JP3900906B2 - Gas cleaning system and cleaning method - Google Patents

Gas cleaning system and cleaning method Download PDF

Info

Publication number
JP3900906B2
JP3900906B2 JP2001364088A JP2001364088A JP3900906B2 JP 3900906 B2 JP3900906 B2 JP 3900906B2 JP 2001364088 A JP2001364088 A JP 2001364088A JP 2001364088 A JP2001364088 A JP 2001364088A JP 3900906 B2 JP3900906 B2 JP 3900906B2
Authority
JP
Japan
Prior art keywords
air
sampling
specific
clean room
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001364088A
Other languages
Japanese (ja)
Other versions
JP2003166733A (en
Inventor
博史 平田
和男 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001364088A priority Critical patent/JP3900906B2/en
Publication of JP2003166733A publication Critical patent/JP2003166733A/en
Application granted granted Critical
Publication of JP3900906B2 publication Critical patent/JP3900906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、含有空間内の気体を採取して、特定物質を検出し、制御部により清浄装置の運転を制御する含有空間の気体清浄システムとその清浄方法に関するものである。
【0002】
【従来の技術】
従来、この種の含有空間(例えば、クリーンルーム)の気体清浄システムとその清浄方法は、含有空間内の気体(例えば、空気)を常に循環させて、清浄装置によって気体中の特定物質(特定の微細な粒子。例えば、ホコリなどのパーティクル、ボロン化合物、酸性物質、アルカリ性物質、有機化合物やガス状物質など)を除去した環境を維持するものである。つまり、含有空間内の特定物質による汚染状態の変化を知る検査は、検査員が逐次に気体をサンプリングして検出(測定)し、確認することが一般に知られている。
つまり、パーティクルの濃度は連続的な監視が為され得るが、他の物質(ボロン化合物、酸性物質、アルカリ性物質、有機化合物やガス状物質など)はバッチ管理が為されている。
このような本発明に関わるものとして、特開平5−218171号公報や特開平6−193911号公報等に記載の構成が知られている。
【0003】
【発明が解決しようとする課題】
つまり、従来の含有空間(たとえば、クリーンルーム、クリーンストッカー、クリーンボックスなどの清浄度を必要とする空間)の気体清浄システムとその清浄方法は、含有空間内の特定物質による汚染状態の変化を知る検出(バッチ管理)に日時を要し、従って、含有空間内の汚染が急変して進行した場合には汚染対策の処置遅れを生じ、生産品の品質の(特に即応的な)維持管理が困難となる問題があった。
本発明によれば、気体(たとえば、空気、窒素ガス、アルゴンガス)中の特定物質の希薄な濃度を常時、監視(検出)し、短時間にその結果を知り、素早い処置が可能となる。
【0004】
【課題を解決するための手段】
本発明のクリーンルームの気体清浄システム空気清浄装置により空気中の特定物質を除去した環境のクリーンルームと、前記クリーンルーム内の空気を取り入れる空気採取部と、前記空気採取部より取り入れた前記クリーンルーム内の空気を特定採取空気容積毎に溶解採取する溶解部と、前記空気採取部より取り入れた前記クリーンルーム内の空気を特定採取空気容積毎に濃縮採取する濃縮部と、前記溶解部と前記濃縮部の前記クリーンルーム内の空気の採取は特定採取時間内の特定採取回数毎に前記特定採取空気容積、及び特定同時採取本数を別々に採取し、かつ前記溶解部と前記濃縮部の前記クリーンルーム内の空気の採取は別々に順送りして切替える順送り採取部と、前記順送り採取部により順送りされた前記溶解部及び前記濃縮部の空気中の特定物質を別々の検出測定する検出部と、前記検出部の測定データを受けて演算出力する制御部と、前記制御部からの出力を受けて分配切換部が前記空気清浄装置の運転を制御してなるものである。
【0005】
【発明の実施の形態】
以下に詳しく説明するが、請求項1に記載の本発明によれば、
▲1▼含有空間内の気体中の特定物質の増減変化状況をインラインでリアルタイムに自動化して監視し、一定の濃度以下に抑えて維持できる。
▲2▼従って、若し含有空間内の気体中の特定物質が何らかの原因で急変増加しても、報知・表示等の装置を連動させることにより、機敏な応急処置によって生産品の不良を最小限に抑えることができる。
【0006】
▲3▼制御部からの出力を受けた分配切換部による各空気清浄装置毎の運転制御は、必要に応じた重点志向的な分配切替運転が可能となって、効率的な省エネ運転をすることができる。即ち、含有空間内に配置された各清浄装置毎の運転制御は、風量(出力やダンパー開閉度)制御、運転・休止の選定制御、温度・湿度制御、運転エリア(機種)の選定制御等々の選択ができるものとする。
▲4▼上述▲3▼項により、重点志向的な分配切替運転は、制御部が各清浄装置の運転時間(フィルターの累積使用時間)を積算しているので、高価なフィルター交換(寿命)時間が判り、正確な個別対応が実現できることになる。なお、CIM(コンピュータ統合生産)機能に連動させても同効果が得られる。
【0007】
【実施例】
以下、本発明の含有空間の参考例として、例えばクリーンルームについて図面を用いて説明する。
【0008】
図1は、クリーンルーム内の空気を清浄化する全体構成を示す模擬図である。図1において、1は外部空気(微量のNOx、SOx等を含む。気体と総称する。以下同じ)であり、この外部空気1は、第1採取部23から空気清浄装置(A)2(第1清浄装置と総称する。以下同じ)に採り入れられる(第1採取工程と総称する。以下同じ)。採り入れられた外部空気1は、空気清浄装置(A)2(第1清浄装置と総称する。以下同じ)を経過して清浄化、湿度及び温度調節され(第1清浄工程と総称する)、クリーンルーム6(含有空間と総称する。以下同じ)上部に外部空気20(2次気体と総称する。以下同じ)として第2採取部24から供給される(第2採取工程と総称する。以下同じ)。続いて、外部空気20は、クリーンルーム6上部に配置された各々の空気清浄装置(c)3、空気清浄装置(g)4、空気清浄装置(n)5を経過して更に特定物質(特定の微細な粒子。例えば、ホコリなどのパーティクル、ボロン化合物、酸性物質、アルカリ性物質、有機化合物やガス状物質など)を除去して清浄化され、クリーンルーム6内に供給され、清浄化された空気の中で半導体(部品や材料)等の生産加工や組立て検査等が為される。
勿論、この生産加工・組立て検査等の過程において新たな特定の物質(主に有機溶剤等)を発生し、クリーンルーム6内の空気を汚染することもある。
【0009】
図1において、7はクリーンルーム6内からのリターン空気であり、空気清浄装置(a)8、または空気清浄装置(f)8fを通過し、リターン空気7'となって上記の外部空気20と合流し、再び空気清浄装置(c)3、空気清浄装置(g)4、空気清浄装置(n)5を循環して特定物質(特定の微細な粒子。例えば、ボロン、酸性物質、アルカリ性物質、有機溶剤等の成分)が除去され、湿度及び温度調節されてクリーンルーム6内の空気21(3次気体と総称する。以下同じ)が常に清浄に保たれている。
図において、空気清浄装置(c)3、空気清浄装置(g)4、空気清浄装置(n)5は、番号を仮に付して各々に(c−1)(c−2)(c−3)…、(g−1)(g−2)(g−3)…、及び(n−1)(n−2)(n−3)…等々とする。
なお、空気清浄装置(c)3、空気清浄装置(g)4、空気清浄装置(n)5、空気清浄装置(a)8、及び空気清浄装置(f)8fを第2清浄装置と総称する(以下同じ)。
さらに、空気清浄装置(A)2、空気清浄装置(c)3、空気清浄装置(g)4、空気清浄装置(n)5、空気清浄装置(a)8、及び空気清浄装置(f)8fを清浄装置と総称する。
図1において、9はクリーンルーム6内の空気21を採取する(第3採取工程と総称する。以下同じ)空気採取部(第3採取部と総称する。以下同じ)であり、つぎの第4採取部25を経て空気22(4次気体と総称する。以下同じ)が、採取検出部10(検出部と総称する。以下同じ)に採り入れられる(第4採取工程と総称する)。この空気22中の特定物質の微細粒子量(濃度)を検出・測定し(検出工程と総称する。以下同じ)、次の制御部11はこの検出(測定データ)を演算、検定して分配切替部12へ出力し(制御工程と総称する。以下同じ)、配置された各々の空気清浄装置(c)3、空気清浄装置(g)4、空気清浄装置(n)5、空気清浄装置8の
▲1▼分配や切替え(分配切替工程と総称する。以下同じ)、
▲2▼ON/OFF、
▲3▼ファンの駆動出力、温度・湿度等々の運転制御をする。
【0010】
さらに、制御部11は、採取検出部10でクリーンルーム6内の空気21の湿度や温度を検出(測定データ)し、空気清浄装置(a)8、空気清浄装置(f)8fの運転制御をする。
なお、空気採取部9は、同じクリーンルーム6内に複数箇所に設ければ更に良い。
【0011】
図2は本発明の参考例のクリーンルーム6内の空気を清浄化する空気清浄装置2,空気清浄装置3,空気清浄装置4の構成を示す概要図である。図2−(A)において、空気清浄装置(A)2は別称エアー・ウォッシャーとも呼称されるもので、純水13を噴霧状態(例えば、シャワーやスプレー状態)にして外部空気1を接触させ、特定の微細粒子やガス状物質を溶解・除去すると同時に湿度調節し、さらに図示しないが、温度調節(エアコンの熱交換器等による)も行う。フィルター14は、純水13に溶解除去できない他の物質(成分)を濾過して除去する。ファン15aは、外部空気1を取り入れるとともに、空気清浄装置(A)2内を通過させて、外部空気20をクリーンルーム6内上部へ送風する。
【0012】
なお、空気清浄装置(a)8(図1)は、空気清浄装置(A)2とほぼ同構成・作動であり、図示・説明はしない。
空気清浄装置(f)8fは、例えばファンのみ(図示しない)の構成であり、空気清浄装置(a)8と並設され、清浄化された空気21の状態に対応してリターン空気7の風路が選択(運転制御)される。
空気清浄装置(a)8に用いられる純水13は、純水13に既に溶解している成分による新たな汚染を防ぐため、少なくとも15MΩ・cm(at25℃)以上の比抵抗とする。
【0013】
図2−(B)において、空気清浄装置(c)3は、別称ケミカルフィルターとも総称されるもので、ケミカルフィルター16、活性炭フィルター17、PTFE製のボロンレスフィルター18の3層構成にした一実施例であり、外部空気20及びリターン空気7'を通過させて、特定物質(微細粒子等)を除去する。
【0014】
ケミカルフィルター16は、酸・アルカリ・有機化合物等の特定成分を除去するアニオン除去ケミカルフィルター、カチオン除去ケミカルフィルター等のうち少なくとも一つ以上を用いたものである。
【0015】
なお、ファン15bは外部空気20、リターン空気7'を取り入れて空気清浄装置(c)3を通過させ、クリーンルーム6内へ送風する。
【0016】
さらに、空気清浄装置(c)3においては、フィルターを3層構成にした一実施例を示したが、状況に応じてケミカルフィルター16とPTFE製のボロンレスフィルター18、或いは活性炭フィルター17とPTFE製のボロンレスフィルター18の2層構成の組合せ(いずれも図示しない)にしてもよい。
【0017】
図2−(C)において、空気清浄装置(g)4は、採取した空気20をPTFE製のボロンレスフィルター18を通過させて、特定の微細粒子を除去する。
なお、ファン15cは外部空気20、リターン空気7'を取り入れて空気清浄装置(g)4を通過させ、クリーンルーム6内へ送風する。
【0018】
上記の空気清浄装置(c)3、及び空気清浄装置(g)4に用いるPTFE製のボロンレスフィルター18は、空気中のボロン除去を目的としない場合は、ガラス繊維のHEPAフィルター(High Efficiency Particulate Air filter),ULPAフィルター(Ultra Low Penetration Air filter)に変えて使用しても良い。
【0019】
なお、空気清浄装置(n)5(図1)は目的に応じて任意にフィルターを各種選択して構成したものであり、空気清浄装置(c)3、空気清浄装置(g)4等に類した構成・作動であり、図示・説明は省略する。
【0020】
図3,4は、本発明の一実施例のクリーンルーム6内の空気21を自動的に採取されて検出(測定)する採取検出部10の構成を示す概要図であり、図5は、同採取検出部10の処理流れ図である。
この図3及び図4は、クリーンルーム6内の空気21を特定採取空気容積毎に純水中に溶解採取する溶解部と、この溶解部とは別々に特定採取空気容積毎に濃縮採取する濃縮部とで採取し、順送りして切替える順送り採取部は、溶解部と濃縮部の採取及び検出・測定を順送りして空気22中の特定物質を次の制御部11で演算・検定するものである。
【0021】
まず図3−(A)順送り採取の実施例は、クリーンルーム6内の空気21を例えば溶解部において、特定同時採取本数4本(図示しないが、例えば特定採取空気容積1リッターずつ)毎に順送り採取している方法を示したものであり、
図3−(B)採取方法の実施例は、クリーンルーム6内の空気を例えば溶解部において、特定採取時間1時間内に特定採取回数4回、特定同時採取本数4本(図示しないが、例えば特定採取空気容積1リッターずつ)毎に順送り採取している方法を図示したものである。即ち、図において
▲1▼採取No.3,4,5,6が同時に4本採取(即ち特定同時採取本数。横の黒丸印。特定採取空気容積は、図示しないが例えば1リッターずつ)され、
▲2▼採取No.3は特定採取時間1時間内に4回既に採取(即ち特定採取回数。縦の黒丸印)され、次の5回目は検定(測定。黒四角印)に回される。
【0022】
即ち、この実施例では、クリーンルーム6内の空気21中の特定物質の特定採取時間1時間当りの濃度変化(特定採取回数4回の累積)を順送りして監視するものであるが、この採取の特定採取時間(1時間)、特定採取回数(4回)や特定採取空気容積(1リッター)、特定同時採取本数(4本)は状況(生産活動内容やそのタイムスケジュール等)に応じて臨機応変に可変して設定すれば良い。
【0023】
つまり、この条件設定は状況に応じて、例えば
▲1▼特定同時採取本数(特定採取空気容積を多くして)を少なく採取すれば、一定時間の大まかな特定物質の濃度変化が把握でき、
▲2▼特定同時採取本数(特定採取空気容積を少なくして)を増やして、こまめに採取すれば、短時間に刻々の特定物質の濃度変化が把握できる。
【0024】
なお、上記は溶解部の採取方法の一例について述べたが、濃縮部についても同じ方法で採取されるが溶解部とは別々に採取され、かつ、状況に応じて溶解部とは異なる設定(例えば、特定同時採取本数5本、及び特定採取空気容積2リッターずつ等)としても良い。
【0025】
具体的には、クリーンルーム6内の生産稼動の有無や生産数量の多少、生産品種によって要求される最適環境(特定物質の濃度等)条件等に応じて、一日、週間、月間、季節や行事、年間のタイムスケジュールを策定し、自在に溶解部及び濃縮部の順送りの空気採取を可変・設定させるものである。
なお、溶解部と濃縮部のこれらの各条件設定は、別々に可変・設定される。
また順送り採取する理由は、リアルタイム、インラインでクリーンルーム6内の汚染状態を継続的、且つ自動的に検出・測定が出来、従って万一の異常発生時にも即時に対策が打てるものとなる。
【0026】
溶解部の実施例について、図4−(A)溶解部の採取・検出の内容は、
▲1▼採取(溶解)は、クリーンルーム6内の空気21を吸引aポンプPで特定採取空気容積(流積計Fによる)だけ、インピンジャー(バブリング)内の純水に吸引aする。
この採取(溶解)は、所定の特定採取時間内の特定採取回数を累積して吸引aする。
▲2▼検出(測定)は、例えばロボット等によりインピンジャー内の溶解水が吸引sされ、
▲3▼次に、空気22中の特定物質の検定が為される。
▲4▼一方、洗浄(エージング)は上記▲3▼と並行(上記▲2▼の後に)して行われ、次の採取(溶解)に備えてインピンジャー内を清浄に復元させる。
▲5▼充填(純水)は、順送りされて次の特定採取空気容積の採取(溶解)に備える。
以上で採取(溶解)の1サイクルが終わるが、次々と同内容が順送りされ、自動的に繰り返される。
【0027】
濃縮部の実施例について、図4−(B)濃縮部の採取・検出の内容は、
▲1▼採取(濃縮)は、クリーンルーム6内の空気21を吸引bポンプPで特定採取空気容積(流積計Fによる)だけ、採取器内の吸着剤に吸着する。
吸着剤は、金属酸化物(ゼオライト、アルミナ、シリカゲル等)、活性炭、活性白土などが使用される。
この採取(濃縮)は、所定の特定採取時間内の特定採取回数を累積して吸引b する。
▲2▼脱着は、採取器内に不活性ガスを通じ、加熱して採取nされて、
▲3▼検出(測定)され、
▲4▼次に、空気22中の特定物質の検定が為される。
▲5▼一方、洗浄(エージング)は上記▲3▼、▲4▼と並行(上記▲2▼の後に)し、採取器内に不活性ガスを通じ、加熱して行われ、次の採取(濃縮)に備えて採取器内を清浄に復元し、順送りされて次の特定採取空気容積の採取(濃縮)に備える。
以上で採取(濃縮)の1サイクルが終わるが、次々と同内容が順送りされ、自動的に繰り返される。
【0028】
溶解部、及び濃縮部の検出(測定)項目は、クリーンルーム6内の最適環境条件に基づいて指定される特定物質により決められる。
また、検出(測定)の試験機(又は試験器具)は、その測定能力や測定容量等により、台数(や器具数)などが決められる。
【0029】
図5は、本発明の一実施例のクリーンルーム6内の空気採取部9、採取検出部10、及び制御部11の各処理を示す流れ図である。
その順送り採取部による同時採取は、No.1,2が同時に採取(即ち特定同時採取本数。――線。次記の図5も同じ)される一実施例を示す。
また、制御部11は、採取・検出部10による空気22中の特定物質の検出(測定データ)を得て演算し、その基準(規格)値との差異を検定し、各々の空気清浄装置3、4、5、8へ出力するものである。
【0030】
図6は本発明の一実施例のクリーンルーム6内の空気21を清浄化する清浄方法の構成を示すブロック図である。
【0031】
その分配切替部12による各々の空気清浄装置3、4、5、8の各運転制御は、この例では、例えば空気清浄装置3の(c−1)、及び(c−3)、空気清浄装置4の(g−1)、空気清浄装置5の(n−1)、及び(n−2)、空気清浄装置8の各運転が選定(――線。他の空気清浄装置は運転しない)された。
【0032】
つまり、制御部11は、選定された各空気清浄装置3、4、5、8の
▲1▼運転のON/OFF制御、
▲2▼送風量(ファン15駆動出力や風路・吹出し口のダンパー開閉度等の制御)、
▲3▼温度や湿度等の運転制御を行う。
【0033】
また、図6の実施例において、制御部11は、分配切替部12の各空気清浄装置3、4、5、8への運転制御出力以外に、例えば、
▲1▼空気中の特定物質の検出(測定)値、
▲2▼空気の汚染状態、
▲3▼修理点検(各フィルターの運転時間や交換時期)等の報知や表示も併せて行うことが出来る。
【0034】
図7は、本発明の一実施例のクリーンルーム6内の空気21を清浄化する清浄方法の処理流れ図である。
説明は、上記に重複するので省略する。
【0035】
なお、以上の本発明の一実施例の説明において、空気採取部9の溶解部と濃縮部との特定採取時間、及びその特定採取回数を同一に設定しているが、状況に応じて溶解部と濃縮部との特定採取時間、及びその特定採取回数を別々に違えて設定(図示はしない)しても良いことは明白である。
【0036】
他の実施例(図示はしない)について述べると、
即ち、上記の一実施例では、クリーンルーム6内の空気21の採取を、特定採取時間(1時間)、特定採取回数(4回)、特定採取空気容積(1リッター)、特定同時採取本数(4本)を状況に応じて臨機応変に可変して設定するとしたが、他に、特定採取時刻(午前10時)、採取時間間隔(15分毎)、特定採取空気容積(1リッター)、特定同時採取本数(4本)を状況に応じて臨機応変に可変して設定しても、同効果を得ることは明白である。
【0037】
本発明の参考例によれば、クリーンルーム6内の空気21を採取する濃縮部と溶解部において、特定採取時間、特定採取回数、特定採取空気容積、特定同時採取本数を可変して順送りし、特定物質の濃度を検出部で検出測定するので、
1、一日、週間、月間、季節や行事、年間等を通じて、クリーンルーム6内の生産稼動の有無、生産数量の多少・変動、生産品種毎のタイムスケジュールに応じた最適環境条件等の検出項目等によって、空気採取部9の採取条件を自在に可変させて選定し、最適な生産稼動が実現できる。
2、クリーンルーム6内の空気21中の希薄な特定物質の濃度検出及びその変化の監視は、特に特定採取空気容積、及び特定同時採取本数の2条件を可変選定して制御するので、最適の生産の環境管理の実現ができる。
【0038】
そして、クリーンルーム6内に空気21,22を濃縮採取する濃縮部を有するので、
▲1▼クリーンルーム6内の特定物質の濃縮成分の検出をインラインで自動化し、リアルタイムにその濃度検出及びその変化を監視でき、表示・警報装置等を併設すれば、急変時の応急処置対策も速やかに行うことができる。
【0039】
また、クリーンルーム6内に空気21,22を溶解採取する溶解部を有するので、
▲1▼クリーンルーム6内の特定物質の溶解成分の検出をインラインで自動化し、リアルタイムにその濃度検出及びその変化を監視でき、表示・警報装置等を併設すれば、急変時の応急処置対策も速やかに行うことができる。
【0040】
【発明の効果】
以上詳細に説明したとおり、本発明によれば、
▲1▼含有空間内の気体中の特定物質の増減変化状況をインラインでリアルタイムに自動化して監視し、一定の濃度以下に抑えて維持できる。
▲2▼従って、若し含有空間内の気体中の特定物質が何らかの原因で急変増加しても、報知・表示等の装置を連動させることにより、機敏な応急処置によって生産品の不良を最小限に抑えることができる。
【0041】
▲3▼制御部からの出力を受けた分配切換部による各空気清浄装置毎の運転制御は、必要に応じた重点志向的な分配切替運転が可能となって、効率的な省エネ運転をすることができる。即ち、含有空間内に配置された各清浄装置毎の運転制御は、風量(出力やダンパー開閉度)制御、運転・休止の選定制御、温度・湿度制御、運転エリア(機種)の選定制御等々の選択ができるものとする。
▲4▼上述▲3▼項により、重点志向的な分配切替運転は、制御部が各清浄装置の運転時間(フィルターの累積使用時間)を積算しているので、高価なフィルター交換(寿命)時間が判り、正確な個別対応が実現できることになる。なお、CIM(コンピュータ統合生産)機能に連動させても同効果が得られる。
【図面の簡単な説明】
【図1】 本発明の参考例のクリーンルーム内の空気を清浄化する全体構成を示す模擬図
【図2】 本発明の参考例のクリーンルーム内の空気を清浄化する空気清浄装置の構成を示す概要図で、
(A)は空気清浄装置(A)を示す図
(B)は空気清浄装置(c)を示す図
(C)は空気清浄装置(g)を示す図
【図3】 本発明の一実施例のクリーンルーム内の空気を検出する採取検出部の構成を示す概要図で、
(A)は順送り採取を示す図
(B)は採取方法を示す図
【図4】 本発明の一実施例のクリーンルーム内の空気を検出する採取検出部の構成を示す概要図で、
(A)は溶解部の採取・検出を示す図
(B)は濃縮部の採取・検出を示す図
【図5】 本発明の一実施例のクリーンルーム内の空気を検出する採取検出部の処理流れ図
【図6】 本発明の一実施例のクリーンルーム内の空気を清浄化する清浄方法の構成を示すブロック図
【図7】 本発明の一実施例のクリーンルーム内の空気を清浄化する清浄方法の処理流れ図
【符号の説明】
1…外部空気(気体)
2…空気清浄装置(A)(第1清浄装置)
3…空気清浄装置(c)(第2清浄装置)
4…空気清浄装置(g)(第2清浄装置)
5…空気清浄装置(n)(第2清浄装置)
6…クリーンルーム(含有空間)
8…空気清浄装置(a)(第2清浄装置)
8f…空気清浄装置(f)(第2清浄装置)
9…空気採取部(第3採取部)
10…採取検出部(検出部)
11…制御部
12…分配切替部
21…空気(3次気体)
22…空気(4次気体)
25…第4採取部
[0001]
[Industrial application fields]
The present invention relates to a gas cleaning system for a containing space in which a gas in the containing space is collected, a specific substance is detected, and the operation of a cleaning device is controlled by a control unit, and a cleaning method therefor.
[0002]
[Prior art]
Conventionally, a gas cleaning system and a cleaning method for such a containing space (for example, a clean room) constantly circulate a gas (for example, air) in the containing space, and a specific substance (a specified fineness) in the gas by a cleaning device. For example, particles such as dust, boron compounds, acidic substances, alkaline substances, organic compounds and gaseous substances). That is, it is generally known that the inspection for knowing the change in the contamination state due to the specific substance in the containing space is performed by sampling (detecting) and confirming (measurement) gas sequentially.
That is, the concentration of particles can be continuously monitored, but other substances (boron compounds, acidic substances, alkaline substances, organic compounds, gaseous substances, etc.) are batch-managed.
As configurations relating to the present invention, configurations described in JP-A-5-218171 and JP-A-6-193911 are known.
[0003]
[Problems to be solved by the invention]
In other words, conventional gas cleaning systems and cleaning methods for contained spaces (for example, clean rooms, clean stockers, clean boxes and other spaces that require cleanliness) detect changes in the contamination state due to specific substances in the contained spaces. (Batch management) requires a date and time, and therefore, if the contamination in the containing space suddenly changes and progresses, the countermeasures against contamination will be delayed, making it difficult to maintain (especially promptly) the quality of the product. There was a problem.
According to the present invention, a dilute concentration of a specific substance in a gas (for example, air, nitrogen gas, argon gas) is constantly monitored (detected), the result is known in a short time, and quick treatment is possible.
[0004]
[Means for Solving the Problems]
The clean room gas cleaning system of the present invention is a clean room of an environment in which a specific substance in the air is removed by an air cleaning device, an air sampling unit for taking in air in the clean room, and air in the clean room taken in from the air sampling unit A dissolving part for dissolving and collecting for each specific sampling air volume, a concentrating part for concentrating and collecting the air in the clean room taken from the air sampling part for each specific sampling air volume, and in the clean room of the dissolving part and the concentrating part The sampling of air is separately sampled for the specific sampling air volume and the specific number of simultaneous samplings for each specific sampling count within a specific sampling time, and the sampling of the air in the clean room of the dissolving unit and the concentrating unit is performed separately. A progressive feed sampling unit that sequentially feeds and switches, and the dissolution unit and the concentration unit fed forward by the sequential feed collection unit A detection unit that separately detects and measures a specific substance in the air, a control unit that receives and outputs measurement data of the detection unit, and a distribution switching unit that receives an output from the control unit operates the air purifier Is controlled .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
As will be described in detail below, according to the present invention described in claim 1,
(1) It is possible to monitor in real time the in-line increase / decrease and change of specific substances in the gas in the contained space, and keep it below a certain concentration.
(2) Therefore, even if a specific substance in the gas in the contained space suddenly increases due to any cause, the malfunction of the product is minimized by agile first aid by linking the alarm / display device. Can be suppressed.
[0006]
(3) The operation control for each air purifier by the distribution switching unit that receives the output from the control unit is capable of priority-oriented distribution switching operation as necessary, so that efficient energy-saving operation is possible. Can do. That is, operation control for each cleaning device arranged in the containing space includes air volume (output and damper opening / closing degree) control, operation / pause selection control, temperature / humidity control, operation area (model) selection control, etc. It shall be possible to select.
(4) According to the above item (3), since the control unit adds up the operation time (cumulative use time of the filter) of each cleaning device in the priority-oriented distribution switching operation, expensive filter replacement (life) time As a result, accurate individual correspondence can be realized. The same effect can be obtained by linking to the CIM (computer integrated production) function.
[0007]
【Example】
Hereinafter, as a reference example of the containing space of the present invention, for example, a clean room will be described with reference to the drawings.
[0008]
FIG. 1 is a simulation diagram showing an overall configuration for purifying air in a clean room. In FIG. 1, reference numeral 1 denotes external air (including a small amount of NOx, SOx, etc., generically referred to as gas, hereinafter the same), and this external air 1 is supplied from the first collection unit 23 to the air purifier (A) 2 (first 1 is collectively referred to as a cleaning device (hereinafter the same), and is collectively referred to as a first sampling step (hereinafter the same). The taken-in external air 1 passes through an air cleaning device (A) 2 (generically referred to as a first cleaning device; hereinafter the same), and is cleaned, adjusted for humidity and temperature (collectively referred to as a first cleaning step), and is clean room. 6 (generally referred to as containing space; hereinafter the same) is supplied from the second sampling unit 24 as external air 20 (collectively referred to as secondary gas; hereinafter the same), from the second sampling unit 24 (collectively referred to as the second sampling step; hereinafter the same). Subsequently, the external air 20 passes through each air purifier (c) 3, air purifier (g) 4, and air purifier (n) 5 arranged in the upper part of the clean room 6, and then a specific substance (specific Fine particles (for example, particles such as dust, boron compounds, acidic substances, alkaline substances, organic compounds and gaseous substances) are removed and cleaned, and then supplied into the clean room 6 and in the cleaned air Production processing and assembly inspection of semiconductors (parts and materials) are performed.
Of course, a new specific substance (mainly organic solvent or the like) may be generated in the process of production processing / assembly inspection and the like, and the air in the clean room 6 may be contaminated.
[0009]
In FIG. 1, reference numeral 7 denotes return air from the clean room 6, which passes through the air cleaning device (a) 8 or the air cleaning device (f) 8 f and becomes return air 7 ′ and merges with the external air 20. Then, a specific substance (specific fine particles. For example, boron, acidic substance, alkaline substance, organic substance is circulated through the air purifying apparatus (c) 3, the air purifying apparatus (g) 4, and the air purifying apparatus (n) 5 again. Components such as a solvent) are removed, and humidity and temperature are adjusted so that the air 21 in the clean room 6 (generically referred to as a tertiary gas; hereinafter the same) is kept clean.
In the figure, the air purifier (c) 3, the air purifier (g) 4, and the air purifier (n) 5 are assigned numbers to (c-1), (c-2), and (c-3). ,..., (G-1) (g-2) (g-3)..., (N-1) (n-2) (n-3).
The air cleaning device (c) 3, the air cleaning device (g) 4, the air cleaning device (n) 5, the air cleaning device (a) 8, and the air cleaning device (f) 8f are collectively referred to as a second cleaning device. (same as below).
Further, the air cleaning device (A) 2, the air cleaning device (c) 3, the air cleaning device (g) 4, the air cleaning device (n) 5, the air cleaning device (a) 8, and the air cleaning device (f) 8f. Are collectively referred to as a cleaning device.
In FIG. 1, reference numeral 9 denotes an air sampling unit (collectively referred to as a third sampling step, hereinafter the same), which collects the air 21 in the clean room 6 (hereinafter referred to as a third sampling step). The air 22 (collectively referred to as a quaternary gas; hereinafter the same) is introduced into the collection detection section 10 (collectively referred to as a detection section; hereinafter the same) through the section 25 (collectively referred to as a fourth collection step). The fine particle amount (concentration) of the specific substance in the air 22 is detected and measured (generically referred to as a detection step; hereinafter the same), and the next control unit 11 calculates and verifies this detection (measurement data) and switches the distribution. Output to the unit 12 (generally referred to as a control process, the same applies hereinafter), and each of the arranged air purifier (c) 3, air purifier (g) 4, air purifier (n) 5, and air purifier 8 (1) Distribution and switching (collectively referred to as distribution switching process; the same applies hereinafter),
▲ 2 ▼ ON / OFF,
(3) Control the operation of the fan drive output, temperature, humidity, etc.
[0010]
Furthermore, the control part 11 detects the humidity and temperature of the air 21 in the clean room 6 by the sampling detection part 10 (measurement data), and controls the operation of the air purifier (a) 8 and the air purifier (f) 8f. .
In addition, it is better to provide the air sampling units 9 at a plurality of locations in the same clean room 6.
[0011]
FIG. 2 is a schematic diagram showing the configuration of the air cleaning device 2, the air cleaning device 3, and the air cleaning device 4 for purifying the air in the clean room 6 of the reference example of the present invention. In FIG. 2- (A), the air purifier (A) 2 is also called an air washer, and the pure water 13 is brought into a sprayed state (for example, a shower or sprayed state) to contact the external air 1. Although specific fine particles and gaseous substances are dissolved and removed, the humidity is adjusted at the same time, and the temperature is adjusted (by means of a heat exchanger of an air conditioner, etc.) although not shown. The filter 14 filters and removes other substances (components) that cannot be dissolved and removed in the pure water 13. The fan 15 a takes in the external air 1 and passes through the air cleaning device (A) 2 to blow the external air 20 to the upper part in the clean room 6.
[0012]
The air cleaning device (a) 8 (FIG. 1) has substantially the same configuration and operation as the air cleaning device (A) 2 and is not shown or described.
The air purifier (f) 8f has, for example, a fan only (not shown), and is arranged in parallel with the air purifier (a) 8, and the wind of the return air 7 corresponding to the state of the cleaned air 21 A road is selected (operation control).
The pure water 13 used in the air cleaning device (a) 8 has a specific resistance of at least 15 MΩ · cm (at 25 ° C.) or more in order to prevent new contamination by components already dissolved in the pure water 13.
[0013]
In FIG. 2- (B), the air purifying device (c) 3 is also collectively referred to as a chemical filter, and is an embodiment having a three-layer structure of a chemical filter 16, an activated carbon filter 17, and a boron-less filter 18 made of PTFE. In this example, the external air 20 and the return air 7 'are passed through to remove specific substances (fine particles and the like).
[0014]
The chemical filter 16 uses at least one of an anion-removing chemical filter, a cation-removing chemical filter, and the like that remove specific components such as acids, alkalis, and organic compounds.
[0015]
The fan 15 b takes in the external air 20 and the return air 7 ′, passes the air cleaning device (c) 3, and blows air into the clean room 6.
[0016]
Further, in the air cleaning device (c) 3, an example in which the filter has a three-layer structure has been shown. However, depending on the situation, the chemical filter 16 and the PTFE boronless filter 18 or the activated carbon filter 17 and PTFE are used. A combination of two layers of the boronless filter 18 (none of which is shown) may be used.
[0017]
In FIG. 2- (C), the air purifier (g) 4 passes the collected air 20 through a PTFE boronless filter 18 to remove specific fine particles.
The fan 15 c takes in the external air 20 and the return air 7 ′, passes through the air cleaning device (g) 4, and blows air into the clean room 6.
[0018]
The boron-less filter 18 made of PTFE used for the air purifying device (c) 3 and the air purifying device (g) 4 is a glass fiber HEPA filter (High Efficiency Particulate) when the purpose is not to remove boron in the air. Air filter) or ULPA filter (Ultra Low Penetration Air filter) may be used instead.
[0019]
The air purifier (n) 5 (FIG. 1) is configured by arbitrarily selecting various filters according to the purpose, and is similar to the air purifier (c) 3, the air purifier (g) 4, and the like. The illustration and explanation are omitted.
[0020]
FIGS. 3 and 4 are schematic views showing the configuration of the collection detecting unit 10 that automatically collects and detects (measures) the air 21 in the clean room 6 according to an embodiment of the present invention. FIG. 4 is a process flowchart of the detection unit 10.
3 and FIG. 4 show a dissolving part that dissolves and collects the air 21 in the clean room 6 in pure water for each specific sampling air volume, and a concentrating part that separately collects and concentrates the air 21 for each specific sampling air volume. The forward sampling section that collects and sequentially switches the sampling and detection and measurement / measurement of the dissolution section and the concentration section, and calculates and verifies a specific substance in the air 22 by the next control section 11.
[0021]
First, FIG. 3 (A) shows an example of progressive sampling, in which the air 21 in the clean room 6 is progressively sampled every four specific simultaneous samplings (not shown, but each specific sampling air volume is 1 liter, for example) in the melting part, for example. It shows how
FIG. 3 (B) shows an example of the sampling method in which the air in the clean room 6 is, for example, in the melting part, the specific sampling frequency is 4 times within a specific sampling time of 1 hour, and the specific simultaneous sampling number is 4 (not shown, for example, specific The method is shown in which the sampling is carried out in order for each sampling air volume (one liter). That is, (1) sampling No. 3, 4, 5 and 6 are sampled at the same time in the figure (ie, the specific simultaneous sampling number. Horizontal black circle mark. Although not shown, the specific sampling air volume is, for example, 1 liter).
(2) Sampling No. 3 has already been collected 4 times within a specific sampling time of 1 hour (that is, the number of specific samplings, vertical black circles), and the next 5th time is passed to the test (measurement, black squares).
[0022]
That is, in this embodiment, the concentration change per hour of the specific collection time of the specific substance in the air 21 in the clean room 6 (accumulation of the number of specific collections of 4 times) is fed forward and monitored. Specific sampling time (1 hour), specific sampling frequency (4 times), specific sampling air volume (1 liter), specific simultaneous sampling number (4), depending on the situation (production activities, time schedule, etc.) It can be set to be variable.
[0023]
In other words, according to the situation, for example, (1) If you collect a small number of specific simultaneous sampling (increase the specific sampling air volume), you can grasp the rough concentration change of a specific substance for a certain time,
(2) Increasing the number of specific samples collected (by reducing the specific sampling air volume) and collecting them frequently can grasp the concentration change of the specific substance in a short time.
[0024]
Although the above describes an example of the method for collecting the dissolution part, the concentration part is also collected by the same method, but is collected separately from the dissolution part, and the setting different from the dissolution part depending on the situation (for example, The specific simultaneous sampling number may be 5, and the specific sampling air volume may be 2 liters each).
[0025]
Specifically, depending on the availability of production in the clean room 6, the amount of production, the optimum environment (concentration of specific substances, etc.) required by the production type, etc., daily, weekly, monthly, seasonal and events Develop an annual time schedule, and freely change and set the air sampling for the forward feeding of the dissolving part and the concentrating part.
Note that each of these condition settings for the dissolving part and the concentrating part can be varied and set separately.
In addition, the reason for collecting in order is that the contamination state in the clean room 6 can be continuously and automatically detected and measured in real time and in-line, and therefore an immediate countermeasure can be taken even if an abnormality occurs.
[0026]
About the example of a dissolution part, the contents of collection and detection of FIG. 4- (A) dissolution part are:
(1) For collection (dissolution), the air 21 in the clean room 6 is sucked into the pure water in the impinger (bubbling) by the suction a pump P by a specific sampling air volume (according to the flow meter F).
In this collection (dissolution), the number of specific collections within a predetermined specific collection time is accumulated and aspirated.
(2) For detection (measurement), for example, the dissolved water in the impinger is sucked by a robot or the like,
(3) Next, a specific substance in the air 22 is tested.
(4) On the other hand, cleaning (aging) is performed in parallel with (3) above (after (2) above), and the inside of the impinger is restored cleanly in preparation for the next collection (dissolution).
(5) Filling (pure water) is fed forward to prepare for the next sampling (dissolution) of the specific sampling air volume.
This completes one cycle of collection (dissolution), but the same contents are sequentially fed one after another and automatically repeated.
[0027]
About the Example of a concentration part, the content of collection | recovery and detection of FIG. 4- (B) concentration part is:
{Circle around (1)} In collection (concentration), the air 21 in the clean room 6 is adsorbed to the adsorbent in the sampler by the suction b pump P by a specific sampled air volume (according to the flow meter F).
As the adsorbent, metal oxides (zeolite, alumina, silica gel, etc.), activated carbon, activated clay, etc. are used.
In this collection (concentration), the number of specific collections within a predetermined specific collection time is accumulated and sucked.
(2) Desorption is carried out by heating with an inert gas in the collector,
(3) Detected (measured)
(4) Next, the specific substance in the air 22 is tested.
(5) On the other hand, washing (aging) is performed in parallel with (3) and (4) above (after (2) above), and heated by passing an inert gas through the collector, and the next collection (concentration) ) To prepare for the next sampling (concentration) of the specific sampling air volume.
This completes one cycle of collection (concentration), but the same contents are sequentially fed one after another and automatically repeated.
[0028]
The detection (measurement) items of the dissolution part and the concentration part are determined by a specific substance designated based on the optimum environmental conditions in the clean room 6.
Further, the number (or the number of instruments) of the tester (or test instrument) for detection (measurement) is determined depending on the measurement capability, the measurement capacity, and the like.
[0029]
FIG. 5 is a flowchart showing each process of the air sampling unit 9, the sampling detection unit 10, and the control unit 11 in the clean room 6 according to an embodiment of the present invention.
The simultaneous sampling by the sequential feeding sampling unit shows an example in which No. 1 and 2 are sampled simultaneously (that is, the specific simultaneous sampling number .-- line. The same applies to FIG. 5 below).
Further, the control unit 11 obtains and calculates the detection (measurement data) of the specific substance in the air 22 by the sampling / detection unit 10, tests the difference from the reference (standard) value, and each air purifier 3. 4, 5, 8.
[0030]
FIG. 6 is a block diagram showing a configuration of a cleaning method for cleaning the air 21 in the clean room 6 according to an embodiment of the present invention.
[0031]
In this example, the operation control of each of the air cleaning devices 3, 4, 5, 8 by the distribution switching unit 12 is (c-1) and (c-3) of the air cleaning device 3, for example. 4 (g-1), (n-1) and (n-2) of the air cleaning device 5 and each operation of the air cleaning device 8 are selected (--wire. Other air cleaning devices are not operated). It was.
[0032]
That is, the control unit 11 performs the ON / OFF control of the operation (1) of each selected air purifying device 3, 4, 5, 8.
(2) Air flow (control of fan 15 drive output, air path / blower outlet opening / closing degree, etc.),
(3) Control operation such as temperature and humidity.
[0033]
Further, in the embodiment of FIG. 6, the control unit 11, in addition to the operation control output to each air purifier 3, 4, 5, 8 of the distribution switching unit 12, for example,
(1) Detection (measurement) value of specific substances in the air
(2) Air pollution status
(3) Notification and display of repair inspection (operating time and replacement time of each filter) can also be performed.
[0034]
FIG. 7 is a process flowchart of a cleaning method for cleaning the air 21 in the clean room 6 according to an embodiment of the present invention.
The description will be omitted because it overlaps with the above.
[0035]
In the above description of one embodiment of the present invention, the specific sampling time and the specific sampling frequency of the dissolving part and the concentrating part of the air sampling part 9 are set to be the same. It is obvious that the specific sampling time and the specific sampling frequency of the concentration part and the concentration unit may be set differently (not shown).
[0036]
In other embodiments (not shown),
That is, in the above-described embodiment, the sampling of the air 21 in the clean room 6 includes the specific sampling time (1 hour), the specific sampling frequency (4 times), the specific sampling air volume (1 liter), and the specific simultaneous sampling number (4 This) was set to be flexible according to the situation, but in addition, specific sampling time (10:00 am), sampling time interval (every 15 minutes), specific sampling air volume (1 liter), specific simultaneous It is obvious that the same effect can be obtained even if the number of samples (4) is set to be variable according to circumstances.
[0037]
According to the reference example of the present invention, in the concentrating part and the dissolving part for collecting the air 21 in the clean room 6, the specific sampling time, the specific sampling frequency, the specific sampling air volume, and the specific simultaneous sampling number are changed in order and specified. Since the concentration of the substance is detected and measured by the detector,
1. Detection items such as whether there is production operation in the clean room 6 throughout the day, week, month, season, event, year, etc., some or fluctuations in production quantity, optimum environmental conditions according to the time schedule for each production type, etc. Thus, the sampling conditions of the air sampling unit 9 can be freely changed and selected, and optimal production operation can be realized.
2. Concentration detection of dilute specific substances in the air 21 in the clean room 6 and monitoring of the change thereof are controlled by variably selecting and controlling two conditions of the specific sampling air volume and the specific number of simultaneous samplings. Realization of environmental management.
[0038]
And since it has the concentration part which concentrates and collects the air 21 and 22 in the clean room 6,
(1) Automatic detection of concentration components of specific substances in the clean room 6 can be automated in-line, and their concentration detection and changes can be monitored in real time. Can be done.
[0039]
Since the clean room 6 has a dissolution part for dissolving and collecting the airs 21 and 22,
(1) Automate in-line detection of dissolved components of specific substances in the clean room 6 and monitor their concentration detection and changes in real time. If equipped with a display / alarm device, etc., quick response measures in case of sudden changes Can be done.
[0040]
【The invention's effect】
As explained in detail above, according to the present invention,
(1) It is possible to monitor in real time the in-line increase / decrease and change of specific substances in the gas in the contained space, and keep it below a certain concentration.
(2) Therefore, even if a specific substance in the gas in the contained space suddenly increases due to any cause, the malfunction of the product is minimized by agile first aid by linking the alarm / display device. Can be suppressed.
[0041]
(3) The operation control for each air purifier by the distribution switching unit that receives the output from the control unit is capable of priority-oriented distribution switching operation as necessary, so that efficient energy-saving operation is possible. Can do. That is, operation control for each cleaning device arranged in the containing space includes air volume (output and damper opening / closing degree) control, operation / pause selection control, temperature / humidity control, operation area (model) selection control, etc. It shall be possible to select.
(4) According to the above item (3), since the control unit adds up the operation time (cumulative use time of the filter) of each cleaning device in the priority-oriented distribution switching operation, expensive filter replacement (life) time As a result, accurate individual correspondence can be realized. The same effect can be obtained by linking to the CIM (computer integrated production) function.
[Brief description of the drawings]
Summary showing the structure of an air cleaning apparatus for cleaning the air in the clean room of reference example of FIG. 1 is a simulated view showing an overall configuration of cleaning the air in the clean room of Example of the present invention the present invention; FIG In the figure
FIG. 3A is a diagram showing an air purifier (A), FIG. 3B is a diagram showing an air purifier (c), and FIG. 3C is a diagram showing an air purifier (g). In the schematic diagram showing the configuration of the sampling detection unit that detects the air in the clean room,
FIG. 4A is a schematic diagram showing a configuration of a sampling detection unit that detects air in a clean room according to an embodiment of the present invention.
FIG. 5A is a diagram showing sampling / detection of a dissolving section. FIG. 5B is a diagram showing sampling / detection of a concentration section. FIG. 5 is a processing flowchart of a sampling detection section for detecting air in a clean room according to an embodiment of the present invention. FIG. 6 is a block diagram showing a configuration of a cleaning method for cleaning air in a clean room according to an embodiment of the present invention. FIG. 7 is a process of a cleaning method for cleaning air in a clean room according to an embodiment of the present invention. Flow chart [Explanation of symbols]
1 ... External air (gas)
2 ... Air purifier (A) (first purifier)
3. Air cleaning device (c) (second cleaning device)
4. Air cleaning device (g) (second cleaning device)
5 ... Air purifier (n) (second purifier)
6 ... Clean room (containing space)
8 ... Air purifier (a) (second purifier)
8f ... Air purifier (f) (second purifier)
9 ... Air sampling part (third sampling part)
10 ... Collection detector (detector)
DESCRIPTION OF SYMBOLS 11 ... Control part 12 ... Distribution switching part 21 ... Air (tertiary gas)
22 ... Air (quaternary gas)
25 ... Fourth collection unit

Claims (2)

空気清浄装置により空気中の特定物質を除去した環境のクリーンルームと、前記クリーンルーム内の空気を取り入れる空気採取部と、前記空気採取部より取り入れた前記クリーンルーム内の空気を特定採取空気容積毎に溶解採取する溶解部と、前記空気採取部より取り入れた前記クリーンルーム内の空気を特定採取空気容積毎に濃縮採取する濃縮部と、前記溶解部と前記濃縮部の前記クリーンルーム内の空気の採取は特定採取時間内の特定採取回数毎に前記特定採取空気容積、及び特定同時採取本数を別々に採取し、かつ前記溶解部と前記濃縮部の前記クリーンルーム内の空気の採取は別々に順送りして切替える順送り採
取部と、前記順送り採取部により順送りされた前記溶解部及び前記濃縮部の空気中の特定物質を別々の検出測定する検出部と、前記検出部の測定データを受けて演算出力する制御部と、前記制御部からの出力を受けて分配切換部が前記空気清浄装置の運転を制御してなるクリーンルームの気体清浄システム。
A clean room in an environment where specific substances in the air have been removed by an air purifier, an air sampling unit for taking in air in the clean room, and dissolving and collecting the air in the clean room taken in from the air sampling unit for each specific sampling air volume A concentration unit for concentrating and collecting the air in the clean room taken from the air sampling unit for each specific sampling air volume, and sampling the air in the clean room of the dissolution unit and the concentration unit is a specific sampling time The specific sampling air volume and the specific simultaneous sampling number are sampled separately for each specific sampling number of times, and the sampling of the air in the clean room of the dissolving unit and the concentrating unit is sequentially switched and switched sequentially. And detection for separately detecting and measuring a specific substance in the air of the dissolving part and the concentrating part that are sequentially fed by the progressive feeding part When the control unit and the gas cleaning system of the clean room where the distribution switching section receives the output from the control unit is to control the operation of the air cleaning device for computing output by receiving measurement data of the detection portion.
空気清浄装置により空気中の特定物質を除去した環境のクリーンルームと、前記クリーンルーム内の空気を取り入れる空気採取部と、前記空気採取部より取り入れた空気を採取する濃縮部及び溶解部において、特定採取時間、特定採取回数、特定採取空気容積、特定同時採取本数を可変して順送り採取し、空気中の特定物質の濃度を検出部で検出測定してなる請求項1に記載のクリーンルームの気体清浄システム。  In a clean room in an environment where a specific substance in the air has been removed by an air cleaning device, an air sampling part for taking in air in the clean room, a concentration part for collecting air taken in from the air sampling part, and a specific sampling time in a dissolving part 2. The clean room gas cleaning system according to claim 1, wherein the specific sampling frequency, the specific sampling air volume, and the specific simultaneous sampling number are sequentially sampled and the concentration of the specific substance in the air is detected and measured by the detection unit.
JP2001364088A 2001-11-29 2001-11-29 Gas cleaning system and cleaning method Expired - Fee Related JP3900906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001364088A JP3900906B2 (en) 2001-11-29 2001-11-29 Gas cleaning system and cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364088A JP3900906B2 (en) 2001-11-29 2001-11-29 Gas cleaning system and cleaning method

Publications (2)

Publication Number Publication Date
JP2003166733A JP2003166733A (en) 2003-06-13
JP3900906B2 true JP3900906B2 (en) 2007-04-04

Family

ID=19174328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364088A Expired - Fee Related JP3900906B2 (en) 2001-11-29 2001-11-29 Gas cleaning system and cleaning method

Country Status (1)

Country Link
JP (1) JP3900906B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187436A (en) * 2005-12-13 2007-07-26 Hokkaido Univ Clean unit, connected clean unit, clean unit operating method, and clean work room
JP5876377B2 (en) * 2012-06-13 2016-03-02 株式会社神戸製鋼所 Installation environment evaluation method and apparatus for water jet compressor
JP6505551B2 (en) * 2015-08-31 2019-04-24 株式会社日立製作所 Clean room exhaust unit

Also Published As

Publication number Publication date
JP2003166733A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
US9587846B2 (en) Ductless fume hood gas monitoring and detection system
JP4921367B2 (en) System and method for removing contaminants
US5428964A (en) Control for air quality machine
CN101208563B (en) Multipoint air sampling system having common sensors to provide blended air quality parameter information for monitoring and building control
US5255556A (en) Air quality indicator and control for air quality machine
JP6878466B2 (en) How to determine the availability of air filters
WO2010131583A1 (en) Air cleaning device and air cleaning monitoring system using the same
CN109269013A (en) The service life monitoring method and device of filter core
KR101721607B1 (en) Apparatus for rotating-type analyzing particles in particulate matter and analyzing method using the same
CN109268947A (en) Air regulator and its control method, device and computer readable storage medium
JP5905850B2 (en) AIR CLEANING DEVICE AND AIR CLEANING MONITORING SYSTEM USING THE SAME
TW202323792A (en) Modular particle counter with docking station
JP3900906B2 (en) Gas cleaning system and cleaning method
KR101514300B1 (en) Measuring method and filter performance measuring device of filter use of clean room
RU2770345C1 (en) System and method for indication of air-cleaning device state and control with their use
CN114534383B (en) Pulse blowing control method
JP4013121B2 (en) Environmental purification equipment
CN110701758B (en) Air purification device and method
JPH11226341A (en) Method and apparatus for clarification of gas
Weschler et al. Comparison of effects of ventilation, filtration, and outdoor air on indoor air at telephone office buildings: a case study
KR20170070686A (en) Active Particle Control Unit / A.P.C.U.
US11867606B1 (en) Air quality sensor system
CN116448963B (en) Exhaust gas concentration detection method and equipment based on multi-pipeline structure, device and medium
WO2023129644A1 (en) Use of output of real time sensors to automatically trigger devices
JP2005282908A (en) Chemical substance removing method in clean room

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees