JP3897202B2 - Glass ceramic composite material for partition wall formation - Google Patents

Glass ceramic composite material for partition wall formation Download PDF

Info

Publication number
JP3897202B2
JP3897202B2 JP1341398A JP1341398A JP3897202B2 JP 3897202 B2 JP3897202 B2 JP 3897202B2 JP 1341398 A JP1341398 A JP 1341398A JP 1341398 A JP1341398 A JP 1341398A JP 3897202 B2 JP3897202 B2 JP 3897202B2
Authority
JP
Japan
Prior art keywords
glass
composite material
ceramic composite
partition wall
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1341398A
Other languages
Japanese (ja)
Other versions
JPH1179786A (en
Inventor
昭治 柴田
雅彦 應治
和夫 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP1341398A priority Critical patent/JP3897202B2/en
Publication of JPH1179786A publication Critical patent/JPH1179786A/en
Application granted granted Critical
Publication of JP3897202B2 publication Critical patent/JP3897202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、プラズマ放電空間を有する薄型ディスプレイ装置の隔壁形成用ガラスセラミックス複合材料に関し、特に35〜50×10-7/℃の熱膨張係数を有する無アルカリガラスを基板として用いたプラズマ放電空間を有する薄型ディスプレイ装置の隔壁形成用ガラスセラミックス複合材料に関するものである。
【0002】
【従来の技術】
プラズマディスプレイ装置(PDP)等のプラズマ放電空間を有する薄型ディスプレイ装置は、従来のCRTディスプレイ装置に比べて薄型化、軽量化できるため、盛んに開発が行われている。これらディスプレイ装置は、2枚のガラス基板が一定の間隔を保持して気密封止され、両ガラス基板間に隔壁形成材料によってプラズマ放電空間が形成される。
【0003】
ガラス基板には、歪点が600℃前後の板ガラスが使用されており、放電空間を形成する隔壁材料には600℃以下で熱処理可能な材料が選択される。このような隔壁材料には、例えば特開平4−337226号や特開平6−144871号等に開示されているような、焼結性に優れ、低軟化点化が容易なPbO系ガラス粉末を用いた複合材料が使用されている。
【0004】
また特開平5−297363号に開示されているようなプラズマアドレスド電気光学装置では、液晶層に悪影響を与えないようにガラス基板に無アルカリガラスが使用されているが、この種のガラスは一般に熱膨張係数が約35〜50×10-7/℃と低いため、隔壁材料にはPbO系ガラス粉末とともにPbTiO3 粉末等の低膨張フィラーが使用される。
【0005】
【発明が解決しようとする課題】
しかしながら鉛元素等の重元素を含有するガラスやフィラーを使用すると、環境汚染や人的健康を損なうおそれがある。
【0006】
また、放電空間を形成する隔壁材料は使用量が多く、装置の重量に与える影響が大きいが、PbO系ガラスは比重が大きいために装置が重くなる、という問題を有している。
【0007】
本発明の目的は、環境問題等を生じることが無く、しかも比重の小さな隔壁形成用複合材料を提供することである。
【0008】
【課題を解決するための手段】
本発明の隔壁形成用ガラスセラミックス複合材料は、プラズマ放電空間を有する薄型ディスプレイ装置の隔壁形成用ガラスセラミックス複合材料であって、重量%でZnO 50〜65%、B 2 3 20〜35%、SiO 2 7〜15%、R 2 O+RO 3〜10%(ただしR 2 O:Li 2 O+Na 2 O+K 2 O、RO:MgO+CaO+SrO+BaO)の組成を含有するZnO−B23−SiO2系ガラス粉末とフィラー粉末からなることを特徴とする。
【0009】
【作用】
本発明の隔壁形成用ガラスセラミックス複合材料は、ZnO−B23 −SiO2 系のガラス粉末を使用する。この系のガラスを使用すると、600℃以下の温度で緻密に焼結することが可能であり、またPbO系ガラスよりも比重が小さいため、装置を軽量化することが可能である。さらにPbO系に比べて容易に低膨張化できる。
【0010】
ZnO−B23 −SiO2 系の結晶性ガラス粉末としては、種々の組成を有するものが使用可能であるが、Pb、Tl、Bi等の重元素を含むものは避けるべきである。即ち、これらの重元素は環境上好ましくなく、またガラスの比重を大きくしてしまう。
【0011】
また600℃以下の熱処理によってZnO・B23 系結晶やZnO・SiO2 系結晶を析出する性質を有する結晶性ガラスを使用すると、焼成後の熱膨張係数を著しく低下させることができ、無アルカリガラス基板のそれに適合させることができる。このような低膨張のガラス粉末には、重量%でZnO 50〜65%、B23 20〜35%、SiO2 7〜15%、R2 O+RO 3〜10%(ただしR2 O:Li2 O+Na2 O+K2 O、RO:MgO+CaO+SrO+BaO)の組成を有するガラスを使用することが好ましい。ガラス組成をこのように限定した理由は以下の通りである。
【0012】
ZnOは軟化点を著しく上昇させることなく熱膨張係数を低下させる働きがあり、また析出結晶の結晶核となる成分である。ZnOが50%より少ないと熱処理時の結晶特性が弱くなって低膨張化が困難になり、無アルカリガラス基板に使用し難くなる。65%より多くなると溶融時に結晶が析出し易くなってガラス化が困難となる。なおZnOの好適な範囲は50〜63%である。
【0013】
23 はガラス構造体を形成する成分であり、またガラスの溶融温度や軟化点を下げる成分である。B23 が20%より少ないとガラス化が困難になり、35%より多いと熱処理時の結晶特性が弱くなって低膨張化が困難になる。なおB23 の好適な範囲は22〜30%である。
【0014】
SiO2 はガラス構造体の形成に不可欠な成分である。SiO2 が7%より少ないとガラス化が困難になり、15%より多いとガラスの軟化点が上昇して600℃以下での焼成が困難になる。なおSiO2 の好適な範囲は8〜12%である。
【0015】
2 O(Li2 O、Na2 O、K2 O)及びRO(MgO、CaO、SrO、BaO)はガラスの溶融温度及び軟化点を下げる成分である。これらの合量が3%より少ないとガラスの軟化点が低下せず、600℃以下の温度で焼成が困難になる。またこれらの合量が10%より多い場合は熱膨張係数が大きくなって無アルカリガラス基板に使用し難くなる。なおこれら成分の合量の好適な範囲は3〜7%であり、また各成分の範囲はLi2 O 0〜3%(好ましくは0〜2%)、Na2 O 0〜5%(好ましくは0〜3%)、K2 O 0〜5%(好ましくは0〜3%)、MgO 0〜5%(好ましくは0〜3%)、CaO 0〜5%(好ましくは0〜3%)、SrO 0〜5%(好ましくは0〜3%)、BaO 0〜5%(好ましくは0〜3%)である。
【0016】
なお上記以外にも、Al23 、SnO2 等を各5%まで添加することが可能である。
【0017】
また本発明の複合材料は、焼結時の収縮を防止したり、熱膨張係数や焼結強度を調整するために従来より知られている種々のフィラー粉末を含有する。例えば収縮率や焼結強度の調整のためにアルミナ等のフィラーを使用することができる。また基板に無アルカリガラスを使用する場合、低膨張化するためにコージエライト、ウイレマイト、ジルコン、石英ガラス、β−ユークリプタイト、β−スポジュウメン等の低膨張フィラー粉末を使用することができる。中でもコージエライト、ウイレマイト、ジルコンから選ばれる1種以上を使用することが好ましい。またフィラー粉末全体の80重量%以上をこれら低膨張フィラー粉末で占めるようにするとより効果的である。なおPbTiO3 のようにPb等の重元素を含むフィラーの使用は環境上好ましくないため避けるべきである。
【0018】
本発明において、ガラス粉末とフィラー粉末の混合割合は、重量%でガラス粉末15〜60%、フィラー粉末40〜85%からなることが好ましい。混合割合をこのように限定する理由は、ガラス粉末が15%より少ないとセラミック粉末を焼結させることが困難になり、60%より多いと焼成時の収縮率が大きくなって、隔壁のクラックや断線等が生じ易くなるためである。なおプラズマアドレスド電気光学装置に使用する場合は、無アルカリガラス基板と隙間なく接着させる必要があり、緻密に焼結することが要求される。このためガラス粉末とフィラー粉末の混合割合をガラス粉末25〜60%、フィラー粉末40〜75%にすることが好ましい。
【0019】
また本発明の材料は、さらに色調を調整するために無機顔料粉末を15重量%まで含有させてもよい。
【0020】
上記各成分からなる複合材料は、焼成後の比重が2.0〜4.0g/cm3 、体積収縮率が15%以下の隔壁材料を得ることができる。また無アルカリガラスに用いる場合、ガラス組成、フィラーの種類等を調整して、焼成後の熱膨張係数が30〜45×10-7/℃(30〜300℃)となるようにすればよい。
【0021】
なお、本発明の隔壁形成用ガラスセラミックス複合材料を用いて、隔壁を形成するには、例えば上記材料と有機ビークルとを混合してペーストを作製し、これをスクリーンを介して印刷積層する方法や、ペーストを塗布、乾燥させ、ドライレジストフィルムを密着させて露光、現像した後に、サンドブラストする方法を採用することができる。
【0022】
【実施例】
以下、本発明を実施例に基づいて説明する。
【0023】
表1は本発明の実施例で使用するガラス粉末(試料A〜D)、及び従来より使用されているPbO系ガラス粉末(試料E)を示している。
【0024】
【表1】

Figure 0003897202
【0025】
各ガラス粉末は次のようにして調製した。まず表の組成となるように調合したガラス原料を1100〜1450℃で1〜3時間溶融し、薄板状に成形した。その後、粉砕、分級することによって、スクリーン印刷に適する粒径1.5〜3.0μmのガラス粉末を得た。
【0026】
このようにして得られた試料A〜Dの各ガラス粉末は、ガラス軟化点が550〜585℃であり、焼成すると5ZnO・2B23 、ZnO・B23 、及び2ZnO・SiO2 を主結晶として析出する性質を有していた。また焼成後の比重は3.55〜3.70g/cm3 、30〜300℃における熱膨張係数は50〜55×10-7/℃、であった。一方、従来例である試料Eは、ガラス軟化点が550℃、比重が4.62g/cm3 、30〜300℃における熱膨張係数が67.5×10-7/℃の非晶質ガラスであった。
【0027】
次に、これらのガラス粉末にフィラー粉末や無機顔料粉末を混合し、隔壁形成用ガラスセラミックス複合材料とした。なおフィラー粉末及び無機顔料粉末には、平均粒径が0.5〜2.5μmのものを使用した。
【0028】
表2〜4は本発明の実施例(試料No.1〜10)、及び従来例(試料No.11)を示している。
【0029】
【表2】
Figure 0003897202
【0030】
【表3】
Figure 0003897202
【0031】
【表4】
Figure 0003897202
【0032】
続いて各試料を600℃で5〜30分間焼成し、焼結性、体積収縮率、比重及び熱膨張係数を測定した。結果を各表に示す。
【0033】
表から明らかなように、本発明の実施例である試料No.1〜10は、焼結性が良好であり、体積収縮率が1〜7%、熱膨張係数が33〜42×10-7/℃であり、基板に無アルカリガラスを使用するプラズマアドレスド電気光学装置の隔壁形成用として好適である。また比重が3.99g/cm3 以下であり、従来例に比べてかなり小さい値であった。
【0034】
なお焼結性は、熱処理時に試料粉末が焼結するかどうかで評価した。体積収縮率及び比重は、アルキメデス法を用いて測定した。熱膨張係数は、焼成した試料を棒状に加工し、熱膨張係数測定装置を用いて30〜300℃の温度範囲における平均熱膨張係数を測定したものである。
【0035】
【発明の効果】
本発明の隔壁形成用ガラスセラミックス複合材料は、PbO系ガラスの代わりにZnO−B23 −SiO2 系ガラスを用いるために、従来の材料に比べて比重が小さく、プラズマ放電空間を有するディスプレイ装置の軽量化に有効な材料である。また環境や人体に悪影響を与えることがない。しかも600℃以下で焼成でき、焼成時の体積収縮も少ないため、隔壁形成材料として好適である。
【0036】
さらにZnO−B23 −SiO2 系ガラスは低膨張化が容易であるため、無アルカリガラスを基板に用いるプラズマアドレスド電気光学装置の隔壁形成材料としても好適である。[0001]
[Industrial application fields]
The present invention relates to a glass-ceramic composite material for forming barrier ribs of a thin display device having a plasma discharge space, and in particular, a plasma discharge space using an alkali-free glass having a thermal expansion coefficient of 35 to 50 × 10 −7 / ° C. as a substrate. The present invention relates to a glass-ceramic composite material for forming a partition wall of a thin display device.
[0002]
[Prior art]
Thin display devices having a plasma discharge space such as a plasma display device (PDP) have been actively developed because they can be made thinner and lighter than conventional CRT display devices. In these display devices, two glass substrates are hermetically sealed while maintaining a certain interval, and a plasma discharge space is formed between both glass substrates by a partition wall forming material.
[0003]
A plate glass having a strain point of around 600 ° C. is used for the glass substrate, and a material that can be heat-treated at 600 ° C. or less is selected as the partition wall material that forms the discharge space. As such a partition wall material, for example, PbO-based glass powder having excellent sinterability and low softening point as disclosed in JP-A-4-337226 and JP-A-6-144487 is used. Used composite material.
[0004]
Further, in the plasma addressed electro-optical device as disclosed in JP-A-5-297363, an alkali-free glass is used for the glass substrate so as not to adversely affect the liquid crystal layer. Since the thermal expansion coefficient is as low as about 35 to 50 × 10 −7 / ° C., a low expansion filler such as PbTiO 3 powder is used together with the PbO glass powder as the partition wall material.
[0005]
[Problems to be solved by the invention]
However, if glass or filler containing heavy elements such as lead element is used, there is a risk of environmental pollution and human health.
[0006]
The partition wall material forming the discharge space has a large amount of use and has a large influence on the weight of the device. However, PbO-based glass has a problem that the device becomes heavy because of its large specific gravity.
[0007]
An object of the present invention is to provide a composite material for forming a partition wall which does not cause environmental problems and has a small specific gravity.
[0008]
[Means for Solving the Problems]
The glass-ceramic composite material for barrier rib formation of the present invention is a glass-ceramic composite material for barrier rib formation of a thin display device having a plasma discharge space, and ZnO 50 to 65% by weight%, B 2 O 3 20 to 35%, ZnO—B 2 O 3 —SiO 2 glass powder containing a composition of SiO 2 7-15%, R 2 O + RO 3-10% (provided that R 2 O: Li 2 O + Na 2 O + K 2 O, RO: MgO + CaO + SrO + BaO) It consists of filler powder.
[0009]
[Action]
The glass-ceramic composite material for forming a partition wall of the present invention uses ZnO—B 2 O 3 —SiO 2 glass powder. When this type of glass is used, it is possible to sinter densely at a temperature of 600 ° C. or less, and since the specific gravity is smaller than that of PbO-based glass, it is possible to reduce the weight of the apparatus. Furthermore, the expansion can be easily reduced as compared with the PbO system.
[0010]
As the ZnO—B 2 O 3 —SiO 2 crystalline glass powder, those having various compositions can be used, but those containing heavy elements such as Pb, Tl, Bi should be avoided. That is, these heavy elements are environmentally undesirable and increase the specific gravity of the glass.
[0011]
In addition, the use of crystalline glass having the property of precipitating ZnO.B 2 O 3 -based crystals and ZnO.SiO 2 -based crystals by heat treatment at 600 ° C. or lower can significantly reduce the thermal expansion coefficient after firing. It can be adapted to that of an alkali glass substrate. Such low-expansion glass powder includes ZnO 50 to 65% by weight, B 2 O 3 20 to 35%, SiO 2 7 to 15%, R 2 O + RO 3 to 10% (where R 2 O: Li It is preferable to use a glass having a composition of 2 O + Na 2 O + K 2 O, RO: MgO + CaO + SrO + BaO). The reason for limiting the glass composition in this way is as follows.
[0012]
ZnO has the function of lowering the thermal expansion coefficient without significantly raising the softening point, and is a component that becomes a crystal nucleus of the precipitated crystal. If the ZnO content is less than 50%, the crystal characteristics at the time of heat treatment are weakened, making it difficult to reduce the expansion, making it difficult to use for an alkali-free glass substrate. If it exceeds 65%, crystals are likely to precipitate during melting and vitrification becomes difficult. In addition, the suitable range of ZnO is 50 to 63%.
[0013]
B 2 O 3 is a component that forms a glass structure, and is a component that lowers the melting temperature and softening point of glass. If B 2 O 3 is less than 20%, vitrification becomes difficult, and if it is more than 35%, the crystal characteristics during heat treatment become weak and it is difficult to reduce expansion. Note preferable range of B 2 O 3 is 22 to 30%.
[0014]
SiO 2 is an essential component for forming a glass structure. If the SiO 2 content is less than 7%, vitrification becomes difficult, and if it exceeds 15%, the softening point of the glass rises and firing at 600 ° C. or less becomes difficult. Incidentally preferred range of SiO 2 is 8 to 12%.
[0015]
R 2 O (Li 2 O, Na 2 O, K 2 O) and RO (MgO, CaO, SrO, BaO) are components that lower the melting temperature and softening point of glass. If the total amount is less than 3%, the softening point of the glass does not decrease, and baking at a temperature of 600 ° C. or less becomes difficult. Moreover, when these total amounts are more than 10%, a thermal expansion coefficient becomes large and it becomes difficult to use for an alkali free glass substrate. Incidentally preferred range for the total amount of these components is 3 to 7%, and the range of each component is Li 2 O 0~3% (preferably 0~2%), Na 2 O 0~5 % ( preferably 0~3%), K 2 O 0~5 % ( preferably 0-3% are) 0 to 5% MgO (preferably 0-3%), CaO 0 to 5% (preferably 0-3%), SrO is 0 to 5% (preferably 0 to 3%) and BaO is 0 to 5% (preferably 0 to 3%).
[0016]
In addition to the above, it is possible to add up to 5% of Al 2 O 3 , SnO 2 or the like.
[0017]
In addition, the composite material of the present invention contains various filler powders conventionally known for preventing shrinkage during sintering and adjusting the thermal expansion coefficient and sintering strength. For example, a filler such as alumina can be used for adjusting the shrinkage rate and the sintering strength. Further, when alkali-free glass is used for the substrate, low expansion filler powders such as cordierite, willemite, zircon, quartz glass, β-eucryptite, β-spodumene can be used to reduce the expansion. Among these, it is preferable to use one or more selected from cordierite, willemite, and zircon. Further, it is more effective if 80% by weight or more of the whole filler powder is occupied by these low expansion filler powders. The use of a filler containing a heavy element such as Pb such as PbTiO 3 is not environmentally preferable and should be avoided.
[0018]
In the present invention, the mixing ratio of the glass powder and the filler powder is preferably 15 to 60% glass powder and 40 to 85% filler powder by weight. The reason for limiting the mixing ratio in this way is that if the glass powder is less than 15%, it becomes difficult to sinter the ceramic powder, and if it exceeds 60%, the shrinkage ratio during firing becomes large, cracks in the partition walls, This is because disconnection or the like is likely to occur. When used in a plasma addressed electro-optical device, it is necessary to adhere to a non-alkali glass substrate without a gap, and it is required to sinter densely. For this reason, it is preferable to make the mixing ratio of glass powder and filler powder into glass powder 25-60% and filler powder 40-75%.
[0019]
The material of the present invention may further contain up to 15% by weight of inorganic pigment powder in order to further adjust the color tone.
[0020]
The composite material composed of the above components can provide a partition material having a specific gravity after firing of 2.0 to 4.0 g / cm 3 and a volume shrinkage of 15% or less. Moreover, when using for an alkali free glass, what is necessary is just to adjust a glass composition, the kind of filler, etc., and to make the thermal expansion coefficient after baking become 30-45 * 10 < -7 > / degreeC (30-300 degreeC).
[0021]
In order to form a partition using the glass-ceramic composite material for forming a partition according to the present invention, for example, a paste is prepared by mixing the above-mentioned material and an organic vehicle, and this is printed and laminated via a screen. It is possible to employ a method in which a paste is applied and dried, a dry resist film is adhered, exposed and developed, and then sandblasted.
[0022]
【Example】
Hereinafter, the present invention will be described based on examples.
[0023]
Table 1 shows the glass powder (samples A to D) used in the examples of the present invention and the PbO-based glass powder (sample E) used conventionally.
[0024]
[Table 1]
Figure 0003897202
[0025]
Each glass powder was prepared as follows. First, the glass raw material prepared so as to have the composition shown in the table was melted at 1100 to 1450 ° C. for 1 to 3 hours and formed into a thin plate shape. Then, the glass powder with a particle size of 1.5-3.0 micrometers suitable for screen printing was obtained by grind | pulverizing and classifying.
[0026]
Each glass powder of samples A to D thus obtained has a glass softening point of 550 to 585 ° C., and when fired, 5ZnO · 2B 2 O 3 , ZnO · B 2 O 3 , and 2ZnO · SiO 2 are obtained. It had the property of precipitating as a main crystal. The specific gravity after firing was 3.55 to 3.70 g / cm 3 , and the thermal expansion coefficient at 30 to 300 ° C. was 50 to 55 × 10 −7 / ° C. On the other hand, Sample E, which is a conventional example, is an amorphous glass having a glass softening point of 550 ° C., a specific gravity of 4.62 g / cm 3 , and a thermal expansion coefficient of 67.5 × 10 −7 / ° C. at 30 to 300 ° C. there were.
[0027]
Next, filler glass and inorganic pigment powder were mixed with these glass powders to obtain a glass-ceramic composite material for partition wall formation. As the filler powder and the inorganic pigment powder, those having an average particle diameter of 0.5 to 2.5 μm were used.
[0028]
Tables 2 to 4 show examples of the present invention (sample Nos. 1 to 10) and conventional examples (sample No. 11).
[0029]
[Table 2]
Figure 0003897202
[0030]
[Table 3]
Figure 0003897202
[0031]
[Table 4]
Figure 0003897202
[0032]
Subsequently, each sample was baked at 600 ° C. for 5 to 30 minutes, and sinterability, volume shrinkage, specific gravity, and thermal expansion coefficient were measured. The results are shown in each table.
[0033]
As is apparent from the table, sample No. which is an example of the present invention is shown. Nos. 1 to 10 are plasma addressed electricity having good sinterability, volume shrinkage of 1 to 7%, thermal expansion coefficient of 33 to 42 × 10 −7 / ° C., and using alkali-free glass for the substrate. It is suitable for forming a partition wall of an optical device. Further, the specific gravity was 3.99 g / cm 3 or less, which was a considerably smaller value than the conventional example.
[0034]
Sinterability was evaluated based on whether the sample powder was sintered during the heat treatment. Volume shrinkage and specific gravity were measured using Archimedes method. The thermal expansion coefficient is obtained by processing a fired sample into a rod shape and measuring an average thermal expansion coefficient in a temperature range of 30 to 300 ° C. using a thermal expansion coefficient measuring device.
[0035]
【The invention's effect】
Since the glass-ceramic composite material for barrier rib formation of the present invention uses ZnO—B 2 O 3 —SiO 2 glass instead of PbO glass, the specific gravity is smaller than that of conventional materials and a display having a plasma discharge space It is an effective material for reducing the weight of the device. In addition, the environment and human body are not adversely affected. Moreover, since it can be fired at 600 ° C. or less and the volume shrinkage during firing is small, it is suitable as a partition wall forming material.
[0036]
Furthermore, since ZnO—B 2 O 3 —SiO 2 -based glass can be easily reduced in expansion, it is also suitable as a partition wall forming material for a plasma addressed electro-optical device using non-alkali glass as a substrate.

Claims (9)

プラズマ放電空間を有する薄型ディスプレイ装置の隔壁形成用ガラスセラミックス複合材料であって、重量%でZnO 50〜65%、B 2 3 20〜35%、SiO 2 7〜15%、R 2 O+RO 3〜10%(ただしR 2 O:Li 2 O+Na 2 O+K 2 O、RO:MgO+CaO+SrO+BaO)の組成を含有するZnO−B23−SiO2系結晶性ガラス粉末とフィラー粉末を含むことを特徴とする隔壁形成用ガラスセラミックス複合材料。A glass-ceramic composite material for forming a partition wall of a thin display device having a plasma discharge space, which is ZnO 50 to 65%, B 2 O 3 20 to 35%, SiO 2 7 to 15%, R 2 O + RO 3 by weight%. A partition comprising ZnO—B 2 O 3 —SiO 2 crystalline glass powder and filler powder containing a composition of 10% (wherein R 2 O: Li 2 O + Na 2 O + K 2 O, RO: MgO + CaO + SrO + BaO) Glass ceramic composite material for forming. 重量%でガラス粉末15〜60%、フィラー粉末40〜85%からなることを特徴とする請求項1の隔壁形成用ガラスセラミックス複合材料。  The glass-ceramic composite material for forming a partition wall according to claim 1, comprising 15 to 60% of glass powder and 40 to 85% of filler powder by weight. ガラス粉末及びフィラー粉末が、Pb、Tl及びBiを含有しないことを特徴とする請求項1又は2の隔壁形成用ガラスセラミックス複合材料  3. The glass-ceramic composite material for forming a partition wall according to claim 1 or 2, wherein the glass powder and filler powder do not contain Pb, Tl and Bi. ガラス粉末が、ZnO・B23結晶及び/又はZnO・SiO2系結晶を析出する性質を有することを特徴とする請求項1〜3の何れかに記載の隔壁形成用ガラスセラミックス複合材料。The glass-ceramic composite material for partition wall formation according to any one of claims 1 to 3 , wherein the glass powder has a property of precipitating ZnO.B 2 O 3 crystals and / or ZnO.SiO 2 -based crystals. 焼成後の比重が2.0〜4.0g/cm3であることを特徴とする請求項1〜4の何れかに記載の隔壁形成用ガラスセラミックス複合材料。The specific gravity after baking is 2.0-4.0 g / cm < 3 >, The glass-ceramic composite material for partition formation in any one of Claims 1-4 characterized by the above-mentioned . 焼成による体積収縮率が15%以下であることを特徴とする請求項1〜5の何れかに記載の隔壁形成用ガラスセラミックス複合材料。Glass-ceramic composite material for barrier rib formation according to any one of claims 1 to 5, characterized in that the volumetric shrinkage due to sintering is less than 15%. フィラー粉末が、コージエライト、ウイレマイト、ジルコンから選ばれる1種以上の低膨張フィラー粉末を含有することを特徴とする請求項1〜3の何れかに記載の隔壁形成用ガラスセラミックス複合材料。The partition wall-forming glass-ceramic composite material according to any one of claims 1 to 3 , wherein the filler powder contains one or more low-expansion filler powders selected from cordierite, willemite, and zircon. フィラー粉末の総量に占める低膨張フィラー粉末の割合が、重量%で80%以上であることを特徴とする請求項の隔壁形成用ガラスセラミックス複合材料。The glass ceramic composite material for forming a partition wall according to claim 7 , wherein the ratio of the low expansion filler powder to the total amount of the filler powder is 80% or more by weight%. 焼成後の30〜300℃における熱膨張係数が30〜50×10-7/℃であることを特徴とする請求項7又は8の隔壁形成用ガラスセラミックス複合材料。9. The partition wall-forming glass-ceramic composite material according to claim 7 , wherein a coefficient of thermal expansion at 30 to 300 ° C. after firing is 30 to 50 × 10 −7 / ° C.
JP1341398A 1997-07-14 1998-01-06 Glass ceramic composite material for partition wall formation Expired - Fee Related JP3897202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1341398A JP3897202B2 (en) 1997-07-14 1998-01-06 Glass ceramic composite material for partition wall formation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-205249 1997-07-14
JP20524997 1997-07-14
JP1341398A JP3897202B2 (en) 1997-07-14 1998-01-06 Glass ceramic composite material for partition wall formation

Publications (2)

Publication Number Publication Date
JPH1179786A JPH1179786A (en) 1999-03-23
JP3897202B2 true JP3897202B2 (en) 2007-03-22

Family

ID=26349209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1341398A Expired - Fee Related JP3897202B2 (en) 1997-07-14 1998-01-06 Glass ceramic composite material for partition wall formation

Country Status (1)

Country Link
JP (1) JP3897202B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264138A (en) * 2004-02-20 2005-09-29 Jsr Corp Glass powder-containing resin composition, transfer film and method of manufacturing plasma display panel using the same
JP2008214152A (en) * 2007-03-06 2008-09-18 Hitachi Powdered Metals Co Ltd Glass paste composition

Also Published As

Publication number Publication date
JPH1179786A (en) 1999-03-23

Similar Documents

Publication Publication Date Title
JP3827987B2 (en) Lead-free glass frit
US5854153A (en) Glasses for display panels
JP2995728B2 (en) Low dielectric constant glass composition
JP2004250276A (en) Lead-free low melting point glass for sealing
JP3424219B2 (en) Low melting point sealing composition
JP3775556B2 (en) Plasma display panel materials and glass powder
JP4061792B2 (en) Lead-free low melting glass and glass frit
JP2005041734A (en) Glass for dielectric formation and dielectric formation material for plasma display panel
KR20070088296A (en) Glass for coating electrode
JP4791746B2 (en) Lead-free borosilicate glass frit and its glass paste
KR20000074172A (en) Composition of Dielectric for Plasma Display Panel
JP4069559B2 (en) Low melting glass for forming barrier ribs and plasma display panel
JPH08259262A (en) Low melting point seal bonding composition
JP4899249B2 (en) Lead-free glass, glass ceramic composition and glass paste
EP0729922B1 (en) Glasses for display panels
JPH09268026A (en) Glass composition for electrical insulation
JP4924985B2 (en) Dielectric material for plasma display panel
JP3331428B2 (en) Sealing glass
JP2001302279A (en) Lead-free and low-melting point glass and glass frit
JP3460298B2 (en) Glass composition for substrates
JP4370686B2 (en) Barium borosilicate glass and glass ceramic composition
JP2001163635A (en) Lead-free low melting point glass for formation of barrier rib and glass ceramic composition
JP3897202B2 (en) Glass ceramic composite material for partition wall formation
JP3829887B2 (en) Dielectric materials for plasma display panels
JPH1087340A (en) Ceramic color composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060915

A521 Written amendment

Effective date: 20061019

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20061201

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061214

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100105

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120105

LAPS Cancellation because of no payment of annual fees