JP3898809B2 - Method for producing ERW steel pipe having excellent formability and high ductility - Google Patents

Method for producing ERW steel pipe having excellent formability and high ductility Download PDF

Info

Publication number
JP3898809B2
JP3898809B2 JP28642697A JP28642697A JP3898809B2 JP 3898809 B2 JP3898809 B2 JP 3898809B2 JP 28642697 A JP28642697 A JP 28642697A JP 28642697 A JP28642697 A JP 28642697A JP 3898809 B2 JP3898809 B2 JP 3898809B2
Authority
JP
Japan
Prior art keywords
steel pipe
ductility
strength
less
high ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28642697A
Other languages
Japanese (ja)
Other versions
JPH11124631A (en
Inventor
真也 坂本
好男 寺田
大吾 住本
一夫 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28642697A priority Critical patent/JP3898809B2/en
Publication of JPH11124631A publication Critical patent/JPH11124631A/en
Application granted granted Critical
Publication of JP3898809B2 publication Critical patent/JP3898809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、成形性の優れた高延性を有する電縫鋼管の製造法に関するものである。
【0002】
【従来の技術】
欧米において、自動車の軽量化と部品点数削減によるコストダウン狙いでハイドロフォ−ム技術の実用化が進みつつあり、日本においても次世代自動車生産技術の中核の一つとして積極的な取り組みが進みつつある。ハイドロフォ−ム用の材料は成形に耐え得る良好な延性を有することが重要な要素である。これまで同程度の強度でありながら延性を向上させる、すなわち強度−延性バランスの向上を目的とした研究開発が数多く行われてきた。過去において、飛躍的に強度−延性バランスを向上させたのは、フェライトとマルテンサイトの混合組織からなるいわゆる二相鋼である。例えば、特開昭51−12317号公報に熱延後急冷することにより得られる二相鋼の技術、特公昭57−45454号公報には連続焼鈍により得られる技術がある。現在、二相鋼はその優れた特性を生かし、自動車用等の材料の軽量化用途として注目されている。
【0003】
【発明が解決しようとする課題】
炭素鋼の強度を向上させるためには、炭素含有量を増加させるのが最も簡単であるが、炭素量が増すと、伸びや絞り等の延性が低下し、また、溶接性が劣化する。一方、炭素鋼を特別な熱処理によってフェライトマトリックスに第二相を分散させ二相組織にすることで強度を確保しつつ延性が優れ、良好な強度−伸びバランスが得られる。本発明は成形性の優れた高延性を有する電縫鋼管を提供するものである。
【0004】
【課題を解決するための手段】
その発明の要旨とするところは、重量%で、
C :0.05〜0.25%、
Si:0.6%以下、
Mn:0.20〜2.00%、
Al:0.005〜0.050%、
N :0.0036%以下
を含有し、残部Feおよび不可避不純物よりなる鋼帯を管状に成形し、この管状鋼帯のエッジ部を高周波溶接により素管を成形し、溶接後フェライト+オ−ステナイト二相域加熱温度(変態温度Ac1 〜Ac3 )で30分以下加熱保持し、その後5〜30℃/秒の冷却速度で冷却することを特徴とするTS390〜430N/mm2 の成形性の優れた高延性を有する電縫鋼管の製造法である。
【0005】
【発明の実施の形態】
以下に、本発明の成形性の優れた高延性を有する電縫鋼管の製造法について詳細に説明する。
本発明における化学成分、高周波溶接後の電縫鋼管の熱処理条件の限定理由について説明する。はじめに化学成分の限定理由について説明する。
Cは強度増加に有効な元素であるが、適量の第二相の組織を生成させ強度を確保するためその下限を0.05%とした。Cが多いと強度が高くなり過ぎ延性が低下し良好な成形性が得られない。よって、優れた強度−延性バランスを得るためにその上限を0.25%とした。
【0006】
Siは脱酸および強度増加に有効な元素であり、Siが多くなると鋼の脆化をまねき強度−延性バランスの劣化を招くことからその上限を0.6%とした。
Mnは鋼の強度、靱性を確保する上で不可欠な元素であり、Mnが少ないと強度が不足するためその下限を0.20%とした。Mnが多いと強度が高くなり過ぎ、靱性および延性の劣化を招くことからその上限を2.00%とした。
【0007】
Alは、脱酸のため必要であるが、過剰に添加するとAl2 3 を中心とした脱酸生成物が鋼中に残存する量が増える。特に本発明の場合のように電縫鋼管に用いられる場合、溶接部での巨大な介在物は致命的欠陥となるので、その上限を0.05%とした。
鋼中のNを固定することによって固溶Nによる降伏点伸びの回復を抑える作用があり、この作用は0.005%未満のAlでは発揮されないため、その下限を0.005%とした。
Nは鋼の耐時効性を最も劣化させる元素であり、含有量が少ないほど好ましく、その上限を0.0036%以下とした。
【0008】
次に本発明鋼の高周波溶接後の電縫鋼管の熱処理条件について説明する。
上記に説明した含有成分および含有割合の鋼帯を従来法と同様の方法で溶接を行い素管を形成した後、この素管をフェライト+オ−ステナイト二相域加熱温度(変態温度Ac1 〜Ac3 )で30分以下加熱保持し、その後5〜30℃/秒の冷却速度で冷却する。加熱温度がAc1 より低いとオ−ステナイトの逆変態が起こらず、その後の冷却条件でも複合組織が得られず良好な強度−延性バランスは得られない。一方、加熱温度がAc3 より高い場合には完全にオ−ステナイト化されてしまうためにCの農化が起こらず組織が粗大化するため強度−延性バランスが劣化する。したがって、加熱温度はAc1 〜Ac3 とした。
【0009】
二相域加熱温度域においてα−Fe中のCは30分で十分オ−ステナイト中へ拡散できることから30分以下の加熱保持時間とした。二相域加熱温度(変態温度Ac1 〜Ac3 )域に加熱したあとの冷却速度はいかにして初析フェライトを細粒にし、かつ低温変態生成物を微細分散するかが問題となることから冷却速度を5〜30℃/秒とした。本発明のように特定の成分系でフェライト+オ−ステナイト二相域熱処理することで高度で複雑な成形にも十分耐え得る電縫鋼管が得られる。
【0010】
【実施例】
表1に化学成分、熱処理条件、機械的特性を示す。表1のNo1〜6は本発明法を示し、No7〜12は比較法を示す。表1から明らかなように本発明法にしたがって製造した鋼管は優れた強度−延性バランスを有する。これに対して比較法は熱処理条件が適切でなく、本発明法に比較して強度−延性バランスが劣る。
【0011】
【表1】

Figure 0003898809
【0012】
【発明の効果】
本発明により成形性の優れた高延性を有する電縫鋼管が安定して製造できるようになった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an electric resistance welded steel pipe having excellent formability and high ductility.
[0002]
[Prior art]
In Europe and the United States, hydroform technology is being put into practical use with the aim of reducing costs by reducing the weight of automobiles and reducing the number of parts. In Japan, active efforts are being made as one of the core of next-generation automobile production technologies. is there. It is an important factor that the material for the hydroform has good ductility that can withstand molding. There have been many researches and developments aimed at improving ductility while maintaining the same strength, that is, improving the strength-ductility balance. In the past, what has greatly improved the strength-ductility balance is a so-called duplex steel composed of a mixed structure of ferrite and martensite. For example, Japanese Patent Application Laid-Open No. 51-12317 discloses a duplex stainless steel technique obtained by rapid cooling after hot rolling, and Japanese Patent Publication No. 57-45454 discloses a technique obtained by continuous annealing. Currently, duplex stainless steels are attracting attention as applications for reducing the weight of materials for automobiles, etc., taking advantage of their excellent characteristics.
[0003]
[Problems to be solved by the invention]
In order to improve the strength of the carbon steel, it is easiest to increase the carbon content. However, when the carbon content increases, the ductility such as elongation and drawing decreases, and the weldability deteriorates. On the other hand, carbon steel is dispersed by a special heat treatment to disperse the second phase in the ferrite matrix to form a two-phase structure, thereby ensuring excellent strength and excellent balance between strength and elongation. The present invention provides an ERW steel pipe having excellent ductility and high ductility.
[0004]
[Means for Solving the Problems]
The gist of the invention is weight percent,
C: 0.05 to 0.25%,
Si: 0.6% or less,
Mn: 0.20 to 2.00%,
Al: 0.005 to 0.050%,
N: A steel strip containing 0.0036% or less and the balance of Fe and inevitable impurities is formed into a tubular shape, and an edge portion of the tubular steel strip is formed by high-frequency welding, and after welding, ferrite + austenite The moldability of TS390 to 430 N / mm 2 , characterized in that it is heated and held for 30 minutes or less at a two-phase region heating temperature (transformation temperatures Ac 1 to Ac 3 ) and then cooled at a cooling rate of 5 to 30 ° C./second. This is a method for producing an ERW steel pipe having excellent high ductility.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Below, the manufacturing method of the ERW steel pipe which has the high ductility which was excellent in the moldability of this invention is demonstrated in detail.
The reasons for limiting the chemical components and heat treatment conditions of the ERW steel pipe after high frequency welding in the present invention will be described. First, the reasons for limiting chemical components will be described.
C is an element effective for increasing the strength, but the lower limit was made 0.05% in order to generate an appropriate amount of the second phase structure and ensure the strength. If the amount of C is large, the strength becomes too high and the ductility is lowered, and good moldability cannot be obtained. Therefore, in order to obtain an excellent strength-ductility balance, the upper limit is made 0.25%.
[0006]
Si is an element effective for deoxidation and strength increase. When Si is increased, the steel becomes brittle and the strength-ductility balance is deteriorated, so the upper limit was made 0.6%.
Mn is an element indispensable for ensuring the strength and toughness of steel. If the amount of Mn is small, the strength is insufficient, so the lower limit was made 0.20%. If the amount of Mn is large, the strength becomes too high and the toughness and ductility are deteriorated, so the upper limit was made 2.00%.
[0007]
Al is necessary for deoxidation, but if it is added in excess, the amount of deoxidation products centered on Al 2 O 3 remaining in the steel increases. In particular, when used for ERW steel pipes as in the case of the present invention, enormous inclusions in the welds become fatal defects, so the upper limit was made 0.05%.
By fixing N in the steel, there is an effect of suppressing the recovery of the yield point elongation due to solute N. Since this effect is not exhibited with less than 0.005% Al, the lower limit was made 0.005%.
N is an element that most deteriorates the aging resistance of steel, and the smaller the content, the better . The upper limit is set to 0.0036% or less.
[0008]
Next, heat treatment conditions for the ERW steel pipe after high frequency welding of the steel of the present invention will be described.
The steel strip having the above-described components and content ratios was welded in the same manner as in the conventional method to form a raw pipe, and then this raw pipe was heated to a ferrite + austenite two-phase region heating temperature (transformation temperature Ac 1 to Ac 3 ) is heated and held for 30 minutes or less, and then cooled at a cooling rate of 5 to 30 ° C./second. The heating temperature is lower than the Ac 1 O - reverse transformation austenite does not occur, good strength is not obtained composite structure in the subsequent cooling conditions - not available ductility balance. On the other hand, when the heating temperature is higher than Ac 3 , it is completely austenitic, so that C is not agricultural and the structure is coarsened, so that the strength-ductility balance is deteriorated. Therefore, the heating temperature was set to Ac 1 to Ac 3 .
[0009]
In the two-phase region heating temperature region, C in α-Fe can be sufficiently diffused into austenite in 30 minutes, so the heating and holding time was set to 30 minutes or less. Because the cooling rate after heating to the two-phase region heating temperature (transformation temperature Ac 1 to Ac 3 ) region is how to refine the pro-eutectoid ferrite and finely disperse the low-temperature transformation product. The cooling rate was 5 to 30 ° C./second. As in the present invention, an electric resistance welded steel pipe that can sufficiently withstand sophisticated and complex forming can be obtained by heat treatment of ferrite + austenite two-phase region with a specific component system.
[0010]
【Example】
Table 1 shows chemical components, heat treatment conditions, and mechanical properties. Nos. 1 to 6 in Table 1 show the method of the present invention, and Nos. 7 to 12 show comparative methods. As is apparent from Table 1, the steel pipe produced according to the method of the present invention has an excellent strength-ductility balance. In contrast, the heat treatment conditions of the comparative method are not appropriate, and the strength-ductility balance is inferior to that of the method of the present invention.
[0011]
[Table 1]
Figure 0003898809
[0012]
【The invention's effect】
According to the present invention, an ERW steel pipe having excellent ductility and high ductility can be stably produced.

Claims (1)

重量%で、
C :0.05〜0.25%、
Si:0.6%以下、
Mn:0.20〜2.00%、
Al:0.005〜0.050%、
N :0.0036%以下
を含有し、残部Feおよび不可避不純物よりなる鋼帯を管状に成形し、この管状鋼帯のエッジ部を高周波溶接により素管とし、溶接後フェライト+オ−ステナイト二相域加熱温度(変態温度Ac1 〜Ac3 )で30分以下加熱保持し、その後5〜30℃/秒の冷却速度で冷却することを特徴とするTS390〜430N/mm2 の成形性の優れた高延性を有する電縫鋼管の製造法。
% By weight
C: 0.05 to 0.25%,
Si: 0.6% or less,
Mn: 0.20 to 2.00%,
Al: 0.005 to 0.050%,
N: A steel strip containing 0.0036% or less and the balance Fe and inevitable impurities is formed into a tubular shape, and the edge portion of the tubular steel strip is formed into a blank by high-frequency welding, and after welding, ferrite + austenite two-phase Heating and holding at a zone heating temperature (transformation temperature Ac 1 to Ac 3 ) for 30 minutes or less, and then cooling at a cooling rate of 5 to 30 ° C./second is excellent in moldability of TS390 to 430 N / mm 2 A method for manufacturing ERW steel pipes with high ductility.
JP28642697A 1997-10-20 1997-10-20 Method for producing ERW steel pipe having excellent formability and high ductility Expired - Fee Related JP3898809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28642697A JP3898809B2 (en) 1997-10-20 1997-10-20 Method for producing ERW steel pipe having excellent formability and high ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28642697A JP3898809B2 (en) 1997-10-20 1997-10-20 Method for producing ERW steel pipe having excellent formability and high ductility

Publications (2)

Publication Number Publication Date
JPH11124631A JPH11124631A (en) 1999-05-11
JP3898809B2 true JP3898809B2 (en) 2007-03-28

Family

ID=17704244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28642697A Expired - Fee Related JP3898809B2 (en) 1997-10-20 1997-10-20 Method for producing ERW steel pipe having excellent formability and high ductility

Country Status (1)

Country Link
JP (1) JP3898809B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5753781B2 (en) * 2008-07-11 2015-07-22 アクティエボラゲット・エスコーエッフ Method for manufacturing steel components, weld lines, welded steel components, and bearing components

Also Published As

Publication number Publication date
JPH11124631A (en) 1999-05-11

Similar Documents

Publication Publication Date Title
JP2601581B2 (en) Manufacturing method of high strength composite structure cold rolled steel sheet with excellent workability
JP2004232022A (en) Dual phase type high tensile strength steel sheet having excellent elongation and stretch flanging property, and production method therefor
JPS61210158A (en) Superplastic two-phase stainless steel and hot working method thereof
CN104350166B (en) The high silicon bearing dual phase steel of ductility with raising
JP3898809B2 (en) Method for producing ERW steel pipe having excellent formability and high ductility
JPWO2020230795A1 (en) Electric resistance sewn steel pipe for hollow stabilizer
JPS58123858A (en) Steel for electric welded steel pipe for hollow stabilizer
JP4345160B2 (en) High strength steel pipe and manufacturing method thereof
JP3779811B2 (en) ERW steel pipe with excellent workability and its manufacturing method
JP3999915B2 (en) ERW steel pipe for cold forging with excellent workability and its manufacturing method
JP3831130B2 (en) Manufacturing method of high ductility ERW steel pipe with excellent workability
JPS602364B2 (en) Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness
JP3840535B2 (en) Manufacturing method of high ductility ERW steel pipe
CN112126757A (en) Thick-direction variable-strength hardness cold-rolled strip steel and manufacturing method thereof
JPH10287957A (en) High strength pc steel bar and its manufacture
JP3836919B2 (en) Manufacturing method of ultra-thick high-strength bend pipe with excellent low temperature toughness
JP4582850B2 (en) High-strength stainless steel plate with excellent bending workability
JP3804087B2 (en) Manufacturing method of hot-bending steel pipe
JP2001200313A (en) Method for producing electric resistance welded tube for cold forging excellent in workability
JP2840978B2 (en) Manufacturing method of ultra-high tensile ERW steel pipe
JPH09295067A (en) Manufacture of high strength bent pipe excellent in toughness at welded metal part
JPH0941040A (en) Production of high strength cold rolled steel sheet excellent in strength-flanging property
JP2000109949A (en) Electric resistance welded tube excellent in workability and its production
JP2521547B2 (en) Low-temperature steel manufacturing method
JP2605171B2 (en) ERW steel pipe for high toughness heat treatment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees