JP3895420B2 - Liquid pumping device - Google Patents

Liquid pumping device Download PDF

Info

Publication number
JP3895420B2
JP3895420B2 JP04740897A JP4740897A JP3895420B2 JP 3895420 B2 JP3895420 B2 JP 3895420B2 JP 04740897 A JP04740897 A JP 04740897A JP 4740897 A JP4740897 A JP 4740897A JP 3895420 B2 JP3895420 B2 JP 3895420B2
Authority
JP
Japan
Prior art keywords
temperature liquid
liquid container
compressed air
cooling fluid
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04740897A
Other languages
Japanese (ja)
Other versions
JPH10227406A (en
Inventor
湯本  秀昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tlv Co Ltd
Original Assignee
Tlv Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tlv Co Ltd filed Critical Tlv Co Ltd
Priority to JP04740897A priority Critical patent/JP3895420B2/en
Publication of JPH10227406A publication Critical patent/JPH10227406A/en
Application granted granted Critical
Publication of JP3895420B2 publication Critical patent/JP3895420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は燃料や水等の液体を圧送する液体圧送装置に関し、特に、高温の液体を圧送する場合に発生する再蒸発蒸気を低減するものに関する。本発明の液体圧送装置は、蒸気系で発生した蒸気の凝縮水としての復水を一旦集めて、この高温液体である復水をボイラ―や排熱利用装置へ圧送する装置として特に適するものである。
【0002】
【従来の技術】
従来のこの種の液体圧送装置としては、例えば特開平7−139705号公報に示されたものがある。これは、蒸気使用装置の二次側にスチ―ムエゼクタと復水タンクと流体圧送式のポンプ手段とを順次接続したもので、蒸気使用装置で発生した高温液体としての復水をスチ―ムエゼクタで吸引して復水タンクへ溜め置き、この復水タンク内の復水をポンプ手段でボイラ―等の所定箇所へ圧送するものである。
【0003】
【発明が解決しようとする課題】
上記従来の液体圧送装置では、高温液体としての復水を溜め置く復水タンクで大量の再蒸発蒸気が発生し、タンク周辺にモヤモヤと立ち込めて環境条件を悪化させる問題があった。
【0004】
また、モヤモヤと立ち込める再蒸発蒸気を確実に凝縮させて環境の悪化を防止する程度に再蒸発蒸気を低減させるためには大量の冷却水を必要とする問題があった。
【0005】
従って本発明の技術的課題は、大量の冷却流体を要することなく、再蒸発蒸気を低減することのできる液体圧送装置を得ることである。
【0006】
【課題を解決するための手段】
上記の課題を解決するために講じた手段は、高温液体を容器に溜めて所定箇所へ圧送するものにおいて、高温液体を溜め置く高温液体容器に少なくとも2種類の流体を混合する混合器を取り付け、当該混合器がノズルを内蔵したエゼクタで形成され、当該ノズルに圧縮空気供給管を接続し、エゼクタの吸引口に冷却流体供給管を接続して、混合器の出口を高温液体容器の内部と連通すると共に、高温液体容器に管を介して液体圧送手段を接続したものである。
【0007】
【発明の実施の形態】
高温液体容器に取り付けた混合器に圧縮空気供給管と冷却流体供給管を接続したことにより、混合器でこれらの圧縮空気と冷却流体が混合されて、出口から高温液体容器の内部へ供給される。この場合、高温液体容器内へ至る圧縮空気は供給前の高圧状態から容器内の低圧状態まで圧力が低くなって断熱膨脹をする。この断熱膨脹により混合された冷却流体は熱を奪われて更に低温状態となり、高温液体容器内の再蒸発蒸気を急速に冷却し凝縮させることができる。
【0008】
圧縮空気が断熱膨脹して冷却流体を冷却する割合だけ蒸気の凝縮が進むこととなり、只単に冷却流体だけを供給して再蒸発蒸気を凝縮する場合と比較して、より少ない冷却流体でもって蒸気を確実に凝縮させることができ、モヤモヤと立ち込める再蒸発蒸気を低減することができる。
【0009】
圧縮空気と冷却流体を混合する混合器としては、例えば、ノズルを内蔵したエゼクタを用いることができる。即ち、ノズルに圧縮空気供給管を接続して、エゼクタの吸引口に冷却流体供給管を接続すると共に、エゼクタの出口を高温液体容器の内部と連通することにより、ノズルを通過する圧縮空気は冷却流体を吸引しつつ断熱膨脹をして高温液体容器へ供給され、容器内の再蒸発蒸気を凝縮させてモヤモヤを低減することができる。
【0010】
【実施例】
図1において、高温液体容器1と、高温液体容器1に復水等の高温液体を供給する復水供給管2と、高温液体容器1に取り付けた混合器としてのエゼクタ3と、エゼクタ3に接続した圧縮空気供給管4と冷却流体供給管5、及び、液体圧送手段としてのポンプ手段6で液体圧送装置を構成する。
【0011】
圧縮空気供給管4は図示しない高圧圧縮空気の供給源と接続すると共に、バルブ7を介して混合器としてのエゼクタ3のノズル部8と接続する。ノズル部8の内部には絞り部を内蔵すると共に、その外周部に吸引口9を設ける。吸引口9にはバルブ10を介して冷却流体供給管5を接続する。
【0012】
ノズル部8の下方にディフュ―ザ部11を設けて、高温液体容器1の上部開口部12に取り付ける。ディフュ―ザ部11の下部に、圧縮空気又は圧縮空気と冷却流体との混合流体をディフュ―ザ部11下方全周に噴射する噴射口13,14を取り付ける。この噴射口13,14から噴射される圧縮空気又は混合流体は、高温液体容器1内の再蒸発蒸気を開口部12から外部に排出しないようにすると共に、再蒸発蒸気をディフュ―ザ部11下方に集めて凝縮を促進するためのものである。ディフュ―ザ部11の下方で高温液体容器1内の上方には、圧縮空気と冷却流体の混合流体を高温液体容器1内のほぼ全体にわたって分散する分散板15を取り付ける。分散板15は略円錐形状で複数の連通孔16を設けたものである。
【0013】
復水供給管2はスチ―ムトラップ17を介して図示しない蒸気使用装置の出口側や再蒸発タンク等と接続して高温液体としての復水を高温液体容器1内へ供給する。高温液体容器1内に至った復水は容器1内で再蒸発する。
【0014】
高温液体容器1の下端には、凝縮した再蒸発蒸気と冷却流体を液体圧送手段としてのポンプ手段6へ流下させるための管18を、バルブ19と逆止弁20を介して接続する。逆止弁20は、高温液体容器1からポンプ手段6への流体の流下のみを許容し、その反対の流体の通過は阻止するものである。
【0015】
ポンプ手段6は、管18から液体が流下すると共に、同じく逆止弁21を設けた管22から液体を所定箇所へ圧送するものであり、管22は途中で分岐して冷却流体供給管5と接続する。ポンプ手段6には、バルブ23を介して高圧の圧送用流体を供給する高圧圧送流体管24を接続すると共に、圧送終了後の高圧圧送流体を外部に排出する排出管25をバルブ26を介して接続する。高圧圧送流体管24には、圧縮空気供給管4を分岐して接続することもできる。
【0016】
高温液体容器1から逆止弁20を通ってポンプ手段6内へ流下した液体が所定の液位に達すると、内部に設けた液位検出機構が働いてポンプ手段6内部と高圧圧送流体管24が連通すると共に、排出管25が遮断され、ポンプ手段6の内部に溜っていた液体は高圧圧送流体管24からの流体により、逆止弁21を経て管22から所定の箇所へ圧送されるものである。
【0017】
高温液体容器1内で発生する再蒸発蒸気を低減させる場合は、混合器としてのエゼクタ3で圧縮空気と冷却流体を混合させ高温液体容器1内へ供給することにより、再蒸発蒸気を凝縮させてモヤモヤを低減する。即ち、圧縮空気供給管4から供給される圧縮空気は、エゼクタ3のノズル部8で絞られて流速を増し吸引力を発生して吸引口9から冷却流体を吸引し混合されて高温液体容器1内へ供給される。この場合、圧縮空気の断熱膨脹によって冷却流体が冷却されながら圧縮空気と混合される。圧縮空気と冷却流体の混合流体は分散板15により高温液体容器1内全体に行き渡るように供給される。供給された混合流体は、高温液体容器1内に充満している再蒸発蒸気と熱交換し、再蒸発蒸気を凝縮させて下端の管18からポンプ手段6へ流下する。
【0018】
ポンプ手段6へ流下して溜った液体は前述した通り管22から所定箇所へ圧送される。本実施例においては、冷却流体供給管5と管22を接続したことにより、ポンプ手段6からの圧送液体の一部を、高温液体容器1へ供給する冷却流体として利用することができる。
【0019】
本実施例においては、高温液体容器1内に1台の混合器としてのエゼクタ3を配置した例を示したが、高温液体容器1の大きさや凝縮させる再蒸発蒸気の量に応じてエゼクタ3の数は1台に限られることはなく、2台以上の複数台を配置することもできる。
【0020】
【発明の効果】
本発明によれば、圧縮空気の断熱膨脹によって冷却流体を低温状態として高温液体容器内へ供給することができ、より少ない冷却流体でもって再蒸発蒸気を確実に低減させることができる。
【0021】
また、混合器からは冷却流体のみならず、断熱膨脹して低温化した圧縮空気も混合して供給されることとなり、更に確実に高温液体容器内の蒸気を凝縮させ低減することができる。
【図面の簡単な説明】
【図1】本発明の液体圧送装置の実施例を示す一部断面構成図である。
【符号の説明】
1 高温液体容器
2 復水供給管
3 エゼクタ
4 圧縮空気供給管
5 冷却流体供給管
6 ポンプ手段
8 ノズル部
9 吸引口
11 ディフュ―ザ
15 分散板
20,21 逆止弁
24 高圧圧送流体管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid pumping device that pumps a liquid such as fuel or water, and more particularly to a device that reduces re-evaporated vapor generated when pumping a high-temperature liquid. The liquid pumping device of the present invention is particularly suitable as a device that once collects condensate as condensed water of steam generated in the steam system and pumps this condensate, which is a high-temperature liquid, to a boiler or exhaust heat utilization device. is there.
[0002]
[Prior art]
As a conventional liquid pumping apparatus of this type, for example, there is one disclosed in Japanese Patent Laid-Open No. 7-139705. In this system, a steam ejector, a condensate tank, and a fluid pressure-feed pump means are connected in sequence to the secondary side of the steam using device. The steam ejector condensates the high-temperature liquid generated in the steam using device. The water is sucked and stored in a condensate tank, and the condensate in the condensate tank is pumped to a predetermined place such as a boiler by a pump means.
[0003]
[Problems to be solved by the invention]
In the conventional liquid pumping device, there is a problem that a large amount of re-evaporated vapor is generated in a condensate tank that stores condensate as a high-temperature liquid, and the environmental conditions deteriorate due to trapping in the vicinity of the tank.
[0004]
In addition, there has been a problem that a large amount of cooling water is required to reduce the re-evaporated vapor to such an extent that the re-evaporated vapor that can be trapped with the water is reliably condensed and the deterioration of the environment is prevented.
[0005]
Therefore, the technical problem of the present invention is to obtain a liquid pumping device that can reduce re-evaporated vapor without requiring a large amount of cooling fluid.
[0006]
[Means for Solving the Problems]
The means taken in order to solve the above-mentioned problem is that a high-temperature liquid is stored in a container and pumped to a predetermined location, and a mixer for mixing at least two kinds of fluids is attached to a high-temperature liquid container that stores the high-temperature liquid. The mixer is formed of an ejector with a built-in nozzle, a compressed air supply pipe is connected to the nozzle , a cooling fluid supply pipe is connected to the suction port of the ejector , and the outlet of the mixer communicates with the inside of the high-temperature liquid container. At the same time, a liquid pumping means is connected to the high temperature liquid container via a pipe .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
By connecting the compressed air supply pipe and the cooling fluid supply pipe to the mixer attached to the high temperature liquid container, the compressed air and the cooling fluid are mixed in the mixer and supplied from the outlet to the inside of the high temperature liquid container. . In this case, the compressed air reaching the high temperature liquid container is adiabatically expanded as the pressure decreases from the high pressure state before supply to the low pressure state in the container. The cooling fluid mixed by this adiabatic expansion is deprived of heat and becomes a low temperature state, and the re-evaporated vapor in the high temperature liquid container can be rapidly cooled and condensed.
[0008]
Vapor condensation progresses by the rate at which the compressed air adiabatically expands and cools the cooling fluid. Compared to the case where only the cooling fluid is supplied and the re-evaporated vapor is condensed, the vapor is reduced with less cooling fluid. Can be reliably condensed, and the re-vaporized steam that can be trapped in the dullness can be reduced.
[0009]
As the mixer for mixing the compressed air and the cooling fluid, for example, an ejector with a built-in nozzle can be used. That is, a compressed air supply pipe is connected to the nozzle, a cooling fluid supply pipe is connected to the suction port of the ejector, and the outlet of the ejector is communicated with the inside of the high-temperature liquid container so that the compressed air passing through the nozzle is cooled. Adiabatic expansion is performed while sucking the fluid, and the liquid is supplied to the high-temperature liquid container, and the re-evaporated vapor in the container is condensed to reduce smokyness.
[0010]
【Example】
In FIG. 1, a high temperature liquid container 1, a condensate supply pipe 2 for supplying a high temperature liquid such as condensate to the high temperature liquid container 1, an ejector 3 as a mixer attached to the high temperature liquid container 1, and an ejector 3 are connected. The compressed air supply pipe 4, the cooling fluid supply pipe 5, and the pump means 6 as the liquid pressure feeding means constitute a liquid pressure feeding device.
[0011]
The compressed air supply pipe 4 is connected to a high pressure compressed air supply source (not shown), and is connected to a nozzle portion 8 of the ejector 3 as a mixer via a valve 7. The nozzle portion 8 includes a throttle portion, and a suction port 9 is provided on the outer peripheral portion thereof. A cooling fluid supply pipe 5 is connected to the suction port 9 via a valve 10.
[0012]
A diffuser portion 11 is provided below the nozzle portion 8 and attached to the upper opening 12 of the high temperature liquid container 1. At the lower part of the diffuser part 11, there are attached injection ports 13 and 14 for injecting compressed air or a mixed fluid of compressed air and a cooling fluid to the entire lower periphery of the diffuser part 11. The compressed air or the mixed fluid ejected from the ejection ports 13 and 14 prevents the re-evaporated vapor in the high-temperature liquid container 1 from being discharged from the opening 12 to the outside, and the re-evaporated vapor is below the diffuser unit 11. It is for collecting and promoting condensation. A dispersion plate 15 that disperses the mixed fluid of compressed air and cooling fluid over almost the entire interior of the high-temperature liquid container 1 is attached below the diffuser portion 11 and above the high-temperature liquid container 1. The dispersion plate 15 has a substantially conical shape and is provided with a plurality of communication holes 16.
[0013]
The condensate supply pipe 2 is connected to an outlet side of a steam using device (not shown), a re-evaporation tank or the like via a steam trap 17 and supplies condensate as a high temperature liquid into the high temperature liquid container 1. The condensate that has reached the hot liquid container 1 re-evaporates in the container 1.
[0014]
A pipe 18 is connected to the lower end of the high-temperature liquid container 1 via a valve 19 and a check valve 20 for allowing the condensed reevaporated vapor and the cooling fluid to flow down to the pump means 6 as the liquid pumping means. The check valve 20 allows only the flow of fluid from the high-temperature liquid container 1 to the pump means 6 and blocks the passage of the opposite fluid.
[0015]
The pump means 6 flows down from the pipe 18 and also pumps the liquid from a pipe 22 provided with a check valve 21 to a predetermined location. The pipe 22 branches halfway and is connected to the cooling fluid supply pipe 5. Connecting. A high pressure pumping fluid pipe 24 for supplying a high pressure pumping fluid is connected to the pump means 6 via a valve 23, and a discharge pipe 25 for discharging the high pressure pumping fluid after pumping to the outside is connected via a valve 26. Connecting. The compressed air supply pipe 4 can be branched and connected to the high-pressure pumping fluid pipe 24.
[0016]
When the liquid flowing from the high-temperature liquid container 1 through the check valve 20 into the pump means 6 reaches a predetermined liquid level, the liquid level detection mechanism provided inside works to operate the inside of the pump means 6 and the high-pressure pumping fluid pipe 24. , The discharge pipe 25 is shut off, and the liquid accumulated in the pump means 6 is pumped from the pipe 22 to a predetermined position via the check valve 21 by the fluid from the high pressure pumping fluid pipe 24. It is.
[0017]
When reducing the re-evaporated vapor generated in the high-temperature liquid container 1, the re-evaporated vapor is condensed by mixing the compressed air and the cooling fluid with the ejector 3 serving as a mixer and supplying the mixture into the high-temperature liquid container 1. Reduces dullness. That is, the compressed air supplied from the compressed air supply pipe 4 is squeezed by the nozzle portion 8 of the ejector 3 to increase the flow velocity and generate a suction force, and the cooling fluid is sucked and mixed from the suction port 9 to be mixed. Supplied in. In this case, the cooling fluid is cooled and mixed with the compressed air by the adiabatic expansion of the compressed air. A mixed fluid of compressed air and cooling fluid is supplied by the dispersion plate 15 so as to spread throughout the high-temperature liquid container 1. The supplied mixed fluid exchanges heat with the re-evaporated vapor filled in the high-temperature liquid container 1, condenses the re-evaporated vapor and flows down from the lower end pipe 18 to the pump means 6.
[0018]
The liquid accumulated by flowing down to the pump means 6 is pumped from the pipe 22 to a predetermined location as described above. In the present embodiment, by connecting the cooling fluid supply pipe 5 and the pipe 22, a part of the pumped liquid from the pump means 6 can be used as the cooling fluid supplied to the high temperature liquid container 1.
[0019]
In the present embodiment, an example in which the ejector 3 as one mixer is disposed in the high-temperature liquid container 1 has been shown. However, the ejector 3 of the ejector 3 depends on the size of the high-temperature liquid container 1 and the amount of reevaporated vapor to be condensed. The number is not limited to one, and a plurality of two or more can be arranged.
[0020]
【The invention's effect】
According to the present invention, the cooling fluid can be supplied into the high-temperature liquid container in a low temperature state by adiabatic expansion of the compressed air, and the re-evaporated vapor can be reliably reduced with less cooling fluid.
[0021]
Further, not only the cooling fluid but also the compressed air which has been adiabatically expanded and lowered in temperature are mixed and supplied from the mixer, and the vapor in the high-temperature liquid container can be further condensed and reduced.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional configuration diagram showing an embodiment of a liquid pumping apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature liquid container 2 Condensate supply pipe 3 Ejector 4 Compressed air supply pipe 5 Cooling fluid supply pipe 6 Pump means 8 Nozzle part 9 Suction port 11 Diffuser 15 Dispersion plate 20, 21 Check valve 24 High pressure pumping fluid pipe

Claims (1)

高温液体を容器に溜めて所定箇所へ圧送するものにおいて、高温液体を溜め置く高温液体容器に少なくとも2種類の流体を混合する混合器を取り付け、当該混合器がノズルを内蔵したエゼクタで形成され、当該ノズルに圧縮空気供給管を接続し、エゼクタの吸引口に冷却流体供給管を接続して、混合器の出口を高温液体容器の内部と連通すると共に、高温液体容器に管を介して液体圧送手段を接続したことを特徴とする液体圧送装置。In a high temperature liquid that is stored in a container and pumped to a predetermined location, a mixer that mixes at least two kinds of fluids is attached to a high temperature liquid container that stores the high temperature liquid, and the mixer is formed by an ejector with a built-in nozzle. A compressed air supply pipe is connected to the nozzle, a cooling fluid supply pipe is connected to the suction port of the ejector , and the outlet of the mixer communicates with the inside of the high-temperature liquid container. A liquid pumping apparatus characterized by connecting means .
JP04740897A 1997-02-14 1997-02-14 Liquid pumping device Expired - Fee Related JP3895420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04740897A JP3895420B2 (en) 1997-02-14 1997-02-14 Liquid pumping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04740897A JP3895420B2 (en) 1997-02-14 1997-02-14 Liquid pumping device

Publications (2)

Publication Number Publication Date
JPH10227406A JPH10227406A (en) 1998-08-25
JP3895420B2 true JP3895420B2 (en) 2007-03-22

Family

ID=12774309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04740897A Expired - Fee Related JP3895420B2 (en) 1997-02-14 1997-02-14 Liquid pumping device

Country Status (1)

Country Link
JP (1) JP3895420B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908463B2 (en) * 2008-07-16 2012-04-04 株式会社テイエルブイ Liquid pumping device
JP2012002405A (en) * 2010-06-15 2012-01-05 Tlv Co Ltd Decompressed steam heating device

Also Published As

Publication number Publication date
JPH10227406A (en) 1998-08-25

Similar Documents

Publication Publication Date Title
US5611673A (en) Vacuum jet pump for recovering a mixed fluid of gas and liquid condensates from steam-using apparatus
JP4372312B2 (en) Heat exchange type waste steam recovery system
JP3895420B2 (en) Liquid pumping device
JP2004278871A (en) Condensate re-evaporation device
JP4908074B2 (en) Steam waste heat recovery and decompression equipment
JP3895423B2 (en) Liquid pumping device
JP2004076987A (en) Steam-heating device
JPH10227407A (en) Liquid forced feeding device
JP4594270B2 (en) Heat exchanger
JP4949770B2 (en) Condensate recovery device
JP3790001B2 (en) Heat exchanger
JPH10253010A (en) Force feed device for liquid
JP5295726B2 (en) Ejector device
JP5295725B2 (en) Ejector device
JP3917408B2 (en) Steam desuperheater
JP4361203B2 (en) Steam heating device
US5447193A (en) Apparatus for injecting a volume of liquid into a liquid-conducting system
JP4908075B2 (en) Steam ejector device
CN111140554A (en) Device integrating steam injection, air exhaust and steam seal cooling functions
JP5047426B2 (en) Steam heating device
WO2004047924A1 (en) Deaeration apparatus for deaerating water used during ultrasonic focusing tumour treatment
KR200376056Y1 (en) Forced circulation evaporator
JPH10253009A (en) Force feed device for liquid
JP2004278874A (en) Condensate re-evaporation device
JP4409715B2 (en) Steam heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees