に特に優れているため、表面を平坦とするp形上部障壁層を構成するに効果を奏する。平坦な表面のp形上部障壁層上には、密着性に優れる故に低接触抵抗のp形オーミック電極を形成出来得て、これまた利便となる。例えば、非晶質のp形リン化硼素層は、上記のMOCVD手段では、V/III比率(=PH3/(C253B供給比率)を約50未満の低比率に設定することで形成できる。V/III比率は、硼素を富裕とする成長環境下での球状の硼素結晶体の発生に因る非晶質層の表面の非平坦化を防止するため、最低でも0.2以上とするのが望ましい。電子線回折法或いはX線回折法を利用すれば、非晶質であるか否か判別できる。
【0011】
p形上部障壁層上に、更に高い正孔濃度のp形半導体層をオーミックコンタクト層として設ければ、Vf或いはVthの低減に効果を奏するp形オーミック電極を形成するに貢献できる。上記の如く、リン化硼素系半導体にあっては、特別の後工程を要せずに簡易にp形の低抵抗層を形成できる。従って、従来のIII族窒化物半導体材料に代替して、p形のリン化硼素系半導体層からオーミックコンタクト層を構成することとすれば、Vf或いはVthの低減された発光素子を提供できる。特に、上部障壁層側から発光を取出す方式のLEDにあって、オーミックコンタクト層は上部障壁層共々、発光波長に対応するよりも大きな禁止帯幅のリン化硼素系半導体から構成するのが好ましい。リン化硼素系半導体へのp形オーミック電極は、例えば、金・亜鉛(Au・Zn)合金、金・ベリリウム(Au・Be)合金から形成できる。本発明の第4の実施形態の一例として、アンドープでp形のリン化硼素からなる上部障壁層に接合させて、アンドープでp形のリン化硼素からなるオーミックコンタクト層を設ける場合を挙げられる。オーミックコンタクト層は、正孔濃度を約5×1018cm-3〜5×1019cm-3とする低抵抗のリン化硼素系半導体層から構成するのが望ましく、また層厚は約100nm以上〜約1000nmとするのが望ましい。
【0012】
オーミックコンタクト層を非晶質のリン化硼素系半導体層から構成することとすると、上部障壁層への歪みの導入を抑制できる。従って、歪みに誘引されるp形上部障壁層の結晶的な変質を防止できる。またオーミックコンタクト層を非晶質のリン化硼素系半導体層から構成すると、オーミックコンタクト層上に設けられたp形オーミック電極の台座(pad)電極への結線時に於ける機械的圧力がp形上部障壁層へ伝搬するのを緩和できる。従って、p形上部障壁層を機械的圧力に因る破壊から防護できる。非晶質のリン化硼素層を、例えば、トリエチル硼素((C253B)とホスフィン(PH3)とを原料とするMOCVD手段で気相成長させるには、V/III比率(=PH3/(C253B供給比率)を0.2以上で50以下とするのが適する。得られたリン化硼素層の結晶形態は、例えば、一般的なX線回折法または電子線回折法等の結晶解析技法から知ることができる。
【0013】
【実施例】
(第1実施例)
非晶質のリン化硼素からなるp形上部障壁層を備えた積層構造体を利用して、III族窒化物半導体発光ダイオード(LED)を構成する場合を例にして、本発明の内容を具体的に説明する。図1に本第1実施例に係るLED1Aの平面模式図を示す。また、図1に示した破線X−X’に沿ったLED1Aの断面構造を図2に模式的に示す
【0014】
LED1A用途の積層構造体1Bは、リン(P)ドープでn形の(111)面を有するSi単結晶を結晶基板101として用いた。Si単結晶基板101上には、硼素とリンとを含む非晶質の低温緩衝層102を形成した。低温緩衝層102は、トリエチル硼素((C253B)とホスフィン(PH3)を原料として350℃で気相成長させた。低温緩衝層102の気相成長時に於けるPH3/(C253B供給比率は約40に設定した。一般の透過型電子顕微鏡(TEM)を利用した測定から、低温緩衝層102の層厚は約20nmと計測された。電子線回折パターンには回折斑点(spot)は現れず、ハロー(halo)であった。
【0015】
次に、PH3を含む水素(H2)気流中でSi単結晶基板101を950℃に昇温して、低温緩衝層102上に単量体のリン化硼素からなる高温緩衝層103を堆積した。高温緩衝層103は、低温緩衝層102と同じく、(C253B/PH3/H2系常圧MOCVD手段に依り気相成長させた。高温緩衝層103をなすアンドープでn形のリン化硼素層のキャリア濃度は約1×1018cm-3であり、層厚は約100nmとした。
【0016】
高温緩衝層103上には、トリメチルガリウム((CH33Ga)/アンモニア(NH3)/窒素(N2)系常圧MOCVD手段に依り、1050℃で珪素(Si)ドープでn形の窒化ガリウム(GaN)からなる下部障壁層104を積層した。下部障壁層104のキャリア濃度は約3×1018cm-3であり、層厚は約100nmとした。下部障壁層104上には、(CH33Ga/トリメチルインジウム((CH33In)/NH3/N2系常圧MOCVD手段に依り、850℃でSiドープでn形の窒化ガリウム・インジウム混晶(Ga0.90In0.10N)からなる発光層105を接合させて設けた。発光層105の層厚は約50nmとした。
【0017】
次に1025℃に於いて、上記の(C253B/PH3/H2系常圧MOCVD手段に依り、p形上部障壁層106をなすアンドープでp形のリン化硼素層を、発光層105に接合させて設けた。PH3/(C253B供給比率は約16に設定した。図3にp形上部障壁層106をなすリン化硼素層のX線回折図形を示す。図3には、基板101のSi単結晶は見られるものの、リン化硼素単結晶に由来する回折ピークは認められず、従って非晶質であると判定された。上部障壁層106のキャリア濃度は約2×1019cm-3であり、層厚は約100nmとした。p形上部障壁層106の表面は鏡面と視認され、一般の原子間力顕微鏡で測定したp形上部障壁層106の表面での最大の高低差は約2nmであった。n形下部障壁層104、n形発光層105、及びp形上部障壁層106の積層構造からpn接合型ダブルヘテロ構造の発光部を構成した。
【0018】
積層構造体1Bの表層をなす、非晶質のp形上部障壁層106の中央部には、同層106に接触する側を金・亜鉛(Au・Zn)合金膜とするAu・Zn/ニッケル(Ni)/Auの3層重層構造のp形オーミック電極107を設けた。結線用の台座(pad)電極を兼ねるp形電極107は、直径を約120μmとする円形の電極とした。また、n形Si単結晶基板101の裏面の略全面には、アルミニウム(Al)のn形オーミック電極108を配置してLED1Aを構成した。
【0019】
p形オーミック電極107とn形オーミック電極108を介して順方向に20ミリアンペア(mA)の動作電流を通流して、LED1Aを発光させた。得られた発光は青紫帯光であり、その中心波長は約440nmであった。上部障壁層106を非晶質のリン化硼素層から構成したため、発光層105にボンディング(結線)時の機械的圧力による亀裂(crack)の発生は認められず、発光部の上部平面の全面から略均等な強度の発光がもたらされた。一般的な積分球を利用して測定されるチップ(chip)状態での輝度は6ミリカンデラ(mcd)となり、高発光強度のLED1Aが提供された。また、上部障壁層106を非晶質のp形リン化硼素層から構成したため、n形発光層105との間で接合界面を平坦とするpn接合部を構成できた。その結果、順方向電圧(Vf:但し順方向電流を20mAとした場合)を約3.2Vとし、逆方向電圧(Vr:但し逆方向電流を10μAの場合)を5V以上とする良好な整流特性を有するIII族窒化物半導体系LEDが提供されることとなった。
【0020】
(第2実施例)
本第2実施例では、非晶質のリン化硼素からなるp形オーミックコンタクト層を備えた積層構造体を用いて、III族窒化物半導体LEDを構成する場合を例にして、本発明の内容を具体的に説明する。図4に本第2実施例に係わるLED2Aの断面模式図を示す。図4のLEDで、図1及び図2に示したLEDと同一の構成要素については同一の符号を付してある。
【0021】
上記の第1実施例と同様にして、n形Si単結晶基板101上に低温緩衝層102、高温緩衝層103、n形下部障壁層104、n形発光層105、及びp形上部障壁層106を形成した。本第2実施例では、さらにp形上部障壁層106上に非晶質のリン化硼素からなるオーミックコンタクト層109を設けた。オーミックコンタクト層109をなすアンドープでp形のリン化硼素層は、1000℃で(C253B/PH3/H2系常圧MOCVD手段に依り、PH3/(C253B供給比率を約10に設定して設けた。オーミックコンタクト層109のキャリア濃度は約1×1019cm-3であり、層厚は約150nmとした。
【0022】
積層構造体2Bの表層をなす、非晶質のp形オーミックコンタクト層109の中央部には、同層109に接触する側をAu・Zn合金膜とするAu・Zn/Ni/Auの3層重層構造のp形オーミック電極107を設けた。結線用の台座電極を兼ねるp形電極107は、直径を約130μmとする円形の電極とした。またn形Si単結晶基板101の裏面には、Alのn形オーミック電極108を配置した。
【0023】
p形オーミック電極107とn形オーミック電極108を介して、LED2Aに順方向に20mAの動作電流を通流して発光させた。得られた発光は青紫帯光であり、その中心波長は約440nmであった。p形オーミックコンタクト層109を非晶質のリン化硼素層から構成したため、上部障壁層106及び発光層105にボンディング(結線)時の機械的圧力による亀裂の発生は認められず、発光部の上部平面の全面から略均等な強度の発光がもたらされた。一般的な積分球を利用して測定されるチップ状態での輝度は9mcdとなり、高発光強度のLED2Aが提供された。また、上部障壁層106上に高いキャリア濃度のオーミックコンタクト層109を設けたことに依り、順方向電圧(Vf:但し順方向電流を20mAとした場合)は、第1実施例に記載のLED1Aよりも更に低い約3.0Vに低減された。また、上部障壁層106を非晶質のp形リン化硼素層から構成したため、n形発光層105との間で接合界面を平坦とするpn接合部を構成でき、逆方向電圧(Vr:但し逆方向電流を10μAの場合)は5V以上と高耐圧となった。
【0024】
【発明の効果】
結晶基板上に設けられたIII族窒化物半導体からなるn形下部障壁層と、下部障壁層上に設けられたIII族窒化物半導体からなる発光層と、発光層上に設けられたp形上部障壁層とからなるpn接合型ダブルヘテロ接合構造の発光部を備えたIII族窒化物半導体発光素子に於いて、本発明では、p形上部障壁層を硼素とリンとを構成元素として含むp形のリン化硼素系半導体から構成することとしたので、低抵抗化のための煩雑な付帯工程を必要とせずに、低抵抗のp形上部障壁層を形成できる。さらにp形上部障壁層を非晶質のリン化硼素から構成すると、発光層とp形上部障壁層と接合界面を平坦とするpn接合発光部を構成できるため、順方向電圧の低いIII族窒化物半導体発光素子を簡便に提供できる。
【0025】
また、p形上部障壁層を非晶質のリン化硼素系半導体層、特に非晶質のリン化硼素層から構成することとしたので、台座電極への結線により生じる機械的圧力を吸収するに効果が奏され、発光層の損傷を回避できる。そのため、発光部の上部平面から略均等な強度の発光が放射される高強度のIII族窒化物半導体発光素子を提供できる。
【0026】
また、非晶質のリン化硼素系半導体層からなるp形上部障壁層上に設けるオーミックコンタクト層を、非晶質のp形リン化硼素系半導体層から構成することとしたので、低抵抗化のための煩雑な付帯工程を必要とせずに、低抵抗のp形オーミックコンタクト層を形成できる。また非晶質のp形リン化硼素系半導体層からなるオーミックコンタクト層は、台座電極への結線の際の機械的圧力を吸収するに効果が奏されるため、p形上部障壁層及び発光層の損傷を回避でき、順方向電圧が低く、且つ高発光強度のIII族窒化物半導体発光素子を提供できる。
【図面の簡単な説明】
【図1】第1実施例に係るLEDの平面模式図である。
【図2】 図1に示すLEDの破線X−X’に沿った断面模式図である。
【図3】 p形上部障壁層をなすリン化硼素層のX線回折図形である。
【図4】第2実施例に係るLEDの断面模式図である。
【符号の説明】
1A、2A LED
1B、2B 積層構造体
101 結晶基板
102 低温緩衝層
103 高温緩衝層
104 n形下部障壁層
105 発光層
106 p形上部障壁層
107 p形オーミック電極
108 n形オーミック電極
109 p形オーミックコンタクト層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor light emitting device, and more particularly, to a group III nitride semiconductor light emitting device having improved electrical characteristics using a boron phosphide-based semiconductor for a barrier layer of a light emitting part having a double hetero structure.
[0002]
[Prior art]
Conventionally, semiconductor light emitting devices that emit visible light having a relatively short wavelength such as a blue band or a green band, such as light emitting diodes (LEDs), use a group III nitride semiconductor such as gallium nitride (GaN) as a material for a light emitting part. Configured. Group III nitride semiconductor of the general formula Al α Ga β In 1- α - β N 1- δ V δ (0 ≦ α ≦ 1,0 ≦ β ≦ 1,0 ≦ α + β ≦ 1,0 ≦ δ <1, The symbol V represents a Group V element other than nitrogen (N). In view of the configuration of the light emitting part of the semiconductor light emitting device, the light emitting part is exclusively a double hetero (DH) junction structure in which the light emitting layer is sandwiched between the barrier layers from both sides in order to obtain high intensity light emission. is there. The light emitting part is a functional part responsible for light emission of the semiconductor light emitting element including a barrier (cladding) layer and a light emitting layer.
[0003]
In a conventional LED using a group III nitride semiconductor as a light emitting part, the lower barrier layer forming the light emitting part of a pn junction type DH junction structure is generally composed of an n-type group III nitride semiconductor. For example, it is made of n-type gallium nitride. The light emitting layer is made of a group III nitride semiconductor containing indium (In) such as n-type gallium nitride indium (Ga x In 1-X N: 0 ≦ X ≦ 1). Further, the upper barrier layer provided facing the lower barrier layer with the light emitting layer interposed therebetween is made of p-type aluminum nitride / gallium (Al x Ga 1 -X N: 0 ≦ X ≦ 1) or the like. Yes. Further, since sapphire is usually used as the substrate, an n-type ohmic electrode is disposed on the surface of the n-type lower barrier layer, and a p-type ohmic electrode is disposed on the surface of the p-type upper barrier layer, so that the LED Is configured.
[0004]
[Problems to be solved by the invention]
However, p-type aluminum nitride gallium (Al x Ga 1-x N: 0 ≦ X ≦ 1) used for the p-type upper barrier layer has a high electric resistance, and thus in the group III nitride semiconductor light emitting device, It has been difficult to reduce the forward voltage (so-called V f ) of the LED or to reduce the threshold voltage (so-called V th ) of the laser diode (LD). In order to obtain a low-resistance p-type aluminum nitride / gallium layer suitable for forming the p-type upper barrier layer, a group II impurity is intentionally added and the semiconductor layer is vapor-phase grown. Furthermore, it is necessary to perform heat treatment or electron beam irradiation, which makes it difficult to manufacture a semiconductor element.
[0005]
Therefore, in order to provide a group III nitride semiconductor light-emitting device having sufficiently low V f and V th at low cost, the p-type upper barrier layer or ohmic contact layer on which the p-type ohmic electrode is disposed has a sufficiently low resistance. In addition, it is necessary to form a p-type semiconductor layer that can be easily formed. The present invention is a semiconductor light emitting device using a group III nitride semiconductor in a light emitting part, and has a sufficiently low resistance and is simply formed in place of the p type aluminum nitride / gallium used for the conventional p type upper barrier layer. An object of the present invention is to provide a group III nitride semiconductor light-emitting device in which a new p-type semiconductor that can be used is used for an upper barrier layer and V f and V th are sufficiently lowered at low cost.
[0006]
[Means for Solving the Problems]
That is, the present invention
(1) Consists of a crystal substrate, a lower barrier layer made of an n-type group III nitride semiconductor, a light emitting layer made of a group III nitride semiconductor, and a p-type upper barrier layer sequentially provided on the crystal substrate In a group III nitride semiconductor light emitting device having a light emitting portion of a pn junction type double heterostructure, the upper barrier layer includes p-type phosphorus containing boron (B) and phosphorus (P) as constituent elements A group III nitride semiconductor light emitting device comprising a boron fluoride (BP) based semiconductor.
(2) The group III nitride semiconductor light-emitting device according to (1), wherein the upper barrier layer is made of an undoped p-type boron phosphide-based semiconductor to which impurities are not intentionally added. .
(3) The group III nitride light-emitting device according to (1) or (2), wherein the upper barrier layer is made of an amorphous p-type boron phosphide-based semiconductor.
(4) The group III nitride semiconductor light-emitting device according to (3), wherein the upper barrier layer is made of p-type boron phosphide.
(5) The group III according to any one of (1) to (4), wherein an ohmic contact layer made of a p-type boron phosphide-based semiconductor is provided on the upper barrier layer. Nitride semiconductor light emitting device.
(6) The group III nitride semiconductor device according to (5) above, wherein the ohmic contact layer is made of an amorphous p-type boron phosphide-based semiconductor.
(7) An LED comprising the group III nitride semiconductor device according to any one of (1) to (6) above.
(8) On the crystal substrate, a lower barrier layer made of an n-type group III nitride semiconductor, a light-emitting layer made of a group III nitride semiconductor, and a p-type upper barrier layer are sequentially laminated to form a pn junction double heterostructure In the method of manufacturing a group III nitride semiconductor light emitting device for forming a light emitting portion of the above, the upper barrier layer is made of a p-type boron phosphide-based semiconductor containing boron and phosphorus as constituent elements, and is subjected to organometallic thermal decomposition (MOCVD). ) Method for forming a group III nitride semiconductor light emitting device, wherein the upper barrier layer is formed with a crystal substrate temperature of 1000 to 1200 ° C. and a V / III ratio of less than 150.
(9) The upper barrier layer is made of an amorphous p-type boron phosphide-based semiconductor, and the upper barrier layer is formed with a V / III ratio of less than 50. A method for manufacturing a group III nitride semiconductor light-emitting device.
(10) The method for producing a group III nitride semiconductor light-emitting device according to (8) or (9), wherein the upper barrier layer is made of p-type boron phosphide.
(11) An ohmic contact layer made of an amorphous p-type boron phosphide-based semiconductor is formed on the upper barrier layer by MOCVD with a V / III ratio of less than 50. The manufacturing method of the group III nitride semiconductor light-emitting device of any one of thru | or (10).
It is.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
As a first embodiment of the present invention, the upper barrier layer is made of B α Al β Ga γ In 1- α - β - γ P 1- δ As δ containing boron (B) and phosphorus (P) as constituent elements. (0 <α ≦ 1,0 ≦ β <1,0 ≦ γ <1,0 <α + β + γ ≦ 1,0 ≦ δ <1) and B α Al β Ga γ In 1- α - β - γ P 1- δ Examples include boron phosphide-based semiconductors such as N δ (0 <α ≦ 1, 0 ≦ β <1, 0 ≦ γ <1, 0 <α + β + γ ≦ 1, 0 ≦ δ <1). The p-type boron phosphide-based semiconductor layer is a halogen method using boron trichloride (BCl 3 ) or phosphorus trichloride (PCl 3 ) as a raw material, diborane (B 2 H 6 ), phosphine (PH 3 ), or the like as a raw material. Vapor phase growth can be carried out by vapor phase growth means such as hydride method, or metal organic thermal decomposition (MOCVD) method using triethyl boron ((C 2 H 5 ) 3 B) as a raw material. When the boron phosphide-based semiconductor layer is vapor-grown by these means, a p-type boron phosphide-based semiconductor layer can be obtained by intentionally adding a group IV impurity that acts as a group II or amphoteric impurity. . It can also be obtained by implanting p-type impurities depending on the ion implantation means. In monomeric boron phosphide (BP), which is a typical boron phosphide-based semiconductor, zinc (Zn) and beryllium (Be), which have less compounding with boron than magnesium (Mg), are suitable as p-type impurities.
[0008]
The carrier (hole) concentration of the boron phosphide-based semiconductor layer forming the p-type upper barrier layer is preferably in the range of approximately 5 × 10 17 cm −3 to 5 × 10 19 cm −3. . From a boron phosphide-based semiconductor layer having a low hole concentration of less than 5 × 10 17 cm −3, it is difficult to form a p-type upper barrier layer that can sufficiently contribute to reducing V f or V th . The hole concentration of the boron phosphide-based semiconductor layer is adjusted by controlling the amount of p-type impurity added or implanted during vapor phase growth or ion implantation. Increasing the amount of p-type impurity added increases the hole concentration. That is, the resistance tends to be low. However, if a p-type impurity is added excessively in order to obtain a hole concentration exceeding 5 × 10 19 cm −3 , the boron phosphide-based semiconductor layer crystal deteriorates and becomes high resistance. It is unlikely to be a good material for forming a p-type upper barrier layer or a p-type ohmic contact layer. The carrier concentration can be measured by ordinary Hall effect measurement or the like.
[0009]
In particular, in the case of monomeric boron phosphide (BP), a p-type semiconductor layer having a preferable low hole concentration and a low resistance can be obtained without intentionally adding p-type or amphoteric impurities (undope). Can do. Therefore, unlike the case of the conventional group III nitride semiconductor, a post-process such as a heat treatment for electrically activating the added p-type impurity is unnecessary. For this reason, boron phosphide is a convenient material for easily constructing the p-type upper barrier layer. In order to form an undoped p-type boron phosphide layer, for example, by vapor phase growth means using a hydride method or MOCVD method, it is suitable that the temperature of the crystal substrate is about 1000 to 1200 ° C. High temperatures exceeding 1200 ° C. are disadvantageous because multimeric boron phosphides such as B 13 P 2 (see J. Am. Ceramic Soc., 47 (1) (1964), pages 44 to 46) are likely to result. is there. In the MOCVD means using triethylboron ((C 2 H 5 ) 3 B) and phosphine (PH 3 ) as raw materials, the raw material supply amount of group III element during vapor phase growth (unit is, for example, mol / min) The ratio of the feed amount of the group V element (the unit is expressed, for example, in mol / min), the so-called V / III ratio (= PH 3 / (C 2 H 5 ) 3 B supply ratio ) Is set to a low ratio of less than about 150, a p-type boron phosphide layer can be formed stably. As a good example of the second embodiment of the present invention, an undoped p-type boron phosphide formed by MOCVD means with a PH 3 / (C 2 H 5 ) 3 B supply ratio of about 120 at a temperature of 1050 ° C. An example of forming a p-type upper barrier layer from the layers is given.
[0010]
In the third embodiment of the present invention, the p-type upper barrier layer is composed of an amorphous boron phosphide-based semiconductor layer. For example, amorphous boron phosphide / gallium (B α Ga γ P: 0 <α ≦ 1, 0 ≦ γ <1, α + γ = 1), or boron nitride phosphide (BP 1− δ N δ : 0 ≦ It is composed of an amorphous layer made of a mixed crystal such as δ <1). Since the amorphous boron phosphide-based semiconductor layer is particularly excellent in surface flatness, it is effective in forming a p-type upper barrier layer having a flat surface. A p-type ohmic electrode having a low contact resistance can be formed on the p-type upper barrier layer having a flat surface because of its excellent adhesion, which is also convenient. For example, for the amorphous p-type boron phosphide layer, the V / III ratio (= PH 3 / (C 2 H 5 ) 3 B supply ratio) is set to a low ratio of less than about 50 in the MOCVD means described above. Can be formed. The V / III ratio should be at least 0.2 in order to prevent non-planarization of the surface of the amorphous layer due to the generation of spherical boron crystals in a growth environment rich in boron. Is desirable. If an electron diffraction method or an X-ray diffraction method is used, it can be determined whether the material is amorphous.
[0011]
If a p-type semiconductor layer having a higher hole concentration is provided as an ohmic contact layer on the p-type upper barrier layer, it can contribute to forming a p-type ohmic electrode that is effective in reducing V f or V th . As described above, in a boron phosphide-based semiconductor, a p-type low-resistance layer can be easily formed without requiring a special post-process. Therefore, if the ohmic contact layer is formed of a p-type boron phosphide-based semiconductor layer instead of the conventional group III nitride semiconductor material, a light emitting device with reduced V f or V th can be provided. . In particular, in an LED that emits light from the upper barrier layer side, the ohmic contact layer is preferably composed of a boron phosphide-based semiconductor having a larger forbidden band than that corresponding to the emission wavelength. The p-type ohmic electrode to the boron phosphide-based semiconductor can be formed of, for example, a gold / zinc (Au / Zn) alloy or a gold / beryllium (Au / Be) alloy. As an example of the fourth embodiment of the present invention, there is a case where an ohmic contact layer made of undoped p-type boron phosphide is provided by being joined to an upper barrier layer made of undoped p-type boron phosphide. The ohmic contact layer is preferably composed of a low resistance boron phosphide-based semiconductor layer having a hole concentration of about 5 × 10 18 cm −3 to 5 × 10 19 cm −3, and the layer thickness is about 100 nm or more. It is desirable that the thickness is about 1000 nm.
[0012]
If the ohmic contact layer is composed of an amorphous boron phosphide-based semiconductor layer, the introduction of strain into the upper barrier layer can be suppressed. Therefore, the crystalline alteration of the p-type upper barrier layer induced by strain can be prevented. Further, when the ohmic contact layer is composed of an amorphous boron phosphide-based semiconductor layer, the mechanical pressure at the time of connection of the p-type ohmic electrode provided on the ohmic contact layer to the pedestal electrode is increased by the p-type upper portion. Propagation to the barrier layer can be mitigated. Therefore, the p-type upper barrier layer can be protected from destruction due to mechanical pressure. In order to vapor-phase an amorphous boron phosphide layer by MOCVD using, for example, triethylboron ((C 2 H 5 ) 3 B) and phosphine (PH 3 ) as raw materials, a V / III ratio ( = PH 3 / (C 2 H 5 ) 3 B supply ratio) is suitably 0.2 to 50. The crystal form of the obtained boron phosphide layer can be known from a crystal analysis technique such as a general X-ray diffraction method or electron beam diffraction method.
[0013]
【Example】
(First embodiment)
The contents of the present invention are illustrated by taking as an example a case where a group III nitride semiconductor light-emitting diode (LED) is constructed using a laminated structure including a p-type upper barrier layer made of amorphous boron phosphide. I will explain it. FIG. 1 is a schematic plan view of an LED 1A according to the first embodiment. FIG. 2 schematically shows a cross-sectional structure of the LED 1A along the broken line XX ′ shown in FIG.
In the laminated structure 1B for LED 1A use, a Si single crystal having an n-type (111) plane doped with phosphorus (P) was used as the crystal substrate 101. An amorphous low-temperature buffer layer 102 containing boron and phosphorus was formed on the Si single crystal substrate 101. The low temperature buffer layer 102 was vapor-phase grown at 350 ° C. using triethylboron ((C 2 H 5 ) 3 B) and phosphine (PH 3 ) as raw materials. The PH 3 / (C 2 H 5 ) 3 B supply ratio during vapor phase growth of the low temperature buffer layer 102 was set to about 40. From the measurement using a general transmission electron microscope (TEM), the layer thickness of the low-temperature buffer layer 102 was measured to be about 20 nm. The electron diffraction pattern did not show diffraction spots, and was halo.
[0015]
Next, the Si single crystal substrate 101 is heated to 950 ° C. in a hydrogen (H 2 ) stream containing PH 3, and a high temperature buffer layer 103 made of monomeric boron phosphide is deposited on the low temperature buffer layer 102. did. Similarly to the low temperature buffer layer 102, the high temperature buffer layer 103 was vapor-phase grown by (C 2 H 5 ) 3 B / PH 3 / H 2 system atmospheric pressure MOCVD means. The carrier concentration of the undoped n-type boron phosphide layer forming the high temperature buffer layer 103 was about 1 × 10 18 cm −3 and the layer thickness was about 100 nm.
[0016]
On the high-temperature buffer layer 103, n-type silicon (Si) is doped at 1050 ° C. according to trimethylgallium ((CH 3 ) 3 Ga) / ammonia (NH 3 ) / nitrogen (N 2 ) atmospheric pressure MOCVD means. A lower barrier layer 104 made of gallium nitride (GaN) was stacked. The carrier concentration of the lower barrier layer 104 was about 3 × 10 18 cm −3 and the layer thickness was about 100 nm. On the lower barrier layer 104, Si-doped n-type gallium nitride is formed at 850 ° C. according to (CH 3 ) 3 Ga / trimethylindium ((CH 3 ) 3 In) / NH 3 / N 2 -based atmospheric pressure MOCVD means. A light emitting layer 105 made of indium mixed crystal (Ga 0.90 In 0.10 N) is provided by bonding. The layer thickness of the light emitting layer 105 was about 50 nm.
[0017]
Next, at 1025 ° C., an undoped p-type boron phosphide layer that forms the p-type upper barrier layer 106 is formed by the above-mentioned (C 2 H 5 ) 3 B / PH 3 / H 2 system atmospheric pressure MOCVD means. The light-emitting layer 105 is bonded. The PH 3 / (C 2 H 5 ) 3 B supply ratio was set to about 16. FIG. 3 shows an X-ray diffraction pattern of the boron phosphide layer forming the p-type upper barrier layer 106. In FIG. 3, although the Si single crystal of the substrate 101 is seen, a diffraction peak derived from the boron phosphide single crystal is not recognized, and therefore, it is determined to be amorphous. The carrier concentration of the upper barrier layer 106 was about 2 × 10 19 cm −3 and the layer thickness was about 100 nm. The surface of the p-type upper barrier layer 106 was visually recognized as a mirror surface, and the maximum height difference on the surface of the p-type upper barrier layer 106 measured with a general atomic force microscope was about 2 nm. A light emitting portion of a pn junction type double heterostructure was formed from a laminated structure of the n-type lower barrier layer 104, the n-type light emitting layer 105, and the p-type upper barrier layer 106.
[0018]
In the central portion of the amorphous p-type upper barrier layer 106 that forms the surface layer of the laminated structure 1B, an Au.Zn / nickel having a gold / zinc (Au.Zn) alloy film on the side in contact with the same layer 106 is provided. A p-type ohmic electrode 107 having a three-layer structure of (Ni) / Au was provided. The p-type electrode 107 which also serves as a pedestal (pad) electrode for connection was a circular electrode having a diameter of about 120 μm. Further, an aluminum (Al) n-type ohmic electrode 108 is disposed on substantially the entire back surface of the n-type Si single crystal substrate 101 to constitute the LED 1A.
[0019]
An operating current of 20 milliamperes (mA) was passed in the forward direction through the p-type ohmic electrode 107 and the n-type ohmic electrode 108 to cause the LED 1A to emit light. The obtained luminescence was blue-violet light, and the center wavelength was about 440 nm. Since the upper barrier layer 106 is composed of an amorphous boron phosphide layer, no cracks are observed in the light emitting layer 105 due to mechanical pressure during bonding (connection), and from the entire upper plane of the light emitting portion. A substantially uniform intensity of light emission was produced. The luminance in a chip state measured using a general integrating sphere was 6 millicandelas (mcd), and an LED 1A with high emission intensity was provided. In addition, since the upper barrier layer 106 is composed of an amorphous p-type boron phosphide layer, a pn junction portion having a flat junction interface with the n-type light emitting layer 105 can be formed. As a result, the forward voltage (V f : when the forward current is 20 mA) is about 3.2 V, and the reverse voltage (V r : when the reverse current is 10 μA) is 5 V or more. A group III nitride semiconductor LED having a rectifying characteristic has been provided.
[0020]
(Second embodiment)
In the second embodiment, the case where a group III nitride semiconductor LED is configured using a laminated structure including a p-type ohmic contact layer made of amorphous boron phosphide is taken as an example. Will be described in detail. FIG. 4 shows a schematic cross-sectional view of the LED 2A according to the second embodiment. In the LED of FIG. 4, the same components as those of the LED shown in FIGS. 1 and 2 are denoted by the same reference numerals.
[0021]
In the same manner as in the first embodiment, the low temperature buffer layer 102, the high temperature buffer layer 103, the n type lower barrier layer 104, the n type light emitting layer 105, and the p type upper barrier layer 106 are formed on the n type Si single crystal substrate 101. Formed. In the second embodiment, an ohmic contact layer 109 made of amorphous boron phosphide is further provided on the p-type upper barrier layer 106. The undoped p-type boron phosphide layer forming the ohmic contact layer 109 is formed at a temperature of 1000 ° C. depending on the (C 2 H 5 ) 3 B / PH 3 / H 2 system atmospheric pressure MOCVD means, and PH 3 / (C 2 H 5 3 ) The 3 B supply ratio was set to about 10. The ohmic contact layer 109 has a carrier concentration of about 1 × 10 19 cm −3 and a layer thickness of about 150 nm.
[0022]
At the center of the amorphous p-type ohmic contact layer 109 that forms the surface layer of the laminated structure 2B, there are three layers of Au.Zn / Ni / Au in which the side in contact with the layer 109 is an Au.Zn alloy film. A p-type ohmic electrode 107 having a multilayer structure was provided. The p-type electrode 107 that also serves as a pedestal electrode for connection was a circular electrode having a diameter of about 130 μm. On the back surface of the n-type Si single crystal substrate 101, an Al n-type ohmic electrode 108 was disposed.
[0023]
Through the p-type ohmic electrode 107 and the n-type ohmic electrode 108, the LED 2A was caused to emit light by passing an operating current of 20 mA in the forward direction. The obtained luminescence was blue-violet light, and the center wavelength was about 440 nm. Since the p-type ohmic contact layer 109 is composed of an amorphous boron phosphide layer, no cracks are observed in the upper barrier layer 106 and the light emitting layer 105 due to mechanical pressure during bonding (connection). Luminescence with substantially uniform intensity was produced from the entire surface of the plane. The brightness in a chip state measured using a general integrating sphere was 9 mcd, and an LED 2A having high emission intensity was provided. Further, since the ohmic contact layer 109 having a high carrier concentration is provided on the upper barrier layer 106, the forward voltage (V f : when the forward current is 20 mA) is the LED 1A described in the first embodiment. It was reduced to about 3.0 V, which is even lower than that. Further, since the upper barrier layer 106 is composed of an amorphous p-type boron phosphide layer, a pn junction with a flat junction interface with the n-type light emitting layer 105 can be formed, and a reverse voltage (V r : However, when the reverse current was 10 μA, the breakdown voltage was 5 V or higher.
[0024]
【The invention's effect】
An n-type lower barrier layer made of a group III nitride semiconductor provided on a crystal substrate, a light emitting layer made of a group III nitride semiconductor provided on the lower barrier layer, and a p-type upper portion provided on the light emitting layer In a group III nitride semiconductor light emitting device having a light emitting portion of a pn junction type double heterojunction structure composed of a barrier layer, in the present invention, the p type upper barrier layer is a p type containing boron and phosphorus as constituent elements. Therefore, the p-type upper barrier layer having a low resistance can be formed without requiring a complicated incidental process for reducing the resistance. Further, when the p-type upper barrier layer is made of amorphous boron phosphide, a pn junction light-emitting portion having a flat junction interface between the light-emitting layer and the p-type upper barrier layer can be formed. A semiconductor light emitting device can be easily provided.
[0025]
Further, since the p-type upper barrier layer is composed of an amorphous boron phosphide-based semiconductor layer, particularly an amorphous boron phosphide layer, the mechanical pressure generated by the connection to the pedestal electrode is absorbed. An effect is exhibited and damage to the light emitting layer can be avoided. Therefore, it is possible to provide a high-intensity group III nitride semiconductor light-emitting device that emits light having substantially uniform intensity from the upper plane of the light-emitting portion.
[0026]
Further, since the ohmic contact layer provided on the p-type upper barrier layer made of an amorphous boron phosphide-based semiconductor layer is composed of an amorphous p-type boron phosphide-based semiconductor layer, the resistance is reduced. Therefore, a low-resistance p-type ohmic contact layer can be formed without requiring a complicated incidental process. In addition, the ohmic contact layer made of an amorphous p-type boron phosphide-based semiconductor layer is effective in absorbing mechanical pressure at the time of connection to the pedestal electrode. Therefore, the p-type upper barrier layer and the light emitting layer are effective. Can be avoided, a forward voltage is low, and a Group III nitride semiconductor light-emitting device with high emission intensity can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of an LED according to a first embodiment.
2 is a schematic cross-sectional view taken along broken line XX ′ of the LED shown in FIG.
FIG. 3 is an X-ray diffraction pattern of a boron phosphide layer forming a p-type upper barrier layer.
FIG. 4 is a schematic sectional view of an LED according to a second embodiment.
[Explanation of symbols]
1A, 2A LED
1B, 2B Laminated structure 101 Crystal substrate 102 Low-temperature buffer layer 103 High-temperature buffer layer 104 n-type lower barrier layer 105 light-emitting layer 106 p-type upper barrier layer 107 p-type ohmic electrode 108 n-type ohmic electrode 109 p-type ohmic contact layer

Claims (11)

結晶基板と、該結晶基板上に順次設けられた、n形のIII族窒化物半導体からなる下部障壁層とIII族窒化物半導体からなる発光層とp形の上部障壁層とから構成されるpn接合型ダブルヘテロ構造の発光部とを備えたIII族窒化物半導体発光素子に於いて、上部障壁層が、硼素(B)とリン(P)とを構成元素として含むp形のリン化硼素(BP)系半導体からなることを特徴とするIII族窒化物半導体発光素子。A pn comprising a crystal substrate, a lower barrier layer made of an n-type group III nitride semiconductor, a light emitting layer made of a group III nitride semiconductor, and a p-type upper barrier layer, which are sequentially provided on the crystal substrate. In a group III nitride semiconductor light emitting device including a light emitting part having a junction type double heterostructure, a p-type boron phosphide (in which an upper barrier layer contains boron (B) and phosphorus (P) as constituent elements) A group III nitride semiconductor light-emitting device comprising a BP) -based semiconductor. 上部障壁層が、不純物を故意に添加していないアンドープ(undope)のp形のリン化硼素系半導体からなることを特徴とする請求項1に記載のIII族窒化物半導体発光素子。2. The group III nitride semiconductor light emitting device according to claim 1, wherein the upper barrier layer is made of an undoped p-type boron phosphide-based semiconductor to which impurities are not intentionally added. 上部障壁層が、非晶質のp形のリン化硼素系半導体からなることを特徴とする請求項1または2に記載のIII族窒化物発光素子。3. The group III nitride light-emitting device according to claim 1, wherein the upper barrier layer is made of an amorphous p-type boron phosphide-based semiconductor. 上部障壁層が、p形のリン化硼素からなることを特徴とする請求項3に記載のIII族窒化物半導体発光素子。4. The group III nitride semiconductor light emitting device according to claim 3, wherein the upper barrier layer is made of p-type boron phosphide. 上部障壁層上に、p形のリン化硼素系半導体からなるオーミックコンタクト層が設けられていることを特徴とする請求項1乃至4の何れか1項に記載のIII族窒化物半導体発光素子。5. The group III nitride semiconductor light-emitting device according to claim 1, wherein an ohmic contact layer made of a p-type boron phosphide-based semiconductor is provided on the upper barrier layer. 6. オーミックコンタクト層が、非晶質のp形リン化硼素系半導体からなることを特徴とする請求項5に記載のIII族窒化物半導体素子。6. The group III nitride semiconductor device according to claim 5, wherein the ohmic contact layer is made of an amorphous p-type boron phosphide-based semiconductor. 請求項1乃至6の何れか1項に記載のIII族窒化物半導体素子からなるLED。An LED comprising the group III nitride semiconductor device according to any one of claims 1 to 6. 結晶基板上に、n形のIII族窒化物半導体からなる下部障壁層とIII族窒化物半導体からなる発光層とp形の上部障壁層とを順次積層し、pn接合型ダブルヘテロ構造の発光部を形成するIII族窒化物半導体発光素子の製造方法に於いて、上部障壁層が硼素とリンとを構成元素として含むp形のリン化硼素系半導体からなり、有機金属熱分解(MOCVD)法により、結晶基板温度を1000〜1200℃とし、V/III比率を150未満として、該上部障壁層を形成することを特徴とするIII族窒化物半導体発光素子の製造方法。On a crystal substrate, a lower barrier layer made of an n-type group III nitride semiconductor, a light-emitting layer made of a group III nitride semiconductor, and a p-type upper barrier layer are sequentially laminated, and a light-emitting portion having a pn junction double heterostructure In the method for manufacturing a group III nitride semiconductor light-emitting device, forming an upper barrier layer made of a p-type boron phosphide-based semiconductor containing boron and phosphorus as constituent elements, and by a metal organic thermal decomposition (MOCVD) method A method for producing a group III nitride semiconductor light-emitting device, wherein the upper barrier layer is formed with a crystal substrate temperature of 1000 to 1200 ° C. and a V / III ratio of less than 150. 上部障壁層が、非晶質のp形のリン化硼素系半導体からなり、V/III比率を50未満として該上部障壁層を形成することを特徴とする請求項8に記載のIII族窒化物半導体発光素子の製造方法。9. The group III nitride according to claim 8, wherein the upper barrier layer is made of an amorphous p-type boron phosphide-based semiconductor, and the upper barrier layer is formed with a V / III ratio of less than 50. A method for manufacturing a semiconductor light emitting device. 上部障壁層が、p形のリン化硼素からなることを特徴とする請求項9に記載のIII族窒化物半導体発光素子の製造方法。10. The method for manufacturing a group III nitride semiconductor light emitting device according to claim 9, wherein the upper barrier layer is made of p-type boron phosphide. 上部障壁層上に、非晶質のp形のリン化硼素系半導体からなるオーミックコンタクト層を、MOCVD法によりV/III比率を50未満として形成することを特徴とする請求項8乃至10の何れか1項に記載のIII族窒化物半導体発光素子の製造方法。11. The ohmic contact layer made of an amorphous p-type boron phosphide-based semiconductor is formed on the upper barrier layer with a V / III ratio of less than 50 by MOCVD. A method for producing a group III nitride semiconductor light-emitting device according to claim 1.
JP2002166407A 2002-06-07 2002-06-07 Group III nitride semiconductor light-emitting device, manufacturing method thereof, and LED Expired - Fee Related JP3901021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002166407A JP3901021B2 (en) 2002-06-07 2002-06-07 Group III nitride semiconductor light-emitting device, manufacturing method thereof, and LED

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002166407A JP3901021B2 (en) 2002-06-07 2002-06-07 Group III nitride semiconductor light-emitting device, manufacturing method thereof, and LED

Publications (2)

Publication Number Publication Date
JP2004014810A JP2004014810A (en) 2004-01-15
JP3901021B2 true JP3901021B2 (en) 2007-04-04

Family

ID=30433956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166407A Expired - Fee Related JP3901021B2 (en) 2002-06-07 2002-06-07 Group III nitride semiconductor light-emitting device, manufacturing method thereof, and LED

Country Status (1)

Country Link
JP (1) JP3901021B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4705384B2 (en) * 2004-03-04 2011-06-22 昭和電工株式会社 Gallium nitride semiconductor device
WO2005086241A1 (en) * 2004-03-04 2005-09-15 Showa Denko K.K. Gallium nitride-based semiconductor device

Also Published As

Publication number Publication date
JP2004014810A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
TWI240969B (en) Nitride semiconductor device and method for manufacturing same
TW200414571A (en) Semiconductor light emitting device and the manufacturing method thereof
TW200810151A (en) Process for producing gallium nitride type compound semiconductor light emitting element, gallium nitride type compound semiconductor light emitting element, and lamp using the same
TW201145573A (en) A nitride-based semiconductor light emitting element
JP3567926B2 (en) pn junction type boron phosphide-based semiconductor light emitting device, method for manufacturing the same, and light source for display device
KR100700529B1 (en) Light emitting diode with current spreading layer and manufacturing method thereof
TW200807752A (en) III group nitride semiconductor light emitting element, process for producing III group nitride semiconductor light emitting element, and lamp
JP2008078297A (en) GaN-BASED SEMICONDUCTOR LIGHT-EMITTING DEVICE
TWI258183B (en) Compound semiconductor light-emitting device
JP3724267B2 (en) Group III nitride semiconductor light emitting device
TWI296160B (en) Pn junction-type compound semiconductor light emitting diode
JP4374720B2 (en) Group III nitride semiconductor light-emitting device and method for manufacturing the same
US6774402B2 (en) Pn-juction type compound semiconductor light-emitting device, production method thereof and white light-emitting diode
JP4705384B2 (en) Gallium nitride semiconductor device
JP3901021B2 (en) Group III nitride semiconductor light-emitting device, manufacturing method thereof, and LED
JP3209233B2 (en) Blue light emitting diode and method of manufacturing the same
JP4439400B2 (en) Boron phosphide-based semiconductor light emitting device, manufacturing method thereof, and light emitting diode
JP3577463B2 (en) III-nitride semiconductor light emitting diode
JP2000174341A (en) Gallium nitride based compound semiconductor light- emitting element
JP3659059B2 (en) Nitride semiconductor device
JP2006245555A (en) Translucent electrode
JP4286983B2 (en) AlGaInP light emitting diode
JP2950316B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
JP6936358B2 (en) Methods for using remote plasma chemical vapor deposition and sputtering deposition to grow layers in light emitting devices
JP3777869B2 (en) Gallium nitride compound semiconductor light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees