JP3895975B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP3895975B2
JP3895975B2 JP2001366208A JP2001366208A JP3895975B2 JP 3895975 B2 JP3895975 B2 JP 3895975B2 JP 2001366208 A JP2001366208 A JP 2001366208A JP 2001366208 A JP2001366208 A JP 2001366208A JP 3895975 B2 JP3895975 B2 JP 3895975B2
Authority
JP
Japan
Prior art keywords
refrigerant
oil
compressor
pipe
refrigerating machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001366208A
Other languages
Japanese (ja)
Other versions
JP2003166763A (en
Inventor
孝 佐藤
俊行 江原
兼三 松本
大 松浦
里  和哉
裕之 松森
隆泰 斎藤
晴久 山崎
昌也 只野
悟 今井
淳志 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001366208A priority Critical patent/JP3895975B2/en
Priority to US10/225,442 priority patent/US7128540B2/en
Priority to EP06013469A priority patent/EP1703131A3/en
Priority to ES06013467T priority patent/ES2398363T3/en
Priority to EP06013468A priority patent/EP1703130B1/en
Priority to EP04030239A priority patent/EP1522733A3/en
Priority to EP06013470A priority patent/EP1703132B1/en
Priority to ES06013470T priority patent/ES2398245T3/en
Priority to EP06013471A priority patent/EP1703133A3/en
Priority to EP02256240A priority patent/EP1298324A3/en
Priority to EP04030233A priority patent/EP1517041A3/en
Priority to EP06013467A priority patent/EP1703129B1/en
Priority to EP04030238A priority patent/EP1517036A3/en
Priority to ES06013468T priority patent/ES2398963T3/en
Priority to KR1020020058289A priority patent/KR20030028388A/en
Publication of JP2003166763A publication Critical patent/JP2003166763A/en
Priority to US10/747,288 priority patent/US20040151603A1/en
Priority to US10/747,285 priority patent/US7174725B2/en
Priority to US10/790,085 priority patent/US7435063B2/en
Priority to US10/790,181 priority patent/US7435062B2/en
Priority to US11/377,402 priority patent/US7302803B2/en
Publication of JP3895975B2 publication Critical patent/JP3895975B2/en
Application granted granted Critical
Priority to US11/896,347 priority patent/US7837449B2/en
Priority to US11/896,346 priority patent/US7762792B2/en
Priority to KR1020080067907A priority patent/KR100892839B1/en
Priority to KR1020080067914A priority patent/KR20080071959A/en
Priority to KR1020080067906A priority patent/KR20080071956A/en
Priority to KR1020080067910A priority patent/KR100892840B1/en
Priority to KR1020080067904A priority patent/KR100862822B1/en
Priority to KR1020080067905A priority patent/KR100892838B1/en
Priority to KR1020080067919A priority patent/KR20080071961A/en
Priority to KR1020080067917A priority patent/KR100892841B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Compressor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒に二酸化炭素を用いた冷凍装置に関するものである。
【0002】
【従来の技術】
二酸化炭素を冷媒として使用する冷凍装置の冷媒圧縮機として、例えば図4に示した内部中間圧型の回転式2段圧縮機(以下、単に圧縮機と云う)100Xが周知である。この圧縮機100Xにおいては、密閉容器12内の上部にステータ14、ロータ16などからなる電動機構部18を備えると共に、その下部に電動機構部18のロータ16と回転軸20を介して連結された2段式の回転式圧縮機構部22を備えている。
【0003】
この圧縮機100Xの2段式の回転式圧縮機構部22においては、下側に第1の圧縮機構部24が配設され、その上側に第2の圧縮機構部26が配設され、図示しないアキュムレータから冷媒導入管30を介して導入した気体の冷媒を下段側の第1の圧縮機構部24で圧縮し、その圧縮した冷媒を中間吐出管28から密閉容器12内に吐出、それを密閉容器12の胴部に開設した中間吐出孔に設けたスリーブ29から延設した冷媒導入管32を介して2段目の第2の圧縮機構部26に導入し、そこでさらに高圧に圧縮して冷媒吐出管34から図示しない空調装置の冷媒回路に高圧冷媒を供給するように構成されている。
【0004】
そして、この圧縮機100Xにおいては、密閉容器12内の下部には冷凍機油60が溜め置かれ、その冷凍機油60を汲み上げて回転式圧縮機構部22の摺動部分の潤滑と気密性の向上が図られている。
【0005】
例えば、回転軸20の下端部に設けたポンプ機構により汲み上げられ、回転軸20の中空部を介して上昇し、回転軸20の本体部分と、ローラ38、40が装着される偏心部42、44の外周部に設けた給油孔46、48、50、52から吐出した冷凍機油60により、摺動部分の潤滑などが図られている。
【0006】
上記構成の圧縮機100Xは冷凍機油60を密閉容器12の内部に蓄えておく構造であったため、圧縮機を小型化し難い。そのため、そのような構造の圧縮機100Xを用いて冷媒を圧縮するカーエアコンなどにおいては、容積に限りがある自動車のボンネット内部に圧縮機100Xをエンジンなどの自動車部品と共に設置する際に、設置し難いと云った問題点があった。
【0007】
【発明が解決しようとする課題】
したがって、圧縮機の内部には冷凍機油を蓄えないか、最小限度の冷凍機油を蓄え、冷凍機油の大部分は圧縮機以外の部分に溜めておく構成の空調装置を提供する必要があり、それが解決すべき課題となっていた。
【0008】
【課題を解決するための手段】
本発明は上記従来技術の課題を解決するため、少なくとも圧縮機、放熱器、蒸発器を冷媒管により連通させて形成する冷媒閉回路に二酸化炭素が充填され、冷媒閉回路に油分離器を介在させると共に、その油分離器の底部に設けた貯油部と圧縮機とを返油管により連結した冷凍装置において、
前記油分離器は、貯油部の上方に、油付着・分離材を備え、この油付着・分離材の上方に複数の邪魔板を備えると共に、底板に冷媒を導入する冷媒管が連結され、天板に冷媒を排出する冷媒管を連結した第1の構成の冷凍装置と、
【0009】
前記第1の構成の冷凍装置において、油分離器を放熱器の出口側冷媒回路または蒸発器の出口側冷媒回路に設けるようにした第2の構成の冷凍装置と、
を提供するものである。
【0010】
【発明の実施の形態】
以下、本発明の一実施形態を主に図1〜図3に基づいて詳細に説明する。なお、理解を容易にするため、これらの図においても前記図面において説明した部分と同様の機能を有する部分には、同一の符号を付した。
【0011】
本発明の冷凍装置200は、例えば図1に示したように圧縮機100と、放熱器101と、膨張弁102と、蒸発器103と、油分離器104とが冷媒管110により連結されて冷媒の閉回路が形成され、その閉回路に二酸化炭素が冷媒として充填されている。
【0012】
また、油分離器104の底部に設けた貯油部104Aと圧縮機100とは返油管112により連結されている。すなわち、油分離器104は、例えば図2に示したように底部側に貯油部104Aを備えると共に、その上方に油付着・分離材104Bと、さらにその上方に複数の邪魔板104Cとを備え、底板に連結された冷媒管110から冷凍機油60を含んで器内に入った気体の冷媒は、油付着・分離材104Bを通過し、さらにその上に配設した邪魔板104Cの隙間を通過し、天板に連結した冷媒管110から排出する構成となっている。
【0013】
油付着・分離材104Bは、例えば網目の小さい金網が積層されたもの、金属たわしなどのような隙間を備えたもの、などから構成される。そして、冷凍機油60を含んだ気体の冷媒が、油付着・分離材104Bの隙間を通過する際に、気体の冷媒は天板に連結した冷媒管110からそのまま排出されるが、密度の大きい冷凍機油60は油付着・分離材104Bに衝突して次第に速度を落とし、終には油付着・分離材104Bに付着してその部分に留まる。
【0014】
その際、油付着・分離材104Bの上方には邪魔板104Cが複数枚設置されているので、油分離器104の下部側に入り、上部から排出される冷媒と冷凍機油60の流速を下げる効果があり、冷媒から冷凍機油60を分離する油付着・分離材104Bの分離作用効果が一層高まる。
【0015】
油付着・分離材104Bに付着してその部分に留まる冷凍機油60の量が増え、質量が増加すると、油付着・分離材104Bから冷凍機油60は滴下し、底部のオイル溜め104Aに溜まる。そして、油分離器104の底板には返油管112が連結されているので、油付着・分離材104Bから滴下し、オイル溜め104Aに溜まった冷凍機油60は返油管112を通って圧縮機100に戻される。
【0016】
一方、圧縮機100は例えば図3に示した構成である。すなわち、圧縮機100は内部に冷凍機油60を溜め置く構造とはなっておらず、前記図4に示した圧縮機100Xと同様に構成した中空の回転軸20の下端部に、返油管112の終端部が連結され、その返油管112を介して油分離器104から戻される冷凍機油60が、図示しない給油孔から吐出して回転式圧縮機構部22の各摺動部分に供給され、その部分の潤滑と気密性の向上が図られる構成となっている。
【0017】
すなわち、図3に示した構成の圧縮機100においては、冷凍機油60をその内部に溜め置く必要がないので、電動機構部18と回転式圧縮機構部22とを内蔵した密閉容器12を、冷凍機油60を密閉容器12に内蔵する従来の圧縮機100Xのそれより小さくすることができる。
【0018】
次に、図1に示した冷凍装置200の動作を説明する。圧縮機100の電力ターミナル54および図示しない配線を介して電動機構部18の図示しないステータコイルに通電すると、電動機構部18が起動してその図示しないロータが回転する。この回転により回転軸20と一体に設けた偏心部に嵌合されている図示しないローラがシリンダ内で偏心回転する(図3参照)。
【0019】
このため、冷媒導入管30(冷媒管110)より吸入された低圧の冷媒ガスは、下側の第1の圧縮機構部24により圧縮されて中間圧となり、霧状の冷凍機油60を微量含んだ状態で中間吐出管28から密閉容器12内に吐出される。
【0020】
このとき、中間吐出管28は、例えば上方の電動機構部18のステータに巻装された相隣接するステータコイル同士の隙間に指向しており、未だ比較的温度の低い冷媒ガスを電動機構部18方向に積極的に供給して、電動機構部18の温度上昇が抑制される。また、これによって、密閉容器12内は中間圧となる。
【0021】
そして、密閉容器12内の霧状の冷凍機油60を微量含んだ中間圧の冷媒ガスは、冷媒導入管32を経由して上側の第2の圧縮機構部26により圧縮され、霧状の冷凍機油60を含んだ高温高圧の冷媒ガスとなり、冷媒吐出管34(冷媒管110)を経由して放熱器101内に流入する。このときの冷媒温度は約100℃まで上昇しており、係る冷凍機油60を含んだ高温高圧の冷媒ガスは放熱して冷却され、冷凍機油60を含む超臨界状態となって放熱器101を出る。
【0022】
そして、膨張弁102で減圧された後、蒸発器103に流入して蒸発する。この蒸発器103における蒸発時に冷媒が周囲から奪う気化熱により、冷凍装置200がカークーラ用の冷凍装置であれば、車内の空気が冷却されて冷房が行われる。なお、蒸発器103においては、沸点の低い冷媒の二酸化炭素が選択的に蒸発し、冷媒より沸点の高い冷凍機油60は殆ど蒸発することはない。
【0023】
蒸発器103で蒸発した冷媒蒸気と冷凍機油60は油分離器104に流入し、前記機構により冷凍機油60が冷媒から分離される。油分離器14で冷凍機油60が分離された気体の冷媒は冷媒導入管30(冷媒管110)から第1の圧縮機構部24内に吸い込まれるサイクルを繰り返し、油分離器14で冷媒から分離された液体の冷凍機油60は返油管112から圧縮機100に戻されるサイクルを繰り返す。
【0024】
なお、油分離器104は、放熱器101の出口側に設置することも可能である。すなわち、放熱器104で放熱した冷媒の二酸化炭素は超臨界状態にあり、完全な液体とはなっていない。一方、冷凍機油60は完全な液体となっているので、油分離器104を放熱器101の出口側に設置しても、前記機構により気体の冷媒と液体の冷凍機油60とに分離し、分離した冷凍機油60を圧縮機100に戻すことができる。
【0025】
また、圧縮機100としては、回転式圧縮機構部22が1シリンダータイプの圧縮機であっても良いし、圧縮機構部が圧縮した高圧の冷媒蒸気が密閉容器12の内部に噴出し、その密閉容器12内部に噴出された高圧冷媒を密閉容器1の上部などに設けた冷媒吐出管から機外に排出するものであっても良い。
【0026】
【発明の効果】
以上説明したように、油分離器は、貯油部の上方に、油付着・分離材を備え、この油付着・分離材の上方に複数の邪魔板を備えると共に、底板に冷媒を導入する冷媒管が連結され、天板に冷媒を排出する冷媒管を連結した冷凍装置であり、
油分離器を放熱器の出口側冷媒回路または蒸発器の出口側冷媒回路に設けるようにした冷凍装置であるため、
冷凍機油を含んだ気体の冷媒が、油付着・分離材の隙間を通過する際に、気体の冷媒は天板に連結した冷媒管からそのまま排出されるが、密度の大きい冷凍機油は油付着・分離材に衝突して次第に速度を落とし、終には油付着・分離材に付着してその部分に留まる。その際、油付着・分離材の上方には邪魔板が複数枚設置されているので、油分離器の下部側に入り、上部から排出される冷媒と冷凍機油の流速を下げる効果があり、冷媒から冷凍機油を分離する油付着・分離材の分離作用効果が一層高まる。
【0027】
圧縮機には冷凍機油を溜め置く必要がない。そのため、圧縮機構部、電動機構部を収納する密閉容器の大きさを、冷凍機油を内蔵している圧縮機のそれより小さくすることが可能であり、圧縮機の小型化が可能である。したがって、その圧縮機をカーエアコンの圧縮機とするときには、容積に限りがあるボンネット内にエンジンなどの自動車部品と共に設置するときに、設置し易い。
【図面の簡単な説明】
【図1】本発明の冷凍装置の構成を示す説明図である。
【図2】本発明の冷凍装置に使用する油分離器の構成を示す説明図である。
【図3】本発明の冷凍装置に使用する圧縮機の構成を示す説明図である。
【図4】従来の冷凍装置で使用していた圧縮機の構成を示す説明図である。
【符号の説明】
12 密閉容器
14 ステータ
16 ロータ
18 電動機構部
20 回転軸
22 回転式圧縮機構部
24 第1の圧縮機構部
26 第2の圧縮機構部
28 中間吐出管
29 スリーブ
30、32 冷媒導入管
34 冷媒吐出管
38、40 ローラ
42、44 偏心部
46、48、50、52 給油孔
54 電力ターミナル
60 冷凍機油
100、100X 圧縮機
101 放熱器
102 膨張弁
103 蒸発器
104 油分離器
104A 貯油部
104B 油付着・分離材
104C 邪魔板
110 冷媒管
112 返油管
200 冷凍装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration apparatus using carbon dioxide as a refrigerant.
[0002]
[Prior art]
As a refrigerant compressor of a refrigeration apparatus that uses carbon dioxide as a refrigerant, for example, an internal intermediate pressure type rotary two-stage compressor (hereinafter simply referred to as a compressor) 100X shown in FIG. 4 is well known. In the compressor 100X, an electric mechanism portion 18 including a stator 14 and a rotor 16 is provided in the upper portion of the hermetic container 12, and the lower portion is connected to the lower portion of the electric mechanism portion 18 via the rotor 16 and the rotary shaft 20. A two-stage rotary compression mechanism 22 is provided.
[0003]
In the two-stage rotary compression mechanism section 22 of the compressor 100X, a first compression mechanism section 24 is disposed on the lower side, and a second compression mechanism section 26 is disposed on the upper side, not shown. The gaseous refrigerant introduced from the accumulator through the refrigerant introduction pipe 30 is compressed by the first compression mechanism portion 24 on the lower stage side, and the compressed refrigerant is discharged into the sealed container 12 from the intermediate discharge pipe 28, which is then sealed in the sealed container 12 is introduced into the second compression mechanism portion 26 of the second stage through a refrigerant introduction pipe 32 extending from a sleeve 29 provided in an intermediate discharge hole opened in the trunk portion of 12 and is further compressed to a high pressure where the refrigerant is discharged. The high-pressure refrigerant is supplied from the pipe 34 to a refrigerant circuit of an air conditioner (not shown).
[0004]
In the compressor 100X, the refrigerating machine oil 60 is stored in the lower part of the sealed container 12, and the refrigerating machine oil 60 is pumped up to improve the lubrication and airtightness of the sliding portion of the rotary compression mechanism section 22. It is illustrated.
[0005]
For example, it is pumped up by a pump mechanism provided at the lower end portion of the rotating shaft 20 and rises through the hollow portion of the rotating shaft 20, and the eccentric portions 42 and 44 to which the main body portion of the rotating shaft 20 and the rollers 38 and 40 are mounted. The refrigerating machine oil 60 discharged from the oil supply holes 46, 48, 50, 52 provided in the outer peripheral portion of the cylinder is used to lubricate the sliding portion.
[0006]
Since the compressor 100X having the above-described configuration has a structure in which the refrigerating machine oil 60 is stored in the sealed container 12, it is difficult to reduce the size of the compressor. Therefore, in a car air conditioner or the like that compresses a refrigerant using the compressor 100X having such a structure, it is installed when the compressor 100X is installed together with an automobile part such as an engine inside an automobile bonnet having a limited volume. There was a problem that it was difficult.
[0007]
[Problems to be solved by the invention]
Therefore, it is necessary to provide an air conditioner that does not store refrigeration oil inside the compressor, or stores a minimum amount of refrigeration oil, and stores most of the refrigeration oil in parts other than the compressor. Was a problem to be solved.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems of the prior art, the present invention fills a refrigerant closed circuit formed by communicating at least a compressor, a radiator, and an evaporator with a refrigerant pipe with carbon dioxide, and interposes an oil separator in the refrigerant closed circuit. In the refrigerating apparatus in which the oil storage section provided at the bottom of the oil separator and the compressor are connected by an oil return pipe ,
The oil separator is provided with an oil adhering / separating material above the oil storage section, a plurality of baffle plates above the oil adhering / separating material, and a refrigerant pipe for introducing a refrigerant to the bottom plate is connected to the top. A refrigeration apparatus having a first configuration in which a refrigerant pipe for discharging the refrigerant is connected to the plate;
[0009]
In the refrigeration apparatus of the first configuration, the refrigeration apparatus of the second configuration so as to provide an oil separator in the outlet side refrigerant circuit of the outlet-side refrigerant circuit or the evaporator of the radiator,
Is to provide.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail mainly with reference to FIGS. In order to facilitate understanding, in these drawings, the same reference numerals are given to the portions having the same functions as the portions described in the drawings.
[0011]
For example, as shown in FIG. 1, the refrigeration apparatus 200 of the present invention includes a compressor 100, a radiator 101, an expansion valve 102, an evaporator 103, and an oil separator 104 connected by a refrigerant pipe 110. The closed circuit is formed, and the closed circuit is filled with carbon dioxide as a refrigerant.
[0012]
In addition, the oil storage section 104 </ b> A provided at the bottom of the oil separator 104 and the compressor 100 are connected by an oil return pipe 112. That is, the oil separator 104 includes, for example, an oil storage section 104A on the bottom side as shown in FIG. 2, an oil adhering / separating material 104B above it, and a plurality of baffle plates 104C above it, The gaseous refrigerant that has entered the container including the refrigerating machine oil 60 from the refrigerant pipe 110 connected to the bottom plate passes through the oil adhering / separating material 104B, and further passes through the gap of the baffle plate 104C disposed thereon. The refrigerant is discharged from the refrigerant pipe 110 connected to the top plate.
[0013]
The oil adhering / separating material 104B is composed of, for example, a structure in which metal meshes having small meshes are laminated, or a material having a gap such as a metal scrubber. When the gaseous refrigerant containing the refrigerating machine oil 60 passes through the gap between the oil adhering / separating material 104B, the gaseous refrigerant is discharged as it is from the refrigerant pipe 110 connected to the top plate. The machine oil 60 collides with the oil adhering / separating material 104B and gradually decreases in speed, and finally adheres to the oil adhering / separating material 104B and stays there.
[0014]
At that time, since a plurality of baffle plates 104C are installed above the oil adhering / separating material 104B, the effect of reducing the flow rate of the refrigerant entering the lower part of the oil separator 104 and discharged from the upper part and the refrigerating machine oil 60 is obtained. And the separation effect of the oil adhesion / separation material 104B for separating the refrigerating machine oil 60 from the refrigerant is further enhanced.
[0015]
When the amount of the refrigerating machine oil 60 that adheres to the oil adhering / separating material 104B and stays there increases and the mass increases, the refrigerating machine oil 60 drops from the oil adhering / separating material 104B and accumulates in the oil reservoir 104A at the bottom. Since the oil return pipe 112 is connected to the bottom plate of the oil separator 104, the refrigerating machine oil 60 dripped from the oil adhering / separating material 104B and collected in the oil reservoir 104A passes through the oil return pipe 112 to the compressor 100. Returned.
[0016]
On the other hand, the compressor 100 has the configuration shown in FIG. 3, for example. That is, the compressor 100 does not have a structure in which the refrigerating machine oil 60 is stored inside, and the oil return pipe 112 is provided at the lower end of the hollow rotary shaft 20 configured in the same manner as the compressor 100X shown in FIG. The refrigerating machine oil 60 connected to the end portion and returned from the oil separator 104 through the oil return pipe 112 is discharged from an oil supply hole (not shown) and supplied to each sliding portion of the rotary compression mechanism portion 22. Therefore, it is possible to improve the lubrication and airtightness.
[0017]
That is, in the compressor 100 having the configuration shown in FIG. 3, it is not necessary to store the refrigerating machine oil 60 therein, so that the sealed container 12 including the electric mechanism unit 18 and the rotary compression mechanism unit 22 is installed in the freezer. The machine oil 60 can be made smaller than that of the conventional compressor 100X in which the sealed container 12 is built.
[0018]
Next, the operation of the refrigeration apparatus 200 shown in FIG. 1 will be described. When the stator coil (not shown) of the electric mechanism unit 18 is energized through the power terminal 54 of the compressor 100 and the wiring (not shown), the electric mechanism unit 18 is activated and the rotor (not shown) rotates. By this rotation, a roller (not shown) fitted in an eccentric portion provided integrally with the rotary shaft 20 rotates eccentrically in the cylinder (see FIG. 3).
[0019]
For this reason, the low-pressure refrigerant gas sucked from the refrigerant introduction pipe 30 (refrigerant pipe 110) is compressed by the lower first compression mechanism section 24 to an intermediate pressure, and contains a small amount of mist-like refrigerating machine oil 60. In this state, the liquid is discharged from the intermediate discharge pipe 28 into the sealed container 12.
[0020]
At this time, the intermediate discharge pipe 28 is directed, for example, to a gap between adjacent stator coils wound around the stator of the upper electric mechanism unit 18, and the electric mechanism unit 18 still supplies a refrigerant gas having a relatively low temperature. By actively supplying in the direction, the temperature rise of the electric mechanism unit 18 is suppressed. Moreover, the inside of the airtight container 12 becomes an intermediate pressure by this.
[0021]
Then, the intermediate-pressure refrigerant gas containing a small amount of the mist refrigerating machine oil 60 in the hermetic container 12 is compressed by the upper second compression mechanism section 26 via the refrigerant introduction pipe 32, and the mist refrigerating machine oil is obtained. It becomes a high-temperature and high-pressure refrigerant gas containing 60, and flows into the radiator 101 via the refrigerant discharge pipe 34 (refrigerant pipe 110). The refrigerant temperature at this time has increased to about 100 ° C., and the high-temperature and high-pressure refrigerant gas containing the refrigerating machine oil 60 is radiated and cooled, and exits the radiator 101 in a supercritical state containing the refrigerating machine oil 60. .
[0022]
Then, after being depressurized by the expansion valve 102, it flows into the evaporator 103 and evaporates. If the refrigeration apparatus 200 is a refrigeration apparatus for a car cooler due to the heat of vaporization that the refrigerant removes from the surroundings when evaporating in the evaporator 103, the air in the vehicle is cooled and the cooling is performed. In the evaporator 103, the carbon dioxide of the refrigerant having a low boiling point is selectively evaporated, and the refrigerating machine oil 60 having a boiling point higher than that of the refrigerant is hardly evaporated.
[0023]
The refrigerant vapor evaporated by the evaporator 103 and the refrigerating machine oil 60 flow into the oil separator 104, and the refrigerating machine oil 60 is separated from the refrigerant by the mechanism. The gaseous refrigerant from which the refrigerating machine oil 60 is separated by the oil separator 14 repeats a cycle of being sucked into the first compression mechanism portion 24 from the refrigerant introduction pipe 30 (refrigerant pipe 110), and is separated from the refrigerant by the oil separator 14. The cycle of the liquid refrigeration oil 60 returned from the oil return pipe 112 to the compressor 100 is repeated.
[0024]
The oil separator 104 can be installed on the outlet side of the radiator 101. That is, the carbon dioxide of the refrigerant radiated by the radiator 104 is in a supercritical state and is not a complete liquid. On the other hand, since the refrigerating machine oil 60 is a complete liquid, even if the oil separator 104 is installed on the outlet side of the radiator 101, it is separated into a gaseous refrigerant and a liquid refrigerating machine oil 60 by the mechanism. The refrigerating machine oil 60 can be returned to the compressor 100.
[0025]
Moreover, as the compressor 100, the rotary compression mechanism part 22 may be a one-cylinder type compressor, or the high-pressure refrigerant vapor compressed by the compression mechanism part is jetted into the sealed container 12, and the sealing is performed. The high-pressure refrigerant ejected into the container 12 may be discharged out of the apparatus from a refrigerant discharge pipe provided in the upper part of the sealed container 1 or the like.
[0026]
【The invention's effect】
As described above, the oil separator is provided with an oil adhering / separating material above the oil storage unit, a plurality of baffle plates above the oil adhering / separating material, and a refrigerant pipe for introducing refrigerant into the bottom plate. Is a refrigeration system in which a refrigerant pipe for discharging the refrigerant is connected to the top plate ,
Since the oil separator is a refrigeration apparatus provided in the outlet side refrigerant circuit of the radiator or the outlet side refrigerant circuit of the evaporator,
When the gaseous refrigerant containing refrigeration oil passes through the gap between the oil adhesion and separation material, the gaseous refrigerant is discharged as it is from the refrigerant pipe connected to the top plate. It collides with the separation material and gradually decreases its speed, and eventually adheres to the oil adhesion / separation material and stays there. At that time, since a plurality of baffle plates are installed above the oil adhering / separating material, there is an effect of decreasing the flow rate of the refrigerant and the refrigerating machine oil entering the lower part of the oil separator and discharged from the upper part. The effect of separating the oil adhering / separating material for separating the refrigerating machine oil from the oil further increases.
[0027]
There is no need to store refrigeration oil in the compressor. Therefore, the size of the sealed container that houses the compression mechanism unit and the electric mechanism unit can be made smaller than that of the compressor incorporating the refrigeration oil, and the compressor can be downsized. Therefore, when the compressor is used as a compressor of a car air conditioner, it is easy to install when installing together with automobile parts such as an engine in a hood having a limited volume.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a configuration of a refrigeration apparatus according to the present invention.
FIG. 2 is an explanatory diagram showing a configuration of an oil separator used in the refrigeration apparatus of the present invention.
FIG. 3 is an explanatory diagram showing a configuration of a compressor used in the refrigeration apparatus of the present invention.
FIG. 4 is an explanatory diagram showing a configuration of a compressor used in a conventional refrigeration apparatus.
[Explanation of symbols]
12 Sealed container 14 Stator 16 Rotor 18 Electric mechanism section 20 Rotating shaft 22 Rotary compression mechanism section 24 First compression mechanism section 26 Second compression mechanism section 28 Intermediate discharge pipe 29 Sleeve 30, 32 Refrigerant introduction pipe 34 Refrigerant discharge pipe 38, 40 Roller 42, 44 Eccentric part 46, 48, 50, 52 Oil supply hole 54 Electric power terminal 60 Refrigerator oil 100, 100X Compressor 101 Radiator 102 Expansion valve 103 Evaporator 104 Oil separator 104A Oil storage part 104B Oil adhesion / separation Material 104C baffle plate 110 refrigerant pipe 112 oil return pipe 200 refrigeration apparatus

Claims (2)

少なくとも圧縮機、放熱器、蒸発器を冷媒管により連通させて形成する冷媒閉回路に二酸化炭素が充填され、冷媒閉回路に油分離器を介在させると共に、その油分離器の底部に設けた貯油部と圧縮機とを返油管により連結した冷凍装置において、
前記油分離器は、貯油部の上方に、油付着・分離材を備え、この油付着・分離材の上方に複数の邪魔板を備えると共に、底板に冷媒を導入する冷媒管が連結され、天板に冷媒を排出する冷媒管を連結したことを特徴とする冷凍装置。
A refrigerant closed circuit formed by communicating at least a compressor, a radiator, and an evaporator with a refrigerant pipe is filled with carbon dioxide, an oil separator is interposed in the refrigerant closed circuit, and an oil storage provided at the bottom of the oil separator In the refrigeration system in which the compressor and the compressor are connected by an oil return pipe ,
The oil separator is provided with an oil adhering / separating material above the oil storage unit, a plurality of baffle plates above the oil adhering / separating material, and a refrigerant pipe for introducing a refrigerant to the bottom plate is connected to the top. A refrigeration apparatus comprising a refrigerant pipe for discharging a refrigerant connected to a plate .
油分離器が放熱器の出口側冷媒回路または蒸発器の出口側冷媒回路に設けられたことを特徴とする請求項1記載の冷凍装置。  2. The refrigeration apparatus according to claim 1, wherein the oil separator is provided in an outlet side refrigerant circuit of the radiator or an outlet side refrigerant circuit of the evaporator.
JP2001366208A 2001-09-27 2001-11-30 Refrigeration equipment Expired - Fee Related JP3895975B2 (en)

Priority Applications (30)

Application Number Priority Date Filing Date Title
JP2001366208A JP3895975B2 (en) 2001-11-30 2001-11-30 Refrigeration equipment
US10/225,442 US7128540B2 (en) 2001-09-27 2002-08-22 Refrigeration system having a rotary compressor
EP02256240A EP1298324A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor with vane holding plug
EP06013468A EP1703130B1 (en) 2001-09-27 2002-09-10 Rotary vane compressor and defroster
EP04030239A EP1522733A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor with vane holding plug
EP06013470A EP1703132B1 (en) 2001-09-27 2002-09-10 Rotary vane compressor
EP06013469A EP1703131A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor
EP06013471A EP1703133A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor
ES06013467T ES2398363T3 (en) 2001-09-27 2002-09-10 Rotary vane compressor
EP04030233A EP1517041A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor with vane holding plug
EP06013467A EP1703129B1 (en) 2001-09-27 2002-09-10 Rotary vane compressor
EP04030238A EP1517036A3 (en) 2001-09-27 2002-09-10 A high pressure pump for an internal-combustion engine
ES06013468T ES2398963T3 (en) 2001-09-27 2002-09-10 Rotary vane compressor and defroster
ES06013470T ES2398245T3 (en) 2001-09-27 2002-09-10 Rotary vane compressor
KR1020020058289A KR20030028388A (en) 2001-09-27 2002-09-26 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US10/747,285 US7174725B2 (en) 2001-09-27 2003-12-30 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US10/747,288 US20040151603A1 (en) 2001-09-27 2003-12-30 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US10/790,085 US7435063B2 (en) 2001-09-27 2004-03-02 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US10/790,181 US7435062B2 (en) 2001-09-27 2004-03-02 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US11/377,402 US7302803B2 (en) 2001-09-27 2006-03-17 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigerant unit
US11/896,347 US7837449B2 (en) 2001-09-27 2007-08-31 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigerant unit
US11/896,346 US7762792B2 (en) 2001-09-27 2007-08-31 Compressor
KR1020080067917A KR100892841B1 (en) 2001-09-27 2008-07-14 Defroster of refrigerant circuit
KR1020080067919A KR20080071961A (en) 2001-09-27 2008-07-14 Refrigeration unit
KR1020080067907A KR100892839B1 (en) 2001-09-27 2008-07-14 Closed type electric compressor
KR1020080067914A KR20080071959A (en) 2001-09-27 2008-07-14 Compressor
KR1020080067906A KR20080071956A (en) 2001-09-27 2008-07-14 Rotary compressor
KR1020080067910A KR100892840B1 (en) 2001-09-27 2008-07-14 Compressor
KR1020080067904A KR100862822B1 (en) 2001-09-27 2008-07-14 Rotary compressor
KR1020080067905A KR100892838B1 (en) 2001-09-27 2008-07-14 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001366208A JP3895975B2 (en) 2001-11-30 2001-11-30 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2003166763A JP2003166763A (en) 2003-06-13
JP3895975B2 true JP3895975B2 (en) 2007-03-22

Family

ID=19176138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001366208A Expired - Fee Related JP3895975B2 (en) 2001-09-27 2001-11-30 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3895975B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096440A (en) * 2008-10-17 2010-04-30 Panasonic Corp Heat pump device

Also Published As

Publication number Publication date
JP2003166763A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
CN100365282C (en) Scroll compressor and refrigerating system using ammonia group refrigerant
AU669830B2 (en) Enclosed type rotary compressor
CN101440812B (en) Lubrication apparatus of rotary compressor and control method thereof
WO2009059488A1 (en) A rotary compressor with low pressure in its shell and methods for controlling its cold media and oil and application thereof
US20100226796A1 (en) Rotary compressor
JP2006070892A (en) Intake muffler for compressor
JPH06307359A (en) Scroll compressor and its gas/liquid separator
JPH06323251A (en) Closed type motor-driven compressor
JPH02230995A (en) Compressor for heat pump and operating method thereof
JP3895975B2 (en) Refrigeration equipment
JP4004278B2 (en) Rotary compressor
JP4059652B2 (en) Hermetic rotary compressor
MXPA05002924A (en) Multi-stage rotary compressor.
JPH05256285A (en) Two-state compressing compressor for superlow temperature refrigerator
JP3291472B2 (en) Rotary compressor
US20020110463A1 (en) Horizontal closed type compressor for vehicle use and cooling system of electric compressor for vehicle use
JP3291470B2 (en) Rotary compressor
JP2003202161A (en) Freezing air conditioning device
JP2000104690A (en) Rotary compressor
KR102243832B1 (en) Closed type rotary compressor
JP2011137402A (en) Hermetic compressor and refrigerating cycle device
CN217682266U (en) Compressor and air conditioner
JP2003172281A (en) Compressor
JP4169620B2 (en) Refrigerant cycle equipment
JP2001254688A (en) Swinging piston type compressor and freezer using it

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061215

R151 Written notification of patent or utility model registration

Ref document number: 3895975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees