JP3898355B2 - Uninterruptible power system - Google Patents

Uninterruptible power system Download PDF

Info

Publication number
JP3898355B2
JP3898355B2 JP27177798A JP27177798A JP3898355B2 JP 3898355 B2 JP3898355 B2 JP 3898355B2 JP 27177798 A JP27177798 A JP 27177798A JP 27177798 A JP27177798 A JP 27177798A JP 3898355 B2 JP3898355 B2 JP 3898355B2
Authority
JP
Japan
Prior art keywords
power
booster circuit
voltage
storage battery
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27177798A
Other languages
Japanese (ja)
Other versions
JP2000102195A (en
Inventor
信吾 鈴木
博典 杉江
Original Assignee
レシップ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レシップ株式会社 filed Critical レシップ株式会社
Priority to JP27177798A priority Critical patent/JP3898355B2/en
Publication of JP2000102195A publication Critical patent/JP2000102195A/en
Application granted granted Critical
Publication of JP3898355B2 publication Critical patent/JP3898355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は商用電力を受電中はその商用電力を負荷へ供給すると共に充電器で蓄電池に充電し、停電になると、蓄電池の電力を昇圧回路で昇圧し、その昇圧出力をインバータで交流電力に変換し、その交流電力を負荷へ供給する無停電電源装置に関する。
【0002】
【従来の技術】
図5に従来の無停電電源装置を示す。商用電源11からの商用電力は出力切替リレー12を介して負荷13へ供給される。また充電器14により商用電力が蓄電池15に対し充電している。
停電になると、停電検出制御部16で停電を検出し、出力切替リレー12をインバータ17側に切替え、また昇圧回路18、インバータ17を起動する。蓄電池15よりの例えば36〜60Vの電力が昇圧回路18で例えば165Vに昇圧され、その165Vの直流電力がインバータ17で100Vの交流電力に変換され、その交流電力が出力切替リレー12を通じて負荷13へ供給される。
【0003】
【発明が解決しようとする課題】
停電になった時に、切替リレー12が切替られるのは4〜8ミリ秒程度で行われる。一方、蓄電池15の電圧は36〜60V程度であり、商用電力が負荷13に供給されている状態では、昇圧回路18の出力側の電圧は蓄電池15の出力電圧と同程度になっている。停電になって昇圧回路18、インバータ17が起動され、負荷13に100Vの交流電力を供給するには、昇圧回路18の出力電圧が165V程度になる必要がある。つまり、昇圧回路18の出力電圧は36〜60Vから165Vに高められる必要があるが、図6Aの破線で示すようにこの昇圧に8ミリ秒以上の時間がかかった。このため従来は停電になり、インバータ17の出力が負荷13へ供給されるようになった当初は図6Bの破線で示すように、100V以下の交流電力が負荷13に供給されるという問題があった。
【0004】
【課題を解決するための手段】
この発明によれば商用電力受電中に、昇圧回路の出力側を、蓄電池の電圧よりも高い電圧に保持する手段が設けられる。
この構成により、停電になった時に、昇圧回路の出力電圧が、従来よりも短時間で所定の電圧になり、停電時に、インバータ出力電圧として、切替え当初から所要のものが得られる。
【0005】
【発明の実施の形態】
図1にこの発明の第1実施例を示し、図5と対応する部分に同一符号を付けてある。充電器14において、商用電力は整流器20で整流されてコンデンサ21に充電され、その充電電力はトランス22、スイッチングトランジスタ23、整流用ダイオード24、コンデンサ25により、所定の直流電圧に変換され、その直流電圧で蓄電池15に対する充電が行われる。スイッチングトランジスタ23は充電制御部26によりスイッチング制御が行われる。
【0006】
昇圧回路18では蓄電池15の出力がコンデンサ28に充電され、コンデンサ28と並列に、インダクタ29とスイッチングトランジスタ31の直列回路が接続され、スイッチングトランジスタ31と並列に、整流用ダイオード32を通じてコンデンサ33が接続され、トランジスタ31は駆動回路34によりスイッチング制御される。コンデンサ28の電力が昇圧されてコンデンサ33に充電される。昇圧回路18はDC−DCコンバータである。
【0007】
昇圧回路18のコンデンサ33の両端間の電力は、インバータ17へ供給される。インバータ17は駆動回路35により各スイッチング素子が制御される。商用電力は停電検出回路16aに分岐供給され、停電が検出されると、その検出出力が制御部16bへ供給され、また出力切替リレー12へ供給され、その切替えが制御される。制御部16bは駆動回路34,35に対し、起動指令を出す。図に示していないが、停電中に昇圧回路18の出力電圧を、またインバータ17の出力電圧をそれぞれ一定値に保持する制御手段が設けられている。
【0008】
この実施例では充電器14のトランス22の2次巻線に、3次巻線41が巻き上げられ、その3次巻線41の巻き上げ端が整流用ダイオード42を通じて、ダイオード32とコンデンサ33の接続点に接続される。トランス22の3次巻線41と整流用ダイオード42によって補助昇圧回路が構成される。
この構成により、商用電力を受電中は、ダイオード42を通じて、コンデンサ33に対する充電が行われ、コンデンサ33は、蓄電池15の出力電圧、つまり例えば30〜60Vより高い、例えば130Vに保持される。
【0009】
この状態で停電になると、昇圧回路18の出力は130Vから上昇を開始するため、図6Aの実線に示すように、短時間で規格値165Vになる。従って、負荷13がインバータ17側に切替わった時には、図6Bに実線で示すように、負荷13には100Vの交流電力が供給される。なお昇圧回路18が昇圧動作中において、ダイオード42により、コンデンサ33の負荷が充電器14側に流れるおそれはない。この実施例では補助昇圧回路の3次巻線41としてトランス22の2次巻線に直接接続されたものを用いたが、2次巻線に直接接続されない3次巻線(補助巻線)41を用いても良い。
【0010】
この発明の第2の実施例では図2に図1と対応する部分に同一符号を付けて示すように昇圧回路18の出力電圧が、間欠制御部43へ分圧回路44を通じて分岐印加される。間欠制御部43では非停電中において、昇圧回路18の出力電圧が例えば前記130V(第1基準電圧値)以下になると、これを検出して駆動回路34を起動し、昇圧回路18を動作させ、昇圧回路18の出力電圧が規格値、前記例では165V(第2基準電圧値)を超えると、これを検出して、駆動回路34の動作を停止し、昇圧回路18の動作を停止する。
【0011】
この構成により、商用電力を受電中は、昇圧回路18の出力は130〜165Vに保持される。従って、停電になった時に、従来よりも短時間で昇圧回路18の出力電圧は規格値になり、負荷13がインバータ17側に切替わった当初から、100Vの交流電力が負荷13に供給される。
図3にこの発明の第3の実施例を示す。この図では図2中の間欠制御部43と分圧回路44を省略して、周期的制御部45を設けた場合である。つまり、昇圧回路18の出力低下(165V→130V)に要する時間と、昇圧回路18の起動により出力が回復する(130V→165V)時間とが分かっていれば、それらを休止時間、起動時間として設定したタイマー回路を有する周期的制御部45により昇圧回路18を周期的に駆動させたのがこの第3の実施例である。
【0012】
また、第1の実施例と第2の実施例又は第3の実施例を合成して使用することも可能であり、その前者の例を図4に図1、図2と対応する部分に同一符号を付けて示し、説明は省略する。
【0013】
【発明の効果】
以上述べたように、この発明によれば、商用電力を受電中に、昇圧回路18の出力側が、蓄電池15の電圧より高い電圧、つまり昇圧回路18の出力電圧の規格値例えば165Vに比較的近い電圧になっているため、停電になり、負荷13がインバータ17側に切替わる短時間の間に、昇圧回路18の出力電圧が規格値となり、100Vの交流電力がインバータ17から負荷13に、切替わった初めから供給される。
【図面の簡単な説明】
【図1】この発明の第1の実施例を示す図。
【図2】この発明の第2の実施例を示す図。
【図3】この発明の第3の実施例を示す図。
【図4】この発明の更に他の実施例を示す図。
【図5】従来の無停電電源装置の概要を示すブロック図。
【図6】商用電力受電中から停電になった場合における昇圧回路18の出力電圧、負荷13に供給される電圧を示す図。
[0001]
BACKGROUND OF THE INVENTION
In this invention, while receiving commercial power, the commercial power is supplied to the load and charged to the storage battery with a charger. When a power failure occurs, the power of the storage battery is boosted with a booster circuit, and the boosted output is converted to AC power with an inverter. And an uninterruptible power supply for supplying the AC power to the load.
[0002]
[Prior art]
FIG. 5 shows a conventional uninterruptible power supply. Commercial power from the commercial power supply 11 is supplied to the load 13 via the output switching relay 12. Moreover, the commercial power is charging the storage battery 15 by the charger 14.
When a power failure occurs, the power failure detection control unit 16 detects the power failure, switches the output switching relay 12 to the inverter 17 side, and activates the booster circuit 18 and the inverter 17. The power of 36 to 60 V from the storage battery 15 is boosted to, for example, 165 V by the booster circuit 18, the DC power of 165 V is converted into AC power of 100 V by the inverter 17, and the AC power is supplied to the load 13 through the output switching relay 12. Supplied.
[0003]
[Problems to be solved by the invention]
When a power failure occurs, the switching relay 12 is switched in about 4 to 8 milliseconds. On the other hand, the voltage of the storage battery 15 is about 36 to 60 V, and the voltage on the output side of the booster circuit 18 is about the same as the output voltage of the storage battery 15 in a state where commercial power is supplied to the load 13. In order to supply the AC voltage of 100V to the load 13 by starting the booster circuit 18 and the inverter 17 due to a power failure, the output voltage of the booster circuit 18 needs to be about 165V. In other words, the output voltage of the booster circuit 18 needs to be increased from 36 to 60 V to 165 V, but as shown by the broken line in FIG. For this reason, in the past, a power failure occurred, and when the output of the inverter 17 was supplied to the load 13, there was a problem that AC power of 100 V or less was supplied to the load 13 as indicated by the broken line in FIG. 6B. It was.
[0004]
[Means for Solving the Problems]
According to the present invention, there is provided means for holding the output side of the booster circuit at a voltage higher than the voltage of the storage battery during commercial power reception.
With this configuration, when a power failure occurs, the output voltage of the booster circuit becomes a predetermined voltage in a shorter time than in the prior art, and when the power failure occurs, the required inverter output voltage is obtained from the beginning of switching.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a first embodiment of the present invention, in which parts corresponding to those in FIG. In the charger 14, the commercial power is rectified by the rectifier 20 and charged in the capacitor 21. The charged power is converted into a predetermined DC voltage by the transformer 22, the switching transistor 23, the rectifier diode 24, and the capacitor 25, and the DC The storage battery 15 is charged with voltage. Switching control of the switching transistor 23 is performed by the charge control unit 26.
[0006]
In the booster circuit 18, the output of the storage battery 15 is charged into a capacitor 28, a series circuit of an inductor 29 and a switching transistor 31 is connected in parallel with the capacitor 28, and a capacitor 33 is connected in parallel with the switching transistor 31 through a rectifier diode 32. The transistor 31 is switching-controlled by the drive circuit 34. The power of the capacitor 28 is boosted and the capacitor 33 is charged. The booster circuit 18 is a DC-DC converter.
[0007]
Power between both ends of the capacitor 33 of the booster circuit 18 is supplied to the inverter 17. Each switching element of the inverter 17 is controlled by a drive circuit 35. The commercial power is branched and supplied to the power failure detection circuit 16a. When a power failure is detected, the detected output is supplied to the control unit 16b and also supplied to the output switching relay 12, and the switching is controlled. The control unit 16b issues a start command to the drive circuits 34 and 35. Although not shown in the figure, there is provided control means for holding the output voltage of the booster circuit 18 and the output voltage of the inverter 17 at a constant value during a power failure.
[0008]
In this embodiment, a tertiary winding 41 is wound around the secondary winding of the transformer 22 of the charger 14, and the winding end of the tertiary winding 41 passes through a rectifying diode 42 and is a connection point between the diode 32 and the capacitor 33. Connected to. The auxiliary winding circuit is configured by the tertiary winding 41 of the transformer 22 and the rectifying diode 42.
With this configuration, while receiving commercial power, the capacitor 33 is charged through the diode 42, and the capacitor 33 is held at an output voltage of the storage battery 15, that is, for example, 130V higher than 30-60V.
[0009]
When a power failure occurs in this state, the output of the booster circuit 18 starts to rise from 130V, and thus reaches the standard value 165V in a short time as shown by the solid line in FIG. 6A. Therefore, when the load 13 is switched to the inverter 17 side, 100V AC power is supplied to the load 13 as shown by a solid line in FIG. 6B. Note that there is no possibility that the load of the capacitor 33 flows to the charger 14 side by the diode 42 during the boosting operation of the boosting circuit 18. In this embodiment, the tertiary winding 41 of the auxiliary booster circuit is directly connected to the secondary winding of the transformer 22. However, the tertiary winding (auxiliary winding) 41 not directly connected to the secondary winding is used. May be used.
[0010]
In the second embodiment of the present invention, the output voltage of the booster circuit 18 is branched and applied to the intermittent control unit 43 through the voltage divider circuit 44 as shown in FIG. In the intermittent control unit 43, when the output voltage of the booster circuit 18 becomes, for example, 130V (first reference voltage value) or less during a non-power failure, this is detected and the drive circuit 34 is activated to operate the booster circuit 18, When the output voltage of the booster circuit 18 exceeds a standard value, which is 165 V (second reference voltage value) in the above example, this is detected, the operation of the drive circuit 34 is stopped, and the operation of the booster circuit 18 is stopped.
[0011]
With this configuration, the output of the booster circuit 18 is held at 130 to 165 V while receiving commercial power. Therefore, when a power failure occurs, the output voltage of the booster circuit 18 becomes a standard value in a shorter time than before, and 100V AC power is supplied to the load 13 from the beginning when the load 13 is switched to the inverter 17 side. .
FIG. 3 shows a third embodiment of the present invention. In this figure, the intermittent control unit 43 and the voltage dividing circuit 44 in FIG. 2 are omitted, and a periodic control unit 45 is provided. That is, if the time required for the output reduction (165 V → 130 V) of the booster circuit 18 and the time when the output recovers (130 V → 165 V) by starting the booster circuit 18 are known, these are set as the pause time and the start time. In the third embodiment, the booster circuit 18 is periodically driven by the periodic controller 45 having the timer circuit.
[0012]
It is also possible to combine and use the first embodiment and the second embodiment or the third embodiment. The former example is the same as the portion corresponding to FIGS. 1 and 2 in FIG. Reference numerals are attached and description is omitted.
[0013]
【The invention's effect】
As described above, according to the present invention, while receiving commercial power, the output side of the booster circuit 18 is relatively close to the voltage higher than the voltage of the storage battery 15, that is, the standard value of the output voltage of the booster circuit 18, for example, 165V. Because of the voltage, during a short period of time when the power failure occurs and the load 13 is switched to the inverter 17 side, the output voltage of the booster circuit 18 becomes the standard value, and 100V AC power is switched from the inverter 17 to the load 13. Supplied from the beginning.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of the present invention.
FIG. 2 is a diagram showing a second embodiment of the present invention.
FIG. 3 is a diagram showing a third embodiment of the present invention.
FIG. 4 is a view showing still another embodiment of the present invention.
FIG. 5 is a block diagram showing an outline of a conventional uninterruptible power supply.
6 is a diagram showing the output voltage of the booster circuit 18 and the voltage supplied to the load 13 when a power failure occurs after receiving commercial power. FIG.

Claims (3)

商用電力を受電中はその商用電力を負荷へ供給すると共に充電器で蓄電池に充電し、
停電になると、上記蓄電池の電力を昇圧回路で昇圧し、その昇圧出力をインバータで交流電力に変換し、その交流電力を上記負荷へ供給する無停電電源装置において、
商用電力受電中に、上記昇圧回路の出力側を、上記蓄電池の電圧より高い電圧に保持する手段が設けられ
上記昇圧回路の出力側を高い電圧に保持する手段は、上記充電器のトランスを用いた補助昇圧回路で構成されていることを特徴とする無停電電源装置。
While receiving commercial power, supply the commercial power to the load and charge the storage battery with the charger.
When a power failure occurs, the power of the storage battery is boosted by a booster circuit, the boosted output is converted to AC power by an inverter, and the AC power is supplied to the load in the uninterruptible power supply,
Means is provided for holding the output side of the booster circuit at a voltage higher than the voltage of the storage battery during commercial power reception .
It said means for holding the high voltage output side of the booster circuit, uninterruptible power supply characterized that you have been configured by the auxiliary booster circuit using a transformer of the charger.
商用電力を受電中はその商用電力を負荷へ供給すると共に充電器で蓄電池に充電し、
停電になると、上記蓄電池の電力を昇圧回路で昇圧し、その昇圧出力をインバータで交流電力に変換し、その交流電力を上記負荷へ供給する無停電電源装置において、
商用電力受電中に、上記昇圧回路の出力側を、上記蓄電池の電圧より高い電圧に保持する手段が設けられ
上記昇圧回路の出力側を高い電圧に保持する手段は、上記昇圧回路の出力電圧を検知する手段と、その検出電圧が第1基準電圧値以下になると上記昇圧回路の駆動回路を起動し、上記検知電圧が上記第1基準電圧より高い第2基準電圧以上になると上記駆動回路の駆動を停止する手段とよりなることを特徴とする無停電電源装置。
While receiving commercial power, supply the commercial power to the load and charge the storage battery with the charger.
When a power failure occurs, the power of the storage battery is boosted by a booster circuit, the boosted output is converted to AC power by an inverter, and the AC power is supplied to the load in the uninterruptible power supply,
Means is provided for holding the output side of the booster circuit at a voltage higher than the voltage of the storage battery during commercial power reception .
The means for holding the output side of the booster circuit at a high voltage includes a means for detecting the output voltage of the booster circuit, and activates the drive circuit of the booster circuit when the detected voltage is equal to or lower than a first reference voltage value. the uninterruptible power supply detection voltage, wherein more Rukoto and means for stopping the driving of the first reference voltage becomes higher than the higher second reference voltage when the drive circuit.
商用電力を受電中はその商用電力を負荷へ供給すると共に充電器で蓄電池に充電し、
停電になると、上記蓄電池の電力を昇圧回路で昇圧し、その昇圧出力をインバータで交流電力に変換し、その交流電力を上記負荷へ供給する無停電電源装置において、
商用電力受電中に、上記昇圧回路の出力側を、上記蓄電池の電圧より高い電圧に保持する手段が設けられ
上記昇圧回路の出力側を高い電圧に保持する手段は、上記昇圧回路を周期的に動作させる手段であることを特徴とする無停電電源装置。
While receiving commercial power, supply the commercial power to the load and charge the storage battery with the charger.
When a power failure occurs, the power of the storage battery is boosted by a booster circuit, the boosted output is converted to AC power by an inverter, and the AC power is supplied to the load in the uninterruptible power supply,
Means is provided for holding the output side of the booster circuit at a voltage higher than the voltage of the storage battery during commercial power reception .
It said means for holding the high voltage output side of the booster circuit, uninterruptible power supply, wherein means der Rukoto for operating the booster circuit periodically.
JP27177798A 1998-09-25 1998-09-25 Uninterruptible power system Expired - Fee Related JP3898355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27177798A JP3898355B2 (en) 1998-09-25 1998-09-25 Uninterruptible power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27177798A JP3898355B2 (en) 1998-09-25 1998-09-25 Uninterruptible power system

Publications (2)

Publication Number Publication Date
JP2000102195A JP2000102195A (en) 2000-04-07
JP3898355B2 true JP3898355B2 (en) 2007-03-28

Family

ID=17504715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27177798A Expired - Fee Related JP3898355B2 (en) 1998-09-25 1998-09-25 Uninterruptible power system

Country Status (1)

Country Link
JP (1) JP3898355B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190123100A (en) * 2018-04-23 2019-10-31 주식회사 이화일렉콤 Battery charger for uninterruptible power supply

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560657B2 (en) * 2000-12-08 2010-10-13 レシップ株式会社 Uninterruptible power system
KR100428780B1 (en) * 2001-04-18 2004-04-27 삼성전자주식회사 Apparatus for supplying power of preventing erroneous operation of facilities according to temporary interruption of electric power and semiconductor manufacturing facilities using this
US8471532B2 (en) 2002-11-22 2013-06-25 Milwaukee Electric Tool Corporation Battery pack
US7157882B2 (en) 2002-11-22 2007-01-02 Milwaukee Electric Tool Corporation Method and system for battery protection employing a selectively-actuated switch
US7589500B2 (en) 2002-11-22 2009-09-15 Milwaukee Electric Tool Corporation Method and system for battery protection
JP4530919B2 (en) * 2005-06-02 2010-08-25 東芝三菱電機産業システム株式会社 Uninterruptible power system
JP4552212B2 (en) * 2008-07-15 2010-09-29 Necアクセステクニカ株式会社 Backup DC power supply device and control method thereof
CN102315637A (en) * 2011-04-08 2012-01-11 安伏(苏州)电子有限公司 Direct-current power supply with power failure retention time
CN104518522A (en) * 2015-01-16 2015-04-15 杭州桑尼能源科技有限公司 Grid connection and off-grid inverting switching circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190123100A (en) * 2018-04-23 2019-10-31 주식회사 이화일렉콤 Battery charger for uninterruptible power supply
KR102117000B1 (en) 2018-04-23 2020-06-01 주식회사 이화일렉콤 Battery charger using inductor of uninterruptible power supply

Also Published As

Publication number Publication date
JP2000102195A (en) 2000-04-07

Similar Documents

Publication Publication Date Title
JP3863273B2 (en) Power supply
JP2006101600A (en) Motor drive unit
JP3898355B2 (en) Uninterruptible power system
JP5150364B2 (en) Energy-saving power supply
JP2002165448A (en) Two-way dc-dc converter
JPH118910A (en) Power supply equipment for hybrid electric vehicle
JPH06205546A (en) Uninterruptible switching regulator
JPH11113191A (en) Uninterruptible power-supply apparatus and its charging control method
JP2004274897A (en) Standby power saving power supply device
JPH069346U (en) Power system backup circuit
JP3232741B2 (en) Power supply
JPH11164555A (en) Switching power supply
JP4191874B2 (en) Uninterruptible power system
JPS63171160A (en) Dc-dc converter
JP4069432B2 (en) Emergency relay circuit device
JP3264285B2 (en) Uninterruptible power system
GB2243961A (en) DC-DC Power supply circuit
JPS63186505A (en) Controller for ac electric car
JP2001320878A (en) Switching power supply
KR102144076B1 (en) Motor-driven system with energy regeneration-storage-restoration
JP2003274574A (en) Stabilizing dc power unit
JP2001261245A (en) Elevator control device
JPH051962Y2 (en)
JP2008167509A (en) Power supply device
JP2002199613A (en) Charging circuit for secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees