JP3898457B2 - 光集積回路基板 - Google Patents

光集積回路基板 Download PDF

Info

Publication number
JP3898457B2
JP3898457B2 JP2001089753A JP2001089753A JP3898457B2 JP 3898457 B2 JP3898457 B2 JP 3898457B2 JP 2001089753 A JP2001089753 A JP 2001089753A JP 2001089753 A JP2001089753 A JP 2001089753A JP 3898457 B2 JP3898457 B2 JP 3898457B2
Authority
JP
Japan
Prior art keywords
light receiving
refractive index
receiving surface
receiving element
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001089753A
Other languages
English (en)
Other versions
JP2002286956A (ja
Inventor
由里子 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001089753A priority Critical patent/JP3898457B2/ja
Publication of JP2002286956A publication Critical patent/JP2002286956A/ja
Application granted granted Critical
Publication of JP3898457B2 publication Critical patent/JP3898457B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Light Receiving Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光導波路と半導体受光素子とを同一基板に集積する光集積回路基板に関し、例えばWDM(Wavelength Division Multiplex:波長分割多重伝送方式)用受光回路基板のように同一基板上に複数の半導体受光素子およびその他のデバイスを搭載するような場合に好適に利用され、光導波路と半導体受光素子とを同一基板に集積して基板サイズの小型化と受光効率の増加を実現できる光集積回路基板に関する。
【0002】
【従来の技術】
従来、WDM用受光回路基板等のような光集積回路基板における半導体受光素子と光導波路との接続は、光導波路層の上方に半導体受光素子を実装し、光導波路からの光は、光導波路に作り込んだミラーやグレーティングを通して光路変更することによって半導体受光素子の受光部に入力させるのが一般的であった。
【0003】
この方法では、半導体受光素子を実装する際の光導波路と半導体受光素子の受光部との光学的な結合を行なうための位置合わせが半導体受光素子の相対的な位置を直交する3軸方向において最適に設定する必要があった。また、光導波路に作り込むミラーやグレーティングの作製プロセスも煩雑であった。
【0004】
そこで、例えば特開平7−128531号公報では、光結合を用いて高分子導波路から光半導体素子へ高効率に結合を行なう構造が提案されている。図4に特開平7−128531号公報に提案された光集積回路基板の例の断面図を示す。これによれば、光導波路が高分子導波路で形成され、クラッド部33中に形成された光導波路のコア部34が半導体層35と光吸収層32とから成る半導体受光素子の上面に乗り上げるように屈曲し、半導体受光素子の端面とコア部34との間はクラッド部33で埋め込まれている構造を有している。この構造は、屈曲部において屈曲部の外側、すなわち半導体受光素子側へ伝搬光の電界分布が偏ることによって、半導体受光素子の光吸収層32に取り込まれやすくなり、光導波路と半導体受光素子との結合効率を高くしている。
【0005】
しかしながら、特開平7−128531号公報に提案された光集積回路基板に関しては、図4に示すように高分子導波路が半導体受光素子の上面に乗り上げるように屈曲しているため、屈曲部の曲率半径が小さい場合において光が放射してしまい、高分子導波路を伝搬してきた光は、半導体受光素子と結合せずに、一部が基板や上部クラッド部33へ散乱してしまうという問題点があった。
【0006】
さらに、半導体受光素子の受光部である光吸収層32と半導体受光素子の入力側の端面の境界部において下部クラッド部33との屈折率差が大きいため、光吸収層32に端面側から入射する伝搬光が高分子導波路の伝搬方向に対して垂直な半導体受光素子の端面で反射されてしまうという問題点があった。
【0007】
また、半導体受光素子の受光部である光吸収層32と半導体受光素子の入力側の端面の境界部に位置する下部クラッド層33との屈折率差が大きいため、光吸収層32に端面側から入射する伝搬光が高分子導波路の伝搬方向に対して垂直な半導体受光素子の端面で反射されてしまうという問題点もあった。
【0008】
これに対し、本発明者は特願2001−20622号において、図5に断面図で示すように、基板1上に配設された半導体受光素子2と、少なくとも下部クラッド部3およびコア部4を有し、半導体受光素子2の近傍に光伝搬方向を受光面に平行として形成された光導波路と、半導体受光素子2の光導波路による光伝搬方向の入力側に位置して半導体受光素子2の受光面の端面および光導波路のコア部4に対向するように配置された、屈折率がコア部4より大きく受光面より小さい中間屈折率体6とを具備して成る光集積回路基板を提案した。この光集積回路基板によれば、コア部4を伝搬してきた光が中間屈折率体6にモード結合により移行し、半導体受光素子2の受光面におけるフィールドとの整合をとることによって、スムーズに半導体受光素子2へ光を結合させている。
【0009】
【発明が解決しようとする課題】
しかしながら、この中間屈折率体6を具備して成る光集積回路基板においては、図7の線図に横軸を中間屈折率体6の光伝搬方向の長さLff(単位:μm)、縦軸を結合効率Coupling efficiency(単位:%)とし、中間屈折率体6の光伝搬方向の断面形状を長方形としたときの結合効率の変化を破線の特性曲線で示すように、この中間屈折率体6は光伝搬方向の長さLffの変化に対して半導体受光素子2との結合効率の変化が大きく、中間屈折率体6の加工に高精度が要求されるため、製作が容易とは言い難かったという改善すべき点があった。
【0010】
また、この光集積回路基板の用途によっては、より高効率な結合効率を要求されるシステム回路があることから、それに応え得る、しかも製作が容易な光集積回路基板が求められていた。
【0011】
本発明は上記従来技術における問題点や要求に鑑みてなされたものであり、その目的は、光導波路と半導体受光素子との結合効率を高め、光導波路を伝搬する光に対する半導体受光素子による受光効率をより高効率なものとし、しかも加工精度に大きく影響されずに安定して製作し供給することができる光集積回路基板を提供することにある。
【0012】
【課題を解決するための手段】
本発明の光集積回路基板は、基板上に基板上に、前記基板の上面と平行に位置する大面積の受光面と、前記大面積の受光面に垂直な受光面を有し、前記大面積の受光面を上向きにして配設された面受光型の半導体受光素子と、前記基板上に、少なくとも下部クラッド部およびコア部を有し、前記基板上の前記半導体受光素子の上に、前記下部クラッド部の一部を介して、前記コア部を前記大面積の受光面に平行として形成された光導波路と、前記半導体受光素子の前記光導波路による光伝搬方向の入力側に位置して前記大面積の受光面に垂直な受光面に対向するとともに、前記下部クラッド部の一部を介して前記光導波路の前記コア部の下面に対向するように配置された、屈折率が前記コア部より大きく前記 面積の受光面に垂直な受光面より小さく、かつ実効屈折率が前記大面積の受光面に垂直な受光面に向かって徐々に高くなっている中間屈折率体とを具備して成ることを特徴とするものである。
【0013】
また、本発明の光集積回路基板は、上記構成において、前記中間屈折率体の厚みが前記大面積の受光面に垂直な受光面に向かって徐々に厚くなっていることを特徴とするものである。
【0014】
また、本発明の光集積回路基板は、上記構成において、前記中間屈折率体の屈折率が前記大面積の受光面に垂直な受光面に向かって徐々に高くなっていることを特徴とするものである。
【0015】
【発明の実施の形態】
本発明の光集積回路基板によれば、基板上に例えば実装されあるいは形成されて、基板の上面と平行に位置する大面積の受光面と、大面積の受光面に垂直な受光面を有し、大面積の受光面を上向きにして配設された面受光型の半導体受光素子に対して、その上に、下部クラッド部の一部を介して、コア部を前記大面積の受光面に平行として光導波路を積層するように形成することにより、半導体受光素子と光導波路とを同一基板に効率的に集積することができ、従来のように基板上に光導波路を形成した後で半導体受光素子を実装した光集積回路基板と比較して小型化・低背化できるとともに、この光導波路上にさらに別の光電子デバイス等を搭載実装することができるので、特に基板上に半導体受光素子および光電子デバイスをそれぞれ複数個搭載するような光集積回路基板についても、光集積回路基板の小型化を実現することができるものとなる。
【0016】
また、本発明の光集積回路基板によれば、基板には半導体受光素子を形成することができる基板や半導体受光素子を搭載実装することができる基板であれば各種の基板を用いることができ、電気的特性の良いセラミック基板等、信号処理の高速化および光電子デバイスの高集積化に対してより好適な基板を使用することができる。
【0017】
また、本発明の光集積回路基板によれば、半導体受光素子の大面積の受光面に垂直な受光面に対して、光導波路による光伝搬方向の入力側の手前に、この大面積の受光面に垂直な受光に対向させるとともに、下部クラッド部の一部を介してコア部の下に対向させて、コア部屈折率が光導波路のコア部より大きく半導体受光素子の大面積の受光面に垂直な受光面より小さく、かつ実効屈折率が大面積の受光面に垂直な受光面に向かって徐々に高くなっている中間屈折率体を配置したことによって、モード結合理論から、光導波路のコア部を伝搬してきた光が中間屈折率体にモード結合により移行し、この中間屈折率体から出力された光が半導体受光素子の端面から大面積の受光面に垂直な受光面ヘ結合することができ、これについて半導体受光素子におけるフィールドとの整合をとることによって、スムーズに半導体受光素子へ光を結合させることができ、結合効率を高めることができる。
【0018】
また、図5に示すような中間屈折率体6を用いた構造では、前述のように、モード結合理論の原理から中間屈折率体6の光伝搬方向の長さLffを変化させると光導波路のコア部4と中間屈折率体6との間で相互に光が移行して結合効率について大きな変化をもたらしていたが、本発明の光集積回路基板によれば、中間屈折率体の実効屈折率が、半導体受光素子の大面積の受光面に垂直な受光面に向かって徐々に高くなっていることから、コア部から中間屈折率体へ移行してきた光は完全に光導波路のコア部へ戻ることがない。このことから、中間屈折率体の光伝搬方向の長さを長くすると、結合効率が徐々に増加することとなり、より高い結合効率が得られるものとなる。さらに、本発明の光集積回路基板によれば、中間屈折率体の光伝搬方向の長さを一定以上にすると結合効率が最大値に近づき、中間屈折率体の加工精度によらず安定した結合効率を得ることができるものとなるので、作製が容易である。
【0019】
以下、本発明の光集積回路基板について図面を参照しつつ説明する。図1は、本発明の光集積回路基板の実施の形態の一例を示す光集積回路基板の断面図である。
【0020】
本発明の光集積回路基板は、図1に示すように、基板1上に配設された面受光型の半導体受光素子2と、この基板1上の半導体受光素子2上に形成された、下部クラッド部3・コア部4・上部クラッド部5から成る光導波路と、半導体受光素子2の光導波路による光伝搬方向の入力側に位置する半導体受光素子2の大面積の受光面に垂直な受光面、通常は光伝搬方向に垂直に配置される大面積の受光面に垂直な受光面の手前に、半導体受光素子2の大面積の受光面に垂直な受光面に対向するとともに、下部クラッド部3の一部を介して光導波路のコア部4の下面に対向するように配置された、屈折率がコア部4より大きく半導体受光素子2の大面積の受光面に垂直な受光面より小さく、かつ実効屈折率が大面積の受光面に垂直な受光面に向かって徐々に高くなっている中間屈折率体6とを具備して成るものである。なお、上部クラッド部5は必ずしも必要なものではなく、上部クラッド部5を形成せず、コア部4の上部を空気(屈折率は約1)としておくことによっても、光導波路による良好な光伝送および半導体受光素子2への良好な光接続を行なうことができる。
【0021】
本発明の光集積回路基板において、半導体受光素子2および中間屈折率体6が配設され、その上に光導波路が形成される基板1には、光集積回路基板や光電子混在基板の光信号を扱う基板として使用される種々の基板、例えば、シリコン基板やアルミナ基板・ガラスセラミック基板・多層セラミック基板等が使用できる。
【0022】
基板1上に配設される面受光型の半導体受光素子2には、例えば、フォトダイオード(PNフォトダイオード・PINフォトダイオードあるいはアバランシェフォトダイオード・MSM(Metal-Semiconductor-Metal)フォトダイオード)等が用いられ、これらが基板1上に搭載実装されあるいは形成されて配設される。半導体受光素子2の大面積の受光面は、基本的には基板1の上面とほぼ平行にその半導体受光素子2の上部に位置するものであるが、このような位置に限定されるものではなく、半導体受光素子2のどこに位置していてもよい。ただし、大面積の受光面の位置によっては、最大受光効率を得ることができる最適設計を行ない、その最適設計に見合った光導波路および中間屈折率体6を形成する必要がある。
【0023】
基板1および半導体受光素子2上に形成される光導波路は、少なくとも下部クラッド部3とコア部4とを有しており、好ましくはこれに上部クラッド部5を有する3層から成る3次元導波路形状の光導波路である。その形成材料としては基板1上に3次元導波路形状の光導波路を形成できる光学材料であれば種々のものが使用できるが、中でも有機系の光学材料、特にシロキサン系ポリマを用いることが望ましい。シロキサン系ポリマによる光導波路とすれば、例えばコア部4のみあるいはコア部4ならびに下部および上部クラッド部3・5にチタン(Ti)等の金属を含有したシロキサン系ポリマを用いることにより、チタン含有量の制御によってコア部4と下部および上部クラッド部3・5とで所望の屈折率差を有する光導波路を容易に作製することができ、半導体受光素子2との受光効率が最大となる構造のものを設計することが容易となる。
【0024】
このようなシロキサン系ポリマとしては、ポリマの骨格にシロキサン結合が含まれている樹脂であればよく、例えばポリフェニルシルセスキオキサン・ポリメチルフェニルシルセスキオキサン・ポリジフェニルシルセスキオキサン等がある。
【0025】
また、コア部4およびクラッド部3・5に含有させる金属としてはチタンに限られるものではなく、ゲルマニウム(Ge)・アルミニウム(Al)・エルビウム(Er)等も使用できる。これらの金属を含有したコア部4を形成するには、その金属アルコキシドを添加したシロキサン系ポリマ層を形成し、これを所望の形状・寸法に加工すればよい。
【0026】
また、光導波路の材料としては、この他にも低損失で光を伝搬させることができる透明性があり、また所望の屈折率差を得ることができるコア部材とクラッド部材との組合せであれば各種の材料を用いることができる。有機系の光学材料としては、シロキサン系ポリマ以外に、例えばフッ素化ポリイミド・ポリメチルメタクリレート(PMMA)・ポリカーボネート(PC)等の溶液状態で塗布可能な光学材料が好適に用いられる。
【0027】
半導体受光素子2の大面積の受光面に垂直な受光面に対し、光導波路による光伝搬方向の入力側に位置して、大面積の受光面に垂直な受光面に対向するとともに、光導波路のコア部4の下面に対向するようにして半導体受光素子2の大面積の受光面に垂直な受光面の手前に配置される中間屈折率体6は、光集積回路を構成する光導波路および半導体受光素子2の屈折率および形状に応じて適切な屈折率および形状を有するものとすればよく、特に上下クラッド部3・5とコア部4との3層で構成される光導波路の実効屈折率と、下部クラッド部3および半導体受光素子2の大面積の受光面に垂直な受光面で構成される部分の実効屈折率との範囲内で、半導体受光素子2の大面積の受光面に垂直な受光面に近くなるにつれて徐々に実効屈折率が高くなるような実効屈折率分布となる屈折率と形状との組合せとするとよい。
【0028】
例えば、一定の屈折率で構成される中間屈折率体6の形状を、その厚みが大面積の受光面に垂直な受光面に向かって徐々に厚くなるような、例えばくさび形あるいは台形等の断面形状のものにして、半導体受光素子2の大面積の受光面に垂直な受光面側に最も厚みが厚くなった部分(くさび形であればその底部)を配置するとよい。このように中間屈折率体6の厚みを大面積の受光面に垂直な受光面に向かって徐々に厚くなっているものとしたときは、添加剤の導入および制御が困難であるような屈折率制御が難しい材料においても、安定して得られる初期の屈折率を利用して中間屈折率体6の形状を設計することで、高効率な結合効率を得ることができる。
【0029】
あるいは、直方体(断面形状が長方形)の中間屈折率体6について、半導体受光素子2の大面積の受光面に垂直な受光面に向かって徐々に高い屈折率を有するような屈折率分布を与えたものとしてもよい。このように中間屈折率体6の屈折率を大面積の受光面に垂直な受光面に向かって徐々に高くなっているものとしたときは、加工精度に関わらず、任意の実効屈折率分布を得ることができる。
【0030】
さらに、以上のような厚みの変化と屈折率の変化とを組み合わせてもよく、光集積回路基板の仕様や構成材料の特性等に応じて、好適な設計を行なえばよい。
【0031】
中間屈折率体6の形成材料としては、例えば、シロキサン系ポリマから成る光導波路に対しては、PMMAのように光集積回路を構成する光導波路のコア部4の屈折率より大きく、かつ半導体受光素子2の大面積の受光面に垂直な受光面の屈折率より小さい屈折率を有し、さらに光吸収等の光損失が少ない材料であればよい。従って、金属を含有した樹脂材料および金属等は光の吸収損失があるため、中間屈折率体6を形成する材料としては必ずしも好適ではないが、この場合はその形状を最適設計することによって、効果的に半導体受光素子2の大面積の受光面に垂直な受光面に伝搬光を結合することができる。そのような形状としては、例えば金属を含有した樹脂材料を使用して、光導波路に平行に配置した中間屈折率体6の光導波路側と反対側に金属の含有率を高くした構造を有する形状とするとよい。
【0032】
半導体受光素子2が配設された基板1上に光伝搬方向を半導体受光素子2の大面積の受光面に平行として形成される光導波路は、下部クラッド部3の厚み、つまり基板1からこの基板1にほぼ平行に形成されたコア部4までの厚みは、形成材料について基板1との相互作用により放射損失が発生しないような厚みをあらかじめ実験で調べた結果等に基づいて、その厚み以上に形成する。
【0033】
そのように設計した光集積回路基板の構造を実現するためには、例えば、基板1上にまず下部クラッド部3の材料となるシロキサン系ポリマの溶液を基板1上に滴下・塗布することが可能なスピンコーターやバーコーター等の装置を使用して下部クラッド部3を成膜し、その上に中間屈折率体6を形成する材料をスピンコーターやバーコーター等で塗布して、エッチングによって中間屈折率体6をパターニング加工する。このエッチングに使用する装置には、例えばECR(電子サイクロトロン共鳴)・RIE(反応性イオンエッチング)・レーザ等を採用でき、それぞれエッチング条件を最適化することによって、設計したパターン形状を加工することができる。
【0034】
この際、光導波路による光伝搬方向に沿った中間屈折率体6の断面形状としては、その厚みが半導体受光素子2の大面積の受光面に垂直な受光面に向かって徐々に厚くなるような形状として、例えば図1に示すような半導体受光素子2の大面積の受光面に垂直な受光面に対向する面と、下部クラッド部の一部を介して光導波路のコア部4の下面に対向する面を直交する2辺としこれらを結ぶ斜辺を有する、いわゆるくさび形の形状とするとよい。これにより、屈折率が一様な材料を用いた場合であっても、中間屈折率体6の実効屈折率を大面積の受光面に垂直な受光面に向かって徐々に高くなっているものとすることができる。
【0035】
またこの他に、図2に図1と同様の断面図で示すような、長方形の形状としてもよく、この場合には、半導体受光素子2の大面積の受光面に垂直な受光面に向かって屈折率が徐々に高くなるような屈折率分布を持たせることにより、中間屈折率体6の実効屈折率を大面積の受光面に垂直な受光面に向かって徐々に高くなっているものとすることができる。
【0036】
中でも、図1に示すように中間屈折率体6の断面形状をくさび形とすることにより、中間屈折率体の実効屈折率が、半導体受光素子の大面積の受光面に垂直な受光面に向かって徐々に高くなっているため、中間屈折率体6へ移行してきた光が完全に光導波路のコア部4へ戻ることがなくなり、極めて高い結合効率を得ることができる。
【0037】
次いで、半導体受光素子2が実装される部分を上記と同様のエッチングによって加工する。その後、半導体受光素子2を基板1上に実装し、再び下部クラッド部3を成膜して光導波路のコア部4と半導体受光素子2との間に所定のギャップを設ける。そして、この上にコア部4を成膜し、同様にエッチングによって所望の形状にパターニング加工して光導波路を形成する。
【0038】
以上の図1および図2に示すような本発明の光集積回路基板は、例えば図3に斜視図で示すような、基板11上に多数の半導体受光素子14が配設されるとともにその上にそれぞれの半導体受光素子14と光結合される光導波路のコア部13が形成され、さらに多数の光増幅器15等の光電子デバイスが搭載された光集積回路モジュール等に使用され、それにより、この光集積回路モジュールは、光導波路13と半導体受光素子14とを高い受光効率で光結合させつつ、そのモジュールのサイズの小型化を図ることができるものとなる。
【0039】
なお、図3において、12は外部との光信号のやりとりを行なうための光ファイバであり、16は光増幅器15を駆動するために基板11上に形成された電極部である。また、半導体受光素子14の光導波路13による光伝搬方向の入力側(光ファイバ12側)の光導波路13の部分に4本の平行な直線で示した部分は、中間屈折率体が設けられている場所であることを示している。
【実施例】
【0040】
次に、本発明の光集積回路基板について具体例を説明する。
【0041】
[例1]まず、アルミナ基板1上に、下部クラッド部3を形成し、その上に中間屈折率体6を成膜し、その一部を加工して中間屈折率体6を形成した。その後、面受光型の半導体受光素子2を実装し、下部および上部クラッド部3・5がシロキサン系ポリマ、コア部4がチタン含有シロキサン系ポリマから成るステップインデックス型光導波路を具備した、図1に示した例と同様な構成の光集積回路基板を作製した。このときコア部4およびクラッド部3・5の屈折率をそれぞれ1.450および1.445として、コア部4の幅を6μm、高さを6μmとし、下部クラッド部3の厚み(基板1から基板1上面に平行に形成されたコア部4までの厚み)を10μm、上部クラッド部5の厚みを10μmとした。なお、半導体受光素子2には、厚みが1μmで、大面積の受光面の面積が200μm径のものを用いた。中間屈折率体6には屈折率1.483を有する感光性シロキサンポリマを用いて、幅を200μm、半導体受光素子2の大面積の受光面に垂直な受光面側の厚さを1μm、光伝搬方向への長さを50μmに加工した。この中間屈折率体6の端面と半導体受光素子2の大面積の受光面に垂直な受光とは、接しているものとした。
【0042】
さらに、コア部4の上には、下部クラッド部3と同様の材料を用いて上部クラッド部5を形成した。
【0043】
このようにして作製した本発明の光集積回路基板において、光導波路と半導体受光素子2との結合効率を測定したところ、断面形状が長方形でしかも実効屈折率の分布を持たない中間屈折率体を具備した光集積回路基板に比べて、約1.3倍である約18%の結合効率を有していることが確認できた。
【0044】
この結果につき、図6に光集積回路基板における中間屈折率体6の屈折率および光伝搬方向の長さに対する結合効率の変化を線図で示す。図6において、横軸は中間屈折率体6の屈折率nffを、縦軸は結合効率Coupling efficiency(単位:%)を表わし、実線は断面形状がくさび形の中間屈折率体6における特性曲線を、破線は断面形状が長方形で屈折率分布を持たない中間屈折率体における特性曲線を示している。結合効率は中間屈折率体6の屈折率に対して最大値を有しており、断面形状が直方形の中間屈折率体6の特性曲線は最大値をとる屈折率付近で急峻なピークを有しているが、断面形状がくさび形の中間屈折率体6の特性曲線は最大値をとる屈折率から徐々に結合効率が減少している。つまり、高結合効率を有する屈折率の制御許容範囲が広がり、中間屈折率体6として利用する材料の屈折率コントロールを緩くすることができることが分かる。
【0045】
また、図7に光集積回路基板における中間屈折率体6の光伝搬方向の長さに対する結合効率の変化を線図で示す。実線で断面形状がくさび形の中間屈折率体6による特性曲線を示している。これらの結果より、断面形状がくさび形をした、半導体受光素子2の大面積の受光面に垂直な受光面に向かって徐々に高くなっている実効屈折率分布を有する中間屈折率体6を具備した本発明の光集積回路基板の方が高結合効率を得られることが分かった。また、断面形状が直方形の中間屈折率体6においては、モード結合によって、光が光導波路と中間屈折率体6を交互に移行する。このため、中間屈折率体6の光伝搬方向の長さに対して結合効率の変化が大きく、高い加工精度が必要であった。断面形状がくさび形の中間屈折率体6の場合においても、光伝搬方向の長さに対して結合効率は周期的に変化するが、その変化は断面形状が直方形の中間屈折率体6の結合効率の変化に対して小さく、また、全体的に増加しながら最大値へ飽和するので、中間屈折率体6の光伝搬方向の長さを結合効率が最大値をとるように設計した場合、安定した結合効率を得ることができる。
【0046】
なお、この例では基板1にアルミナ基板を使用したが、この他に窒化アルミニウム基板やシリコン基板・ガラスセラミックス基板等を用いても、同様に良好な結合効率を有していた。
【0047】
ここで、この例における光集積回路基板の作製方法を図10(a)に工程毎の断面図で示す。
【0048】
まず、アルミナ基板1上に下部クラッド部3をスピンコーターで塗布する(工程1)。
【0049】
次に、その上から中間屈折率体6を形成する感光性シロキサンポリマ6aを成膜し、グレイスケールフォトマスクを使用して感光性シロキサンポリマ6aを露光すると、感光性シロキサンポリマは照射量に応じて屈折率が低く変化するため、光の当たった部分だけ、露光量に応じてシロキサンポリマ6aの屈折率が変化する(工程2)。
【0050】
ここで、グレイスケールフォトマスクを使用しているため、シロキサンポリマ6aの屈折率が変化する領域は、断面形状が工程3に示すようなくさび形を呈し、これにより中間屈折率体6を形成することができる(工程3)。
【0051】
次に、半導体受光素子を実装する部分10をRIEを利用したエッチングにより形成する(工程4)。
【0052】
次に、半導体受光素子実装部分10に半導体受光素子2を実装する(工程5)。
【0053】
次に、光導波路のコア部4と半導体受光素子2の間の厚み分だけクラッド部を成膜し、その後、コア部4を成膜し、フォトリソグラフィ工程を経てコア部4をパターニングし、最後に上部クラッド部5を成膜して光集積回路基板を作製する(工程6)。
【0054】
なお、中間屈折率体6の厚みを半導体受光素子2の大面積の受光面に垂直な受光面に向かって徐々に厚くするために、断面形状をくさび形にする場合は、図1に示すような断面形状に限られることはなく、例えば図8(a)および(b)にそれぞれ断面図で示すように、二等辺三角形(図8(a)の形状)の断面形状を有するものであってもよく、上辺がコア部4に平行な直角三角形(図8(b)の形状)の断面形状を有するものであってもよい。
【0055】
図9に、図1ならびに図8(a)および(b)に示す構成で、中間屈折率体6の光伝搬方向の長さLffを変えて光集積回路基板を作製し、Lff(μm)に対する結合効率Coupling efficiency(%)の変化を調べた結果を線図で示す。これらの特性曲線から分かるように、中間屈折率体6の光伝搬方向の長さLffを1000μm以上にすると、結合効率は最大値へ飽和していくことが分かる。これに基づき、中間屈折率体6の光伝搬方向の長さLffを1000μm以上にすると、加工精度によらない安定した結合効率を得ることができた。さらに、最大の結合効率は、くさび形の断面形状にも特に依存しないことが分かった。上記の例において中間屈折率体6の光伝搬方向の長さLffを1000μmにしたところ、結合効率は約60%となり、断面形状が長方形で実効屈折率分布を持たない中間屈折率体を用いた場合に比べて約4倍もの高結合効率を得ることができた。
【0056】
ここで、中間屈折率体6の作製方法の他の例として、図8(b)に示す光集積回路基板の作製方法を図10(b)に工程毎の断面図で示す。
【0057】
まず、アルミナ基板1上に下部クラッド部3をスピンコーターで塗布する(工程1)。
【0058】
次に、その上から屈折率が1.504のフッ素化ポリイミド6を成膜し、その上にフォトレジスト膜8を成膜し、グレイスケールフォトマスク7を用いてフォトレジスト膜8を露光する(工程2)。
【0059】
ここで、グレイスケールフォトマスク7を使用しているため、フォトレジスト膜8の照射量に差ができて、工程3に示すような傾斜構造を有するフォトレジストパターンが形成できる(工程3)。
【0060】
次に、フォトレジスト膜8をマスクとしてRIEでエッチングを行ない、断面形状がくさび形の中間屈折率体6を形成する(工程4)。
【0061】
次に、この中間屈折率体6の端面に大面積の受光面に垂直な受光を突き当てるようにして半導体受光素子2を実装する(工程5)。
【0062】
次に、光導波路のコア部4と半導体受光素子2の間の厚み分だけクラッド部を成膜し、その後、コア部4を成膜し、フォトリソグラフィ工程を経てコア部4をパターニングし、最後に上部クラッド部5を成膜して光集積回路基板を作製する(工程6)。
【0063】
[例2]図10(c)に工程毎の断面図で示す光集積回路基板作製方法により、図2に示す構造の本発明の光集積回路基板を作製した。
【0064】
まず、アルミナ基板1上に、下部クラッド部3を成膜した(工程1)。
【0065】
次に、中間屈折率体6を形成する膜6bを成膜し、RIEで断面が長方形の直方体6bに加工した(工程2)。
【0066】
次に、直方体6bの半導体受光素子2が搭載される側の端面に金属層9を形成した(工程3)。
【0067】
次に、直方体6bと金属層9とに電圧を印加して、金属を直方体6bに拡散させ、直方体6bの半導体受光素子2が搭載される側の端面における屈折率が最も高く、その端面から離れるにつれて屈折率が徐々に低くなるような屈折率分布を持たせた中間屈折率体6を形成した(工程4)。
【0068】
その後、面受光型の半導体受光素子2を実装し(工程5)、下部および上部クラッド部3・5がシロキサン系ポリマ、コア部4がチタン含有シロキサン系ポリマから成るステップインデックス型光導波路を具備した、図2に示した構成の光集積回路基板を作製した(工程6)。
【0069】
このとき、コア部4およびクラッド部3・5の屈折率をそれぞれ1.450および1.445として、コア部4の幅を6μm、高さを6μmとし、下部クラッド部3の厚み(基板1から基板1上面に平行に形成されたコア部4までの厚み)を10μm、上部クラッド部5の厚みを10μmとした。なお、半導体受光素子2には、厚みが1μmで、大面積の受光面の面積が200μm径のものを用いた。
【0070】
また、中間屈折率体6には屈折率が1.504のフッ素化ポリイミドに金属を添加して屈折率を調整した材料を用い、金属の添加量を調節して、1.494〜1.514の範囲で半導体受光素子2の大面積の受光面に垂直な受光面に向かって徐々に屈折率が高くなるような屈折率分布を持たせた。この中間屈折率体6の形状は、幅を200μm、半導体受光素子2の大面積 の受光面に垂直な受光側の厚みを1μm、光伝搬方向の長さを540μmとし、図2に示すような断面形状が長方形のものに加工し、この中間屈折率体6の端面と半導体受光素子2の端面とは、接しているものとした。
【0071】
このようにして作製した本発明の光集積回路基板について、光導波路と半導体受光素子2との結合効率を測定したところ、結合効率は約50%となり、断面形状が長方形で実効屈折率分布を持たない中間屈折率体を用いた構造に比べて約3.5倍もの高結合効率を得ることが確認できた。
【0072】
なお、この例でも基板1にアルミナ基板を使用したが、この他に窒化アルミニウム基板やシリコン基板・ガラスセラミックス基板等を用いても、同様に良好な結合効率を有していた。
【0073】
なお、以上はあくまで本発明の実施の形態の例示であって、本発明はこれらに限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更や改良を加えることは何ら差し支えない
【0074】
【発明の効果】
本発明の光集積回路基板によれば、基板上に、基板の上面と平行に位置する大面積の受光面と、大面積の受光面に垂直な受光面を有し、大面積の受光面を上向きに配設された面受光型の半導体受光素子に対して、その上に光導波路を積層するように形成することにより、半導体受光素子と光導波路とを同一基板に効率的に集積することができ、従来のように基板上に光導波路を形成した後で半導体受光素子を実装した光集積回路基板と比較して小型化・低背化できるとともに、この光導波路上にさらに別の光電子デバイス等を搭載実装することができるので、特に基板上に半導体受光素子および光電子デバイスをそれぞれ複数個搭載するような光集積回路基板についても、光集積回路基板の小型化を実現することができるものとなる。
【0075】
また、本発明の光集積回路基板によれば、基板には電気的特性の良いセラミック基板等、信号処理の高速化および光電子デバイスの高集積化に対してより好適な基板を使用することができる。
【0076】
また、本発明の光集積回路基板によれば、半導体受光素子の大面積の受光面に垂直な受光面に対して、光導波路による光伝搬方向の入力側の大面積の受光面に垂直な受光面の手前に、この大面積の受光面に垂直な受光に対向させるとともに、下部クラッド部を介してコア部に対向させて、屈折率が光導波路のコア部より大きく半導体受光素子の大面積の受光面に垂直な受光面より小さく、かつ実効屈折率が大面積の受光面に垂直な受光面に向かって徐々に高くなっている中間屈折率体を配置したことによって、大面積の受光面に垂直な受光面に入射するコア部からの漏れ出した伝搬光に対して、半導体受光素子の端面における大きな屈折率変化が緩和されるため、大面積の受光面に垂直な受光面における入射光の反射を抑制することができ、光導波路による伝搬光を効率的に半導体受光素子に光結合することができる。
【0077】
さらに、光導波路のコア部を伝搬してきた光が中間屈折率体に光結合により移行し、この中間屈折率体から出力された光が半導体受光素子の端面から大面積の受光面に垂直な受光面ヘ結合することができ、これについて半導体受光素子におけるフィールドとの整合をとることによって、スムーズに半導体受光素子へ光を結合させることができ、結合効率を高めることができる。
【0078】
また、本発明の光集積回路基板によれば、中間屈折率体の実効屈折率が、半導体受光素子の大面積の受光面に垂直な受光面に向かって徐々に高くなっていることから、コア部から中間屈折率体へ移行してきた光は完全に光導波路のコア部へ戻ることがなく、中間屈折率体の光伝搬方向の長さを長くすると、結合効率が徐々に増加することとなり、より高い結合効率が得られるものとなる。さらに、中間屈折率体の光伝搬方向の長さを一定以上にすると結合効率が最大値に近づき、中間屈折率体の加工精度によらず安定した結合効率を得ることができるものとなるので、作製が容易である。
【0079】
以上により、本発明によれば、光導波路と半導体受光素子との結合効率を高め、光導波路を伝搬する光に対する半導体受光素子による受光効率をより高効率なものとし、しかも加工精度に大きく影響されずに安定して製作し供給することができる光集積回路基板を提供することができた。
【図面の簡単な説明】
【図1】本発明の光集積回路基板の実施の形態の一例を示す断面図である。
【図2】本発明の光集積回路基板の実施の形態の他の例を示す断面図である。
【図3】本発明の光集積回路基板を使用した光集積回路モジュールの例を示す斜視図である。
【図4】従来の光集積回路基板の例を示す断面図である。
【図5】本発明者が先に提案した光集積回路基板の例を示す断面図である。
【図6】本発明の光集積回路基板の実施例における中間屈折率体の屈折率に対する結合効率の変化を示す線図である。
【図7】本発明の光集積回路基板の実施例における中間屈折率体の光伝搬方向の長さに対する結合効率の変化を示す線図である。
【図8】(a)および(b)は、それぞれ本発明の光集積回路基板の実施の形態の他の例を示す断面図である。
【図9】本発明の光集積回路基板の実施例における中間屈折率体の光伝搬方向の長さに対する結合効率の変化を示す線図である。
【図10】(a)〜(c)は、それぞれ本発明の光集積回路基板の作製工程の例を示す工程毎の断面図である。
【符号の説明】
1・・・・・基板
2・・・・・半導体受光素子
3・・・・・光導波路の下部クラッド部
4・・・・・光導波路のコア部
5・・・・・光導波路の上部クラッド部
6・・・・・中間屈折率体

Claims (3)

  1. 基板上に、前記基板の上面と平行に位置する大面積の受光面と、前記大面積の受光面に垂直な受光面を有し、前記大面積の受光面を上向きにして配設された面受光型の半導体受光素子と、前記基板上に、少なくとも下部クラッド部およびコア部を有し、前記基板上の前記半導体受光素子の上に、前記下部クラッド部の一部を介して、前記コア部を前記大面積の受光面に平行として形成された光導波路と、前記半導体受光素子の前記光導波路による光伝搬方向の入力側に位置して前記大面積の受光面に垂直な受光面に対向するとともに、前記下部クラッド部の一部を介して前記光導波路の前記コア部の下面に対向するように配置された、屈折率が前記コア部より大きく前記大面積の受光面に垂直な受光面より小さく、かつ実効屈折率が前記大面積の受光面に垂直な受光面に向かって徐々に高くなっている中間屈折率体とを具備して成ることを特徴とする光集積回路基板。
  2. 前記中間屈折率体の厚みが前記大面積の受光面に垂直な受光面に向かって徐々に厚くなっていることを特徴とする請求項1記載の光集積回路基板。
  3. 前記中間屈折率体の屈折率が前記大面積の受光面に垂直な受光面に向かって徐々に高くなっていることを特徴とする請求項1記載の光集積回路基板。
JP2001089753A 2001-03-27 2001-03-27 光集積回路基板 Expired - Fee Related JP3898457B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001089753A JP3898457B2 (ja) 2001-03-27 2001-03-27 光集積回路基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001089753A JP3898457B2 (ja) 2001-03-27 2001-03-27 光集積回路基板

Publications (2)

Publication Number Publication Date
JP2002286956A JP2002286956A (ja) 2002-10-03
JP3898457B2 true JP3898457B2 (ja) 2007-03-28

Family

ID=18944636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001089753A Expired - Fee Related JP3898457B2 (ja) 2001-03-27 2001-03-27 光集積回路基板

Country Status (1)

Country Link
JP (1) JP3898457B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7443017B2 (ja) * 2019-10-17 2024-03-05 株式会社日本マイクロニクス 検査プローブ、検査プローブの製造方法および検査装置

Also Published As

Publication number Publication date
JP2002286956A (ja) 2002-10-03

Similar Documents

Publication Publication Date Title
Dangel et al. Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics
KR100277695B1 (ko) 에스 오 아이 광도파로를 이용한 하이브리드 광집적회로용 기판 제조방법
US7218809B2 (en) Integrated planar composite coupling structures for bi-directional light beam transformation between a small mode size waveguide and a large mode size waveguide
CN110268588B (zh) 具有光学插入器的表面耦合激光器
US8929693B2 (en) Semiconductor package and semiconductor device including the same
KR101258725B1 (ko) 얇은 soi cmos 광 집적회로의 광대역 광 커플링
US20150316723A1 (en) Fiber Optic Coupler Array
US9857531B2 (en) Optical component with angled-facet waveguide
US9297956B2 (en) Optical device, optical transmitter, optical receiver, optical transceiver, and method of manufacturing optical device
WO2013117555A1 (en) An optical coupling arrangement
CN112166355B (zh) 具有扇出中介层的绝热耦合光子系统
JP2011102819A (ja) ハイブリッド集積光モジュール
KR20120048258A (ko) 경사진 거울 및 렌즈를 구비한 광 도파로 구조체
US9897761B2 (en) Optical fiber mounted photonic integrated circuit device for single mode optical fibers
JP2020173407A (ja) 光接続構造
Li et al. 4× 20 GHz silica-based AWG hybrid integrated receiver optical sub-assemblies
JP2008102283A (ja) 光導波路、光モジュール及び光導波路の製造方法
JP3568156B2 (ja) 半導体装置
JP5395042B2 (ja) 光路変換デバイスの製造方法
JP3898457B2 (ja) 光集積回路基板
CN214954215U (zh) 一种凸型自增强聚焦耦合光栅耦合器
JP3898448B2 (ja) 光集積回路基板
JP3552592B2 (ja) 光導波路の製造方法
CN111566527A (zh) 具有竖直锥化的波导的绝热耦合光子系统
Taillaert et al. Efficient coupling between submicron SOI-waveguides and single-mode fibers

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees