JP3895175B2 - Dielectric resin integrated antenna - Google Patents

Dielectric resin integrated antenna Download PDF

Info

Publication number
JP3895175B2
JP3895175B2 JP2001401046A JP2001401046A JP3895175B2 JP 3895175 B2 JP3895175 B2 JP 3895175B2 JP 2001401046 A JP2001401046 A JP 2001401046A JP 2001401046 A JP2001401046 A JP 2001401046A JP 3895175 B2 JP3895175 B2 JP 3895175B2
Authority
JP
Japan
Prior art keywords
dielectric
antenna
antenna portion
frequency band
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001401046A
Other languages
Japanese (ja)
Other versions
JP2003198230A (en
Inventor
浩一 岡田
文規 里路
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to JP2001401046A priority Critical patent/JP3895175B2/en
Publication of JP2003198230A publication Critical patent/JP2003198230A/en
Application granted granted Critical
Publication of JP3895175B2 publication Critical patent/JP3895175B2/en
Application status is Expired - Fee Related legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
この発明は、自動車等に搭載されてラジオ、テレビ、カーナビゲーター、電話、ETC、衝突防止用の距離センサ、CS(衛星通信)、等の各種目的の通信等をまとめて行う小型の誘電性樹脂統合アンテナに関する。 This invention is mounted on to a radio in an automobile or the like, a television, a car navigator, telephone, ETC, a distance sensor for collision avoidance, CS (satellite communications), small dielectric resin as collective communication of various purposes etc. on the integrated antenna.
【0002】 [0002]
【従来の技術と発明が解決しようとする課題】 A conventional technology and to be Solved by the Invention
自動車では、ラジオ、テレビの他、GPS(Global Positioning System)を用いたカーナビゲーションシステムや、自動料金収受システム(ETC)の端末、携帯電話、車間距離センサなど、多くの無線通信機器が搭載されている。 In the automobile, radio, in addition to TV, and car navigation system using a GPS (Global Positioning System), the terminal of the electronic toll collection system (ETC), a mobile phone, such as inter-vehicle distance sensor, a number of wireless communication devices are mounted there. これらの無線通信機器は、使用周波数帯がそれぞれ異なり、一つのアンテナで兼用できず、各々が単独のアンテナを有している。 These wireless communication devices, different use frequency bands, respectively, can not be combined in a single antenna, each having a single antenna. これらの通信機器のアンテナは、各機器において占める大きさの割合が大きく、車載通信機器類の小型化の妨げとなっている。 Antenna of these communication devices, the ratio of the size occupied in each device is large and hinders downsizing of the vehicle-mounted communication equipment.
【0003】 [0003]
そこで、本発明者は、これらの通信機器のアンテナを一体にまとめた統合アンテナを種々試みた。 Accordingly, the present inventors have variously attempted integrated antenna summarized integrated antennas of these communication devices. 統合アンテナを効果的なものとするには、個々のアンテナ部分の小型化と共に、一体化の容易性が求められる。 To integrate the antenna with effective, along with miniaturization of the individual antenna portions, ease of integration is required. 小型アンテナとしては、フィルムアンテナやパッチアンテナ等がある。 The small antenna, there is a film antenna or a patch antenna or the like. しかし、従来のこれらのアンテナは、いずれも材質の面から、小型化と一体化の両方の条件を満たすことが難しい。 However, these conventional antennas are both in terms of material, it is difficult satisfy both miniaturization and integration.
例えば、統合する個々のアンテナとして、パッチアンテナを考えたが、一般のパッチアンテナはセラミックスを誘電体として用いるため、一体化が難しい。 For example, the individual antennas to integrate, but considered a patch antenna, generally a patch antenna for using ceramic as a dielectric integrated is difficult. 誘電体としてセラミックスに代えて合成樹脂を用いると、一体化は容易であるが、誘電率が低いため、アンテナが大型化する。 If instead the ceramic using a synthetic resin as a dielectric integrated together is easy, since the dielectric constant is low, the antenna becomes large. また、シート状の平面アンテナを積層して用いることを考えたが、誘電体が合成樹脂であるため、小型化が難しい。 Although considered to be used by laminating a sheet-like planar antenna, since the dielectric body is a synthetic resin, it is difficult miniaturization.
【0004】 [0004]
合成樹脂の誘電性を高めた誘電性樹脂材料としては、高誘電率の無機繊維を配合したものが種々提案されている。 The dielectric resin material with improved dielectric synthetic resin, obtained by blending the inorganic fibers having a high dielectric constant have been proposed. しかし、繊維は異方性があるため、これを混入した場合、表面精度等の精度が出難く、また誘電特性についても異方性が生じる。 However, the fiber because of the anisotropy, when mixed with this, hardly out accuracy such as surface accuracy and anisotropy occurs also dielectric properties. 特に、薄いフィルムとした場合に、異方性の影響が大きく、位相のずれを招く恐れが生じるなど、アンテナとしての性能に影響が考えられる。 In particular, when a thin film, greatly affects the anisotropy, etc. may result in a phase shift occurs, is considered affect the performance of the antenna. 特に高周波用のアンテナでは、波長が短いことから、寸法精度等の要求が厳しく、このため、誘電体材料として繊維を混入したものでは、性能確保が難しい。 In particular, in the antenna for high frequency, because the wavelength is short, strict requirements, such as dimensional accuracy, and therefore, is obtained by mixing the fibers as the dielectric material, it is difficult ensure performance. 今日、自動車に搭載される通信機器は、高周波化の傾向にある。 Today, communication equipment mounted in a vehicle, there is a tendency of high frequency. また、無機繊維は、材料として高価であり、これを用いるとアンテナのコストが高くなる。 The inorganic fibers are expensive as the material, the cost of the antenna becomes high when using this.
【0005】 [0005]
【課題を解決するための手段】 In order to solve the problems]
この発明の誘電性樹脂統合アンテナは、互いに異なる周波数帯に対応した複数の周波数帯別アンテナ部分を有し、これら各周波数帯別アンテナ部分は誘電性樹脂複合材の誘電体と導体とで構成されて互いに一体に統合され、上記各周波数帯別アンテナ部分の上記誘電性樹脂複合材が、合成樹脂に誘電体無機粉末の充填材を配合したものであり、上記誘電性樹脂複合材は、誘電体無機粉末の充填材の誘電率と該充填材の配合量との関係、および、誘電体無機粉末の充填材の誘電正接と該充填材の配合量との関係に基づき、誘電率20以上でかつ誘電正接0.005以下の誘電セラミックス粉である充填材を10〜40容量%配合し、 Dielectric resin integrated antenna of the invention has a plurality of frequency bands by the antenna portions corresponding to different frequency bands, each of these frequency bands by the antenna portion is composed of a dielectric and a conductor of the dielectric resin composite mutually integrated together Te, the dielectric resin composite material of the respective frequency bands by the antenna portion state, and are not blended with the filler dielectric inorganic powder synthetic resin, the dielectric resin composite material has a dielectric in relation to the dielectric constant and the amount of the filler of the filler body inorganic powder, and, based on the relationship between dielectric loss tangent and blended amount of the filler of the filler of the dielectric inorganic powder, a dielectric constant of 20 or more and the filler is a dielectric loss tangent 0.005 following dielectric ceramic powder and 10 to 40 volume% formulation,
上記誘電セラミックス粉の充填材は、所望の誘電特性を得るため未完全焼結体であり、上記充填材の平均粒径は、達成すべき誘電正接に基づき0.1μm〜10μmの範囲である Filler of the dielectric ceramic powder is incomplete sintered to obtain the desired dielectric properties, the average particle diameter of the filler is in the range of 0.1μm~10μm based on dissipation factor to be achieved.
この構成によると、誘電体として誘電性樹脂複合材を用いるため、複数のアンテナ部分の一体化が容易に行え、かつ合成樹脂の単独に比べて誘電率が高く、個々のアンテナ部分の小型化が図れる。 According to this configuration, since the use of dielectric resin composite material as the dielectric, the integration of a plurality of antenna portion is easily performed, and higher dielectric constant than the single synthetic resin, the miniaturization of the individual antenna portions achieved. このように、個々のアンテナ部分の小型化と共に、複数のアンテナ部分の一体化により、統合アンテナの全体の小型化が図れる。 Thus, the size of the individual antenna portions, by integration of a plurality of antenna portion, thereby the overall size of the integrated antenna. また、充填材は、粉末を用いるため、繊維を用いる場合と異なり、異方性が生じ難く、表面精度,寸法精度の確保が容易で、誘電特性の異方性も生じ難い。 Also, the filler for use powder, unlike the case of using the fiber, anisotropic hardly occurs, surface precision, is easy to ensure the dimensional accuracy, even less likely to occur anisotropic dielectric properties. そのため、誘電特性の異方性等によって位相のずれ等を招くことのない優れた特性のアンテナとできる。 Therefore, it an antenna having excellent characteristics without causing a shift of phase equivalence by anisotropic such dielectric properties. このように高性能化も可能になる。 In this way it becomes possible performance. また、粉末は繊維に比べて低コストであるため、アンテナのコストも低減できる。 Also, the powder because it is inexpensive compared to the fibers, can be reduced the cost of the antenna.
充填材は、アンテナの小型化のためには、なるべく誘電率が高く、かつ無効成分となる誘電正接(Tanδ)については小さいほど良い。 Filler, in order to reduce the size of the antenna is as high as possible dielectric constant, and better less about reactive component to become the dielectric loss tangent (Tan?). 誘電性樹脂複合材は、誘電体無機粉末の充填材の誘電率と該充填材の配合量との関係、および、誘電体無機粉末の充填材の誘電正接と該充填材の配合量との関係に基づき、誘電率20以上でかつ誘電正接0.005以下の誘電セラミックス粉である充填材を10〜40容量%配合している。 Dielectric resin composite material, the relationship between dielectric constant and the amount of the filler of the filler of the dielectric inorganic powder, and the relationship between the dielectric loss tangent and blended amount of the filler of the filler of the dielectric inorganic powder the basis, and the filler material is a dielectric constant of 20 or more and a dielectric loss tangent 0.005 following dielectric ceramic powder and 10 to 40 volume% formulation.
上記誘電率が20以上でかつ誘電正接が0.005以下という値は、誘電セラミックス粉として一般に得られる中で、優れた値である。 The dielectric constant value of and dielectric loss tangent at 20 or higher than 0.005, among which is obtained generally as a dielectric ceramic powder is an excellent value. 充填材の配合比率は、多いほど誘電性樹脂複合材の誘電率を高くできるが、多すぎると成形性が悪くなる。 Mixing ratio of the filler is enough to increase the dielectric constant of the dielectric resin composite material often, too moldability is deteriorated. 上記の誘電率および誘電正接を持つ誘電セラミックス粉を充填材として用い、上記配合量とすると、誘電性樹脂複合材として、例えば誘電率が5〜15程度で、誘電正接が0.0008〜0.003程度のものができる。 Additional dielectric constant and using a dielectric ceramic powder having a dielectric loss tangent as a filler, if the above amount, as a dielectric resin composite material, for example, a dielectric constant of about 5 to 15, the dielectric loss tangent 0.0008 to 0. it is of about 003. この誘電率および誘電正接の値は、フィルムアンテナとして優れたものとなる。 The value of the dielectric constant and dielectric loss tangent, and excellent as a film antenna. また、充填材の配合量が40%以下であると、誘電性樹脂複合材の成形性にも優れる。 Further, the amount of the filler is 40% or less, excellent in formability of the dielectric resin composite material.
上記誘電セラミックス粉の充填材は、未完全焼結体としている。 Filler of the dielectric ceramic powder is in the incomplete sintering body. 高誘電セラミックスは、焼結して初めて、優れた誘電特性が得られる。 High dielectric ceramics, only after sintering, resulting excellent dielectric properties. しかし、完全な焼結体としなくても、仮焼と言われるように、実際の焼結温度よりも少し低い温度で、完全に固まらないところで一旦焼結したものであっても、つまり未完全焼結体であっても、優れた誘電特性を得ることができる。 However, even without a complete sintered body, as is said to be calcined, the actual temperature slightly lower than the sintering temperature, even those that were once sintered in place that does not harden completely, that is unfinished burned down even sintered body, it is possible to obtain excellent dielectric properties. 上記誘電セラミックス粉の充填材は、所望の誘電特性を得るため未完全焼結体であり、上記充填材の平均粒径は、達成すべき誘電正接に基づき0.1μm〜10μmの範囲であることが好ましい。 Filler of the dielectric ceramic powder is incomplete sintered to obtain the desired dielectric properties, the average particle diameter of the filler is in the range of 0.1μm~10μm based on dissipation factor to be achieved preferable. 実験によると、同種材料では粒径が小さい方が、誘電正接が小さくて良好な傾向が得られる。 Experiments have better particle size is small in a homogeneous material, a good tendency is obtained with a small dielectric loss tangent.
【0006】 [0006]
【課題を解決するための手段】 In order to solve the problems]
この発明の誘電性樹脂統合アンテナは、互いに異なる周波数帯に対応した複数の周波数帯別アンテナ部分を有し、これら各周波数帯別アンテナ部分は誘電性樹脂複合材の誘電体と導体とで構成されて互いに一体に統合され、上記各周波数帯別アンテナ部分の上記誘電性樹脂複合材が、合成樹脂に誘電体無機粉末の充填材を配合したものである。 Dielectric resin integrated antenna of the invention has a plurality of frequency bands by the antenna portions corresponding to different frequency bands, each of these frequency bands by the antenna portion is composed of a dielectric and a conductor of the dielectric resin composite mutually integrated together Te, the dielectric resin composite material of the respective frequency bands by the antenna portion is obtained by mixing the filler of a dielectric inorganic powder plastic.
この構成によると、誘電体として誘電性樹脂複合材を用いるため、複数のアンテナ部分の一体化が容易に行え、かつ合成樹脂の単独に比べて誘電率が高く、個々のアンテナ部分の小型化が図れる。 According to this configuration, since the use of dielectric resin composite material as the dielectric, the integration of a plurality of antenna portion is easily performed, and higher dielectric constant than the single synthetic resin, the miniaturization of the individual antenna portions achieved. このように、個々のアンテナ部分の小型化と共に、複数のアンテナ部分の一体化により、統合アンテナの全体の小型化が図れる。 Thus, the size of the individual antenna portions, by integration of a plurality of antenna portion, thereby the overall size of the integrated antenna. また、充填材は、粉末を用いるため、繊維を用いる場合と異なり、異方性が生じ難く、表面精度,寸法精度の確保が容易で、誘電特性の異方性も生じ難い。 Also, the filler for use powder, unlike the case of using the fiber, anisotropic hardly occurs, surface precision, is easy to ensure the dimensional accuracy, even less likely to occur anisotropic dielectric properties. そのため、誘電特性の異方性等によって位相のずれ等を招くことのない優れた特性のアンテナとできる。 Therefore, it an antenna having excellent characteristics without causing a shift of phase equivalence by anisotropic such dielectric properties. このように高性能化も可能になる。 In this way it becomes possible performance. また、粉末は繊維に比べて低コストであるため、アンテナのコストも低減できる。 Also, the powder because it is inexpensive compared to the fibers, can be reduced the cost of the antenna.
【0007】 [0007]
この発明において、上記各周波数帯別アンテナ部分を、板状またはシート状とし、これら各周波数帯別アンテナ部分を積層状態に統合しても良い。 In the present invention, the respective frequency bands by the antenna portion, and a plate-like or sheet-like, may be integrated each of these frequency bands by the antenna portion in the stacked state. 各周波数帯別アンテナ部分は、誘電性樹脂複合材の誘電率が互いに異なるものとする。 Each frequency band by the antenna portion shall dielectric constant of the dielectric resin composite material are different from each other.
このように積層することで、複数のアンテナ部分の一体化が容易に行える。 By stacking in this way, it allows the easy integration of multiple antenna portion. また、個々の周波数帯別アンテナ部分は、誘電率が互いに異なるものとするため、周波数帯が大きく異なっていても、各周波数帯別アンテナパターンの寸法差を小さくできる。 Also, the individual frequency band by the antenna portion, to shall dielectric constant different from each other, even when the frequency band is very different, it is possible to reduce the size difference of each frequency band by the antenna pattern.
【0008】 [0008]
この発明において、上記各周波数帯別アンテナ部分がパッチアンテナであっても良い。 In the present invention, each of the frequency bands by the antenna portion may be a patch antenna. この場合に、各周波数帯別アンテナ部分は誘電性樹脂複合材からなる誘電体の誘電率が互いに異なるものとする。 In this case, each frequency band by the antenna portion shall dielectric constant of the dielectric comprising a dielectric resin composite material are different from each other. これら各周波数帯別アンテナ部分は、例えば平面的に並ぶように統合する。 Each of these frequency bands by the antenna portion is integrated as for example arranged in a plane.
周波数帯別アンテナ部分をパッチアンテナとし、平面的に並べると、各周波数帯別アンテナ部分の一体化が容易に行える。 The frequency band by the antenna portion and the patch antenna, Arranging in plan, facilitates integration of each frequency band by the antenna portion. 例えば2色成形や3色成形等のように、同じ金型内で射出成形する方法や、個々の周波数帯別アンテナ部分を熱融着や超音波融着等で溶融接着する方法で、容易に一体化が行える。 For example, as such as a two-color molding or three-color molding, a method of injection molding in the same mold, a method of melt bonding the individual frequency band by the antenna portion by thermal fusion or ultrasonic fusion or the like, easily integration can be performed. 各周波数帯別アンテナ部分は、誘電性樹脂複合材の誘電率が互いに異なるものとするため、いずれの周波数帯のアンテナ部分も互いに同じ厚みに、かつアンテナパターンの寸法差を小さくでき、一体の平面的な統合アンテナとできる。 Each frequency band by the antenna portion, to shall dielectric constant of the dielectric resin composite material are different from each other, the antenna portion is also the same thickness from each other in any frequency band, and can reduce the size difference of the antenna pattern, the plane of the integral can the integration antenna.
【0009】 [0009]
各周波数帯別アンテナ部分をパッチアンテナとする場合に、各周波数帯別アンテナ部分の誘電性樹脂複合材からなる誘電体の厚さが互いに異なるものとし、これら各周波数帯別アンテナ部分が平面的に並ぶように統合しても良い。 When each frequency band by the antenna portion and the patch antenna, the thickness of the dielectric resin made of a composite material dielectric different from the one another in each frequency band by the antenna portion and the plane of these respective frequency bands by the antenna portion it may be integrated so as to be aligned.
このように厚さを変えると、同じ誘電率の誘電性樹脂複合材を用いることができて、製造が容易であり、より低コスト化が図れる。 With such change the thickness, and can be used a dielectric resin composite material of the same dielectric constant, is easy to manufacture, and more cost reduction can be achieved.
【0010】 [0010]
この発明の上記各構成の場合に、上記合成樹脂は熱可塑性樹脂とし、上記誘電性樹脂複合材は、射出形成、押し出し成形、または圧縮成形等の溶融成形が可能なものとすることが好ましい。 In the case of the above-mentioned respective structures of the present invention, the synthetic resin is a thermoplastic resin, the dielectric resin composite, injection molding, it is preferable that the one capable of melt molding such as extrusion molding, or compression molding.
このような材質の誘電性樹脂複合材を用いることにより、溶融成形により、誘電性樹脂統合アンテナを希望の形状に簡単に成形することができる。 By using a dielectric resin composite material of such a material, by melt molding, it can be easily molded into the desired shape of the dielectric resin integrated antenna.
【0013】 [0013]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
この発明の第1の実施形態を図1と共に説明する。 The first embodiment of the present invention will be described in conjunction with FIG. この誘電性樹脂統合アンテナ10は、互いに異なる周波数帯に対応した複数の周波数帯別アンテナ部分1〜3を有する。 The dielectric resin integrated antenna 10 includes a plurality of frequency bands by the antenna portion 1-3 corresponding to different frequency bands. これら各周波数帯別アンテナ部分1〜3は、誘電性樹脂複合材の誘電体部5と導体6とで構成される。 Each of these frequency bands by the antenna portion 1-3 is composed of a dielectric part 5 and the conductor 6 of the dielectric resin composite material. 各周波数帯別アンテナ部分1〜3は、板状またはシート状等の平面状であり、互いに積層状態に統合される。 Each frequency band by the antenna portion 1-3 is a planar, such as a plate or sheet, is integrated into the stacked state to each other. この統合は、例えば熱融着や超音波融着等の溶融接着により、誘電体部5が相互に一体化するように行われる。 This integration, for example, by melt bonding such as heat sealing or ultrasonic welding, dielectric part 5 is performed so as to integrate with each other. 各周波数帯別アンテナ部分1〜3がフィルム状のものである場合は、ラミネート加工等により一体に統合しても良い。 If each of the frequency bands by the antenna portion 1 to 3 is of film form it may be integrated together by lamination or the like.
各周波数帯別アンテナ部分1〜3は、平面状の誘電体5の表面に導体6が所定のアンテナパターンで形成されたものである。 Each frequency band by the antenna portion 1 to 3, in which the conductor 6 is formed in a predetermined antenna pattern on a surface of the planar dielectric 5. 導体6は、例えば印刷または蒸着等により被着された箔状のものである。 Conductor 6 is of the deposited foil shape by, for example, printing or vapor deposition. これら各周波数帯別アンテナ部分1〜3の導体6のアンテナパターンは、それぞれのアンテナ部分1〜3の周波数f1〜f3に応じたパターンとされている。 These antenna patterns of conductor 6 of each frequency band by the antenna portion 1 to 3, there is a pattern corresponding to each antenna portion 1-3 of the frequency f1-f3. また、各周波数帯別アンテナ部分1〜3の導体6は、互いに重なり部分を略生じないパターンとされている。 The conductor 6 of each frequency band by the antenna portion 1-3 is substantially caused not pattern portions overlap each other.
【0014】 [0014]
各周波数帯別アンテナ部分1〜3の誘電体5の誘電性樹脂複合材は、合成樹脂に誘電体無機粉末の充填材を配合したものであり、充填材として粉末が用いられている。 Dielectric resin composite material of the dielectric 5 of each frequency band by the antenna portion 1-3, the synthetic resin is obtained by blending a filler dielectric inorganic powder, powder is used as filler. 誘電性樹脂複合材の具体的な材質例は、各図の実施形態の説明の後に述べる。 Specific material examples of the dielectric resin composite material is described after the description of the embodiment of the FIG. これらの周波数帯別アンテナ部分1〜3の誘電体5は、誘電性樹脂複合材の誘電率が互いに異なるものとされる。 The dielectric of these frequency bands by the antenna portion 1-3 5, the dielectric constant of the dielectric resin composite material is different from one another. この場合に、各周波数帯別アンテナ部分1〜3の厚みの差が少なくなるように、各周波数帯別アンテナ部分1〜3の誘電体5の誘電率ε1〜ε3が設定されている。 In this case, as the difference in thickness of each frequency band by the antenna portion 1 to 3 is reduced, the dielectric constant ε1~ε3 dielectric 5 of each frequency band by the antenna portion 1 to 3 are set. この実施形態では、各周波数帯別アンテナ部分1〜3の周波数f1〜f3は桁が異なり、f1≪f2≪f3であって、誘電率ε1〜ε3は、ε1≫ε2≫ε3となっている。 In this embodiment, the frequency f1~f3 of each frequency band by the antenna portion 1 to 3 different digits, a F1«f2«f3, dielectric constant ε1~ε3 has a Ipushiron1»ipushiron2»ipushiron3. 誘電率の違いは、誘電性樹脂複合材に配合する誘電体無機粉末の充填材の配合割合などで調整される。 The dielectric constant difference is adjusted such the proportions of the filler of the dielectric inorganic powder mixed into the dielectric resin composite material.
【0015】 [0015]
この構成の誘電性樹脂統合アンテナ10によると、誘電体5として誘電性樹脂複合材を用いたため、複数のアンテナ部分1〜3の一体化が容易に行える。 According to the dielectric resin integrated antenna 10 of this configuration, using a dielectric resin composite material as the dielectric 5, it can be easily integration of multiple antenna portion 1-3. また合成樹脂の単独に比べて誘電率が高く、個々のアンテナ部分1〜3の小型化が図れる。 Further, compared to a single synthetic resin high dielectric constant and can be miniaturized individual antenna portion 1-3. このように、個々のアンテナ部分1〜3の小型化と共に、複数のアンテナ部分1〜3の一体化により、統合アンテナ10の全体の小型化が図れる。 Thus, the size of the individual antenna portions 1-3, by integration of a plurality of antenna portion 1 to 3, thereby the overall size of the integrated antenna 10. また、充填材は、粉末を用いるため、繊維を用いる場合と異なり、異方性が生じ難く、表面精度,寸法精度の確保が容易で、誘電特性の異方性も生じ難い。 Also, the filler for use powder, unlike the case of using the fiber, anisotropic hardly occurs, surface precision, is easy to ensure the dimensional accuracy, even less likely to occur anisotropic dielectric properties. そのため、誘電特性の異方性等によって位相のずれ等を招くことのない優れた特性のアンテナ10とできる。 Therefore, it an antenna 10 having excellent characteristics without causing a shift of phase equivalence by anisotropic such dielectric properties. また、粉末は繊維に比べて低コストであるため、アンテナ10のコストも低減できる。 Also, the powder because it is inexpensive as compared with the fibers, the cost of the antenna 10 can be reduced.
各周波数帯別アンテナ部分1〜3は、平面状として積層により一体化したため、一体化が容易に行える。 Each frequency band by the antenna portion 1 to 3, because of the integrated by laminating a planar, integral is easily performed. また、個々の周波数帯別アンテナ部分1〜3は、誘電率ε1〜ε3が互いに異なるものとしたため、周波数帯が大きく異なっていても、各周波数帯別アンテナ部分(パターン1〜3の寸法)の差を小さくできる。 Also, the individual frequency band by the antenna portion 1 to 3, because of the assumed that dielectric constant ε1~ε3 are different from each other, even when the frequency band is very different, for each frequency band by the antenna portion (the dimension of the pattern 1-3) the difference can be reduced.
【0016】 [0016]
図2,図3は、この発明の他の実施形態を示す。 2, FIG. 3 shows another embodiment of the present invention. この実施形態の誘電性樹脂統合アンテナ20は、各周波数帯別アンテナ部分21〜26がパッチアンテナであって、これら各周波数帯別アンテナ部分21〜26を平面的に並ぶように統合したものである。 Dielectric resin integrated antenna 20 of this embodiment, each frequency band by the antenna portion 21 to 26 is a patch antenna, it is the integration of each of these frequency bands by the antenna portion 21 to 26 so as to be aligned in a plane . 図示の例では、各周波数帯別アンテナ部分21〜26は、それぞれ矩形とされ、2列に配列されている。 In the illustrated example, each frequency band by the antenna portion 21 to 26 is respectively rectangular, are arranged in two rows. パッチアンテナからなる各周波数帯別アンテナ部分21〜26は、それぞれ誘電性樹脂複合材の誘電体27と、この誘電体27を挟んで表裏に設けた放射側および接地側の導体28,29とからなる。 Each frequency band by the antenna portion 21 to 26 comprising a patch antenna from each dielectric 27 of the dielectric resin composite material, the dielectric 27 interposed therebetween is provided on the front and rear radiation side and the ground side of the conductor 28, 29 Metropolitan Become. 誘電性樹脂複合材は、上記実施形態と同じく合成樹脂に誘電体無機粉末の充填材を配合したものである。 Dielectric resin composite material is obtained by blending a filler dielectric inorganic powder also synthetic resin with the above embodiment. 各導体28,29は、例えば銀または同等の金属箔または金属薄板が用いられる。 Each conductor 28 and 29, for example, silver or an equivalent of a metal foil or a metal sheet is used. 各導体28は、例えば図3に示すように、フープ材の利用によって、複数の導体28がリード線部28aと一体とつながった状態に打ち抜き形成される。 Each conductor 28, for example, as shown in FIG. 3, by use of the hoop material, a plurality of conductors 28 are punched in a state connected integral with the lead wire portion 28a.
各周波数帯別アンテナ部分21〜26は、誘電体27の誘電性樹脂複合材の誘電率が互いに異なるものとされている。 Each frequency band by the antenna portion 21 to 26, the dielectric constant of the dielectric resin composite material of the dielectric 27 are different from one another. この場合に、各周波数f1〜f6用の周波数帯別アンテナ部分21〜26は、その周波数f1〜f6に応じて、互いに厚みが一定となるような誘電率ε1〜ε6とされている。 In this case, the frequency band by the antenna portion 21 to 26 for each frequency f1 to f6, depending on its frequency f1 to f6, is the dielectric constant ε1~ε6 as the thickness to each other becomes constant. 誘電率の違いは、誘電性樹脂複合材に配合する誘電体無機粉末の充填材の配合割合などで調整される。 The dielectric constant difference is adjusted such the proportions of the filler of the dielectric inorganic powder mixed into the dielectric resin composite material.
【0017】 [0017]
各周波数帯別アンテナ部分21〜26の一体化状態の統合は、例えば2色成形ないし3色成形等の方法により、同じ金型に各誘電率の誘電性樹脂複合材を順次または同時に注入する射出成形によって行う。 Integration of the structural integrity of each frequency band by the antenna portion 21 to 26, for example by not two-color molding to a method such as a three-color molding, or a dielectric resin composite material of the dielectric constant in the same mold in order to inject simultaneously injection carried out by molding. すなわち複数材料同時成形とする。 I.e. a plurality material simultaneous molding. 導体28,29は、インサート成形等で誘電体27に固定する。 Conductors 28 and 29, fixed to the dielectric 27 by insert molding or the like. 周波数帯別アンテナ部分21〜26の一体化状態の統合は、この他に、個々の周波数帯別アンテナ部分21〜26を製造しておいて、熱融着や超音波融着等の溶融接着によって行っても良い。 Integration of the structural integrity of the frequency band by the antenna portion 21 to 26, in addition, be allowed to produce individual frequency band by the antenna portion 21 to 26, by melt bonding such as thermal fusion or ultrasonic fusion it may be carried out. 周波数帯別アンテナ部分21〜26が3個以上ある場合、そのうちのいくつか複数を上記の複数材料同時形成とし、その同時成形したもの同士、または同時成形したものと単独の周波数帯別アンテナ部分21〜26を融着より一体化しても良い。 If the frequency band by the antenna portion 21 to 26 is 3 or more, a few more of the the multi-material simultaneous formation of the, among those that have been the co-molded or those simultaneously molded with the single frequency band by the antenna portion 21, to 26 may be integrated than fusing.
【0018】 [0018]
この構成の場合も、誘電体27の誘電性樹脂複合材に誘電体無機粉末の充填材を配合したものを用いたことによる小型化、高性能化、および低コスト化、並びに複数の周波数帯別アンテナ部分21〜26の統合による小型化の効果が得られる。 In the case of this configuration, downsizing due to the use of a material obtained by mixing the filler of a dielectric inorganic powder to the dielectric resin composite material of the dielectric 27, high performance, and cost, as well as a plurality of frequency bands by the effect of miniaturization through integration of the antenna portions 21 to 26 are obtained.
【0019】 [0019]
なお、各周波数帯別アンテナ部分をパッチアンテナとして平面状に配列する場合、例えば図4に示すように、誘電性樹脂統合アンテナ30を円周方向に複数個に区画し、その各区画部分を周波数帯別アンテナ部分31〜34としても良い。 In the case of arranged in a plane each frequency band by the antenna portion as a patch antenna, for example, as shown in FIG. 4, a dielectric resin integrated antenna 30 is partitioned into a plurality in the circumferential direction, the frequency that each compartment it may be as a band by the antenna portion 31 to 34. 各周波数帯別アンテナ部分31〜34は、図2の実施形態と同様に、誘電体35とその両面の導体36とで構成する。 Each frequency band by the antenna portion 31 to 34, similar to the embodiment of FIG. 2, is composed of a dielectric 35 and conductors 36 of both sides.
また、図5に示すように、誘電性樹脂統合アンテナ40を、中心の円形部分およびその外周の円環状部分に区画し、各区画部分を周波数帯別アンテナ部分41〜43としても良い。 Further, as shown in FIG. 5, a dielectric resin integrated antenna 40, it is divided into circular portion and an annular portion of the outer periphery of the center may be the frequency band by the antenna portion 41 to 43 of each compartment. 各周波数帯別アンテナ部分41〜43は、図2の実施形態と同様に、誘電体44とその両面の導体45とで構成する。 Each frequency band by the antenna portion 41 to 43, similar to the embodiment of FIG. 2, is composed of a dielectric 44 and conductors 45 of both sides.
これら図4および図5の実施形態における各周波数帯別アンテナ部分31〜34,41〜43の統合は、図2の実施形態と同様に、同時成形または融着により行う。 These 4 and integration of each frequency band by the antenna portion 31~34,41~43 in the embodiment of FIG. 5, as in the embodiment of FIG. 2, performed by co-molding or fused. 誘電体35,44の材質は、上記各実施形態と同じく合成樹脂に誘電体無機粉末の充填材を配合した誘電性樹脂複合材である。 The material of the dielectric 35, 44 is a dielectric resin composite material obtained by blending a filler dielectric inorganic powder also synthetic resin from the above-described embodiments.
【0020】 [0020]
図6は、この発明のさらに他の実施形態を示す。 Figure 6 illustrates yet another embodiment of the present invention. この実施形態の誘電性樹脂統合アンテナ50は、各周波数帯別アンテナ部分51〜53をパッチアンテナとし、これら周波数帯別アンテナ部分51〜53は、誘電体54の厚さを互いに異ならせたものとする。 Dielectric resin integrated antenna 50 of this embodiment, each frequency band by the antenna portion 51 to 53 to the patch antenna, these frequency bands by the antenna portion 51 to 53, to that was different from each other in thickness of the dielectric 54 to. これら各周波数帯別アンテナ部分51〜53は、平面的に並ぶように一体に統合する。 Each of these frequency bands by the antenna portion 51 to 53 is integrated together so as to line up in a plane. 各周波数帯別アンテナ部分51〜53は、誘電体54の両面に導体55,56を設けたものである。 Each frequency band by the antenna portion 51 to 53 is obtained by the conductors 55 and 56 provided on both surfaces of the dielectric 54. 各周波数帯別アンテナ部分51〜53の誘電率εは、互いに同じとしてある。 The dielectric constant ε of each frequency band by the antenna portion 51 to 53, there as the same with each other. 誘電体54の材質は、第1の実施形態と同じく合成樹脂に誘電体無機粉末の充填材を配合したものである。 The material of the dielectric 54 is obtained by mixing the filler of a dielectric inorganic powder also synthetic resin in the first embodiment.
【0021】 [0021]
各周波数帯別アンテナ部分51〜53の一体化は、例えば誘電性樹脂統合アンテナ50の全体の誘電体54を一体に射出成形で成形することで行う。 Integration of each frequency band by the antenna portion 51 to 53, for example, performs overall dielectric 54 of dielectric resin integrated antenna 50 by molding by injection molding in one piece.
この他に、図7(A)に示すように、それぞれ幅の異なる均一厚さの複数の分割誘電体54a〜54cを別々に成形し、後にこれらの分割誘電体54a〜54cを重ねて溶融接着することで、各周波数帯別アンテナ部分51〜53毎に厚さの異なる誘電体54を形成しても良い。 In addition, as shown in FIG. 7 (A), a plurality of divided dielectric 54a~54c of different uniform thickness width molded separately and later melt adhesive overlapping these divided dielectric 54a~54c doing, may also form a different dielectric 54 thicknesses for each frequency band by the antenna portion 51 to 53.
また、図7(B)に示すように、それぞれ幅の異なる均一厚さの複数の分割誘電体54a〜54cを、先に成形された部分をインサートして順次成形して行くようにしても良い。 Further, as shown in FIG. 7 (B), different uniform thicknesses of the plurality of divided dielectric 54a~54c of each width, may be successively formed by insert portion which is molded previously .
【0022】 [0022]
このように、各周波数帯別アンテナ部分51〜53を、厚さの異なるものとすると、同じ誘電率の誘電性樹脂複合材を用いて周波数の違いに対応できる。 Thus, each frequency band by the antenna portion 51 to 53, when the different thicknesses may correspond to the difference in frequency using a dielectric resin composite material of the same dielectric constant. そのため製造が容易であり、より低コスト化が図れる。 Therefore it is easy to manufacture, and more cost reduction can be achieved.
【0023】 [0023]
なお、上記各実施形態において、誘電性樹脂複合材は、誘電体特性に異方性が実質上ないものとしてある。 In each of the above embodiments, the dielectric resin composite material is as anisotropy is not substantially on the dielectric properties. ここで言う「異方性が実質上ない」とは、アンテナとして異方性が性能に影響しない程度に低いことを言う。 Here, the term "anisotropy is virtually no" refers to low to the extent that the anisotropy as the antenna does not affect the performance. この誘電性樹脂複合材は、誘電率に限らず、異方性のないもの、例えば熱膨張率においても異方性がないものであることが好ましい。 The dielectric resin composite is not limited to the dielectric constant, having no anisotropy is preferably, for example, that there is no anisotropy in thermal expansion coefficient. 上記充填材は、複数種類の充填材を混合させて配合しても良い。 The above filler may be blended by mixing a plurality of types of fillers. 合成樹脂についは、複数種を混合させずに1種類としている。 For synthetic resin is in the one without admixture of plural kinds thereof. 誘電性樹脂複合材は、誘電性樹脂組成物とも言える。 Dielectric resin composite material can be said dielectric resin composition.
【0024】 [0024]
次に、上記各実施形態で用いられる誘電性樹脂複合材の具体例を説明する。 Next, a specific example of a dielectric resin composite material used in the above embodiments. 誘電性樹脂複合材としては、ポリフェニレンサルファイド(PPS)樹脂、ポリプロピレン(PP)等の熱可塑性樹脂に、誘電体無機粉末の充填材として、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸カルシウムマグネシウム、チタン酸ネオジウム等のチタン酸塩や、酸化チタンを配合したものが使用できる。 The dielectric resin composite material, polyphenylene sulfide (PPS) resin, a thermoplastic resin such as polypropylene (PP), as a filler a dielectric inorganic powder, barium titanate, strontium titanate, calcium titanate, calcium titanate magnesium, and titanium salts such as neodymium titanate, those obtained by blending titanium oxide can be used. この充填材は粉末であり、繊維状のものではない。 The filler is a powder and not fibrous. 配合割合は、例えば5〜70容量%の範囲が好ましいが、より好ましくは10〜40%である。 Mixing ratio is preferably a range of, for example, 5 to 70 volume%, more preferably 10 to 40%.
【0025】 [0025]
この実施形態において、誘電性樹脂複合材に求める目標性能は、高周波数帯(ギガヘルツ(GHz)単位の周波数帯)において、誘電率が5以上と高く、誘電正接(=Tanδ)が0.005以下、好ましくは0.001以下と低く、かつ溶融成形可能な樹脂複合材であることである。 In this embodiment, the target performance to determine the dielectric resin composite, in the high frequency band (gigahertz (GHz) frequency band of the unit), high dielectric constant of 5 or more, dielectric loss tangent (= Tan?) Is 0.005 or less is that it is preferably as low as 0.001 or less, and melt-moldable resin composite. 合成樹脂の単独で誘電率は2〜4程度であるため、誘電性樹脂複合材としては、誘電率は5以上が好ましい。 For alone dielectric constant of the synthetic resin is about 2 to 4, as the dielectric resin composite material, the dielectric constant of 5 or more is preferred. 溶融成形は、例えば、射出成形、押し出し成形、または圧縮成形のいずれかが行えれば良い。 Melt molding, such as injection molding, extrusion, or any of the compression molding may be Okonaere. この目標性能を達成するために、合成樹脂および充填材は次の材質および配合とすることが好ましい。 To achieve this target performance, synthetic resin and the filler is preferably in a subsequent material and formulation.
【0026】 [0026]
合成樹脂は、もともと、誘電率には大差がないため、できるだけ誘電正接(=Tanδ)が小さい材料、つまりQ値(=1/Tanδ)が高い材料が好ましい。 Synthetic resins, originally, since there is no significant difference in the dielectric constant, as much as possible a dielectric loss tangent (= Tan?) Is less material, i.e. Q value (= 1 / Tanδ) higher material is preferred. 合成樹脂のTanδは、0.003以下のものが好ましく、このTanδの条件を充足するものとして、ポリプロピレン(PP)、ポリエチレン(PE)、ポリテトラフルオロエチレン(PTFE)、フルオロエチレンプロピレン(FEP)、ポリフェニレンエーテル(PPE)、シンジオタクティックポリスチレン(SPS)、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)等がある。 Tan? Of synthetic resin, preferably those of 0.003, as to satisfy the condition of Tan?, Polypropylene (PP), polyethylene (PE), polytetrafluoroethylene (PTFE), fluoroethylene propylene (FEP), polyphenylene ether (PPE), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), there is a liquid crystal polymer (LCP) or the like. これらの合成樹脂のいずれをこの誘電性樹脂複合材に用いても良い。 Any of these synthetic resins may be used in the dielectric resin composite material.
【0027】 [0027]
充填材は、なるべく誘電率が高く、かつ誘電正接(=Tanδ)が小さいものが良い。 Fillers, possible high dielectric constant, and dielectric loss tangent (= Tan?) That is less good. 充填材としては、誘電率が20以上で、かつTanδが0.005以下の高誘電セラミックス粉が好ましい。 As the filler, a dielectric constant of 20 or more and Tanδ is preferably 0.005 or less of the high dielectric ceramic powder. この条件には、上記の誘電体無機粉末の充填材のうち、チタン酸バリウムがTanδの条件で大きく外れるが他の各充填材、すなわちチタン酸ストロンチウム、チタン酸カルシウム、チタン酸カルシウムマグネシウム、チタン酸ネオジウム等のチタン酸塩や、酸化チタンは、いずれも該当する。 This condition, of the filler of the dielectric inorganic powder, barium titanate deviates largely conditions Tanδ other respective fillers, namely strontium titanate, calcium titanate, calcium magnesium titanate, and titanates such as neodymium, titanium oxide are both applicable.
充填材の配合量の例は、後に示す表1に記載するが、同表に記載のようにチタン酸ストロンチウム、チタン酸カルシウム、チタン酸カルシウムマグネシウム、チタンサンネオジウム等を10〜40容量%の範囲で配合すると、誘電率が5〜15程度で、Tanδが0.0008〜0.003程度の誘電性樹脂複合材とできた。 Examples of the amount of filler is listed in Table 1 shown later, the range strontium titanate, calcium titanate, calcium magnesium titanate, titanate such as neodymium 10-40 volume percent as described in the table in is blended, dielectric constant of about 5 to 15, Tan? could be a 0.0008 to 0.003 about dielectric resin composite material.
【0028】 [0028]
なお、誘電セラミックス粉は、焼結して初めて優れた誘電特性が得られることから、仮焼と言って、実際の焼結温度(1300℃程度)より、少し下の温度で、完全に固まらないことろで一旦焼成する。 Incidentally, the dielectric ceramic powder, since the first excellent dielectric properties by sintering can be obtained, say calcination, the actual sintering temperature (about 1300 ° C.), not a little at a temperature below, solidified completely once fired at Kotoro. 密度的には、完全焼結体の密度を100とすると、仮焼の未完全焼結体の密度は、97以上で100未満の割合が好ましい。 The density, when a density of the completely sintered body 100, density of the unfinished burnt sintered body of calcination, the proportion of less than 100 is preferably 97 or more. なお、従来の誘電性樹脂複合材の一般の提案例は、完全焼結体であり、製造工程上で完全に焼結されたものとする必要がある。 Note that example of proposed general conventional dielectric resin composite material is completely sintered body, it is necessary to what was fully sintered in the manufacturing process. また、液層法にて、誘電体粉末を直接作ったものも好ましい。 Further, in the liquid layer process, preferably also those made dielectric powder directly.
【0029】 [0029]
誘電体無機粉末の充填材の粒径は、平均粒径が0.1μm〜10μmの範囲であることが好ましい。 The particle size of the filler of the dielectric inorganic powder preferably has an average particle size in the range of 0.1 m to 10 m. 実験によると、同種材料では粒径が小さい方が、Tanδが小さくて良好な傾向が見られる。 Experiments have better particle size is small in a homogeneous material, a good tendency is observed a small Tan?.
【0030】 [0030]
次に、各種誘電性樹脂複合材の誘電率等を実験した実験例、および経験式より求めた誘電率等につき説明する。 Next, various experimental examples permittivity etc. were experiments dielectric resin composite material, and experiences will be described dielectric constant, etc. determined from equation.
表1は、誘電性樹脂複合材における合成樹脂をポリフェニレンサルファイド(PPS)とし、充填材の種類および配合量を、表中に記載のように種々変えた場合の実験結果(生データ)を示す。 Table 1, the synthetic resin in the dielectric resin composite material and polyphenylene sulfide (PPS), the type and amount of filler shows the experimental results of the case of changing various (raw data) as shown in the table. サンプルは、サンプルNo1〜15に示す15種類である。 Samples are 15 types shown in the sample No1~15. 充填材の種類で整理したため、サンプルNoは非整列となっている。 Because you organize the type of filler, the sample No has become unaligned. 表1において、充填材名に付した符号A〜Cは、同じ充填材種類であって、配合量のみが異なるものに同じ符号を付し、充填材種類が同じであっても、そのグレード等が異なるものは、異なる符号を付してある。 In Table 1, numerals A~C as those in the filler name be the same filler type, denoted by the same reference numerals to those only amount is different, even filler types are the same, the grade, etc. which are different, they are differently marked.
この表から、前述の内容を繰り返すが、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸カルシウムマグネシウム、チタンサンネオジウム等を10〜40容量%の範囲で配合すると、誘電率が5〜15程度で、Tanδが0.0008〜0.003程度の誘電性樹脂複合材ことがわかる。 From this table, it is repeated the foregoing, strontium titanate, calcium titanate, calcium magnesium titanate, is blended in the range of 10 to 40 volume% of titanium San neodymium or the like, a dielectric constant of about 5 to 15, Tan? There it can be seen that dielectric resin composite material of about 0.0008 to 0.003.
【0031】 [0031]
【表1】 [Table 1]
【0032】 [0032]
図8は、誘電性樹脂複合材における合成樹脂をポリフェニレンサルファイド(PPS)とし、誘電体無機粉末の充填材をチタン酸ストロンチウムとして、配合量を種々変えた場合の誘電率の実測値、および誘電率の経験式の値(理論値)を重ねて示す。 8, the synthetic resin in the dielectric resin composite material and polyphenylene sulfide (PPS), as a strontium titanate filler of a dielectric inorganic powder, measured value of the dielectric constant in the case of variously changing the mixing amount, and the dielectric constant It is shown superimposed empirical formula of value (theoretical value). 図9は同じくそれらの誘電正接(=Tanδ)の値を示す。 Figure 9 also shows the value of their dielectric loss tangent (= Tan?).
これらのグラフから、経験式の値は実測値と近似しており、経験式から、充填材の配合量を増やすに従い、誘電率が高くなり、配合量が80%程度になると、誘電率は80程度と大きくなることがわかる。 According From these graphs, the value of the empirical formula is approximate to the measured values, the empirical formula, increasing the amount of the filler, the higher the dielectric constant, the amount is about 80%, the dielectric constant is 80 it can be seen that the greater the degree. 誘電正接(=Tanδ)の値も、充填材の配合量の増加に従って大きくなるが、その増加の割合は小さい。 The value of the dielectric loss tangent (= Tan?) Also becomes larger with an increase in the amount of the filler, the proportion of the increase is small.
【0033】 [0033]
図10,図11は、誘電性樹脂複合材における合成樹脂をポリフェニレンサルファイド(PPS)とし、誘電体無機粉末の充填材をチタン酸カルシウムマグネシウムとした場合の例を、図8,図9と同様に示したものである。 10 and 11, the synthetic resin in the dielectric resin composite material and polyphenylene sulfide (PPS), an example in which the filler dielectric inorganic powder and calcium magnesium titanate, 8, similar to FIG. 9 there is shown. 充填材がチタン酸カルシウムマグネシウムの場合は、充填材の配合量を増やすに従い、誘電率が高くなるが、Tanδは低下する。 If the filler is calcium magnesium titanate, in accordance with increasing the amount of the filler, but the dielectric constant is high, Tan? Decreases.
【0034】 [0034]
図12〜図17は、誘電性樹脂複合材における合成樹脂がポリプロピレン(PP)である場合について、図中に記載の充填材を用いた場合の例を、図8,図9と同様に示したものである。 12 to 17, for the case of synthetic resin in the dielectric resin composite material is polypropylene (PP), an example of using the filler according to the figure, FIG. 8, showing similar to FIG. 9 it is intended.
【0035】 [0035]
なお、上記各実施形態など、この発明の誘電性樹脂統合アンテナにおいて、各周波数帯別アンテナ部分は、それぞれラジオ、テレビ、GPS(Global Positioning System)を用いたカーナビゲーションシステムの端末、自動料金収受システム(ETC)の端末、携帯電話、車間距離センサなどに用いられる。 Incidentally, like the above embodiments, the dielectric resin integrated antenna of the present invention, each frequency band by the antenna portion, Radio respectively, television, GPS (Global Positioning System) navigation system terminal using the automatic toll collection system (ETC) terminal, a mobile phone, is used like the inter-vehicle distance sensor.
【0036】 [0036]
【発明の効果】 【Effect of the invention】
この発明の誘電性樹脂統合アンテナは、互いに異なる周波数帯に対応した複数の周波数帯別アンテナ部分を有し、これら各周波数帯別アンテナ部分は誘電性樹脂複合材の誘電体と導体とで構成されて互いに一体に統合され、上記各周波数帯別アンテナ部分の上記誘電性樹脂複合材が、合成樹脂に誘電体無機粉末の充填材を配合したものであるため、周波数帯の異なる通信が一つのアンテナで行え、小型化、高性能化、および低コスト化が図れる。 Dielectric resin integrated antenna of the invention has a plurality of frequency bands by the antenna portions corresponding to different frequency bands, each of these frequency bands by the antenna portion is composed of a dielectric and a conductor of the dielectric resin composite mutually integrated together Te, the dielectric resin composite material of the respective frequency bands by the antenna portion, since the synthetic resin is obtained by blending a filler dielectric inorganic powder, different communication frequency bands one antenna in done, miniaturization, attained a high performance, and low cost.
上記誘電性樹脂複合材は、誘電体無機粉末の充填材の誘電率と該充填材の配合量との関係、および、誘電体無機粉末の充填材の誘電正接と該充填材の配合量との関係に基づき、誘電率20以上でかつ誘電正接0.005以下の誘電セラミックス粉である充填材を10〜40容量%配合している。 The dielectric resin composite material, the relationship between dielectric constant and the amount of the filler of the filler of the dielectric inorganic powder, and, the dielectric loss tangent and blended amount of the filler of the filler of the dielectric inorganic powder based on the relationship, and the filler material is a dielectric constant of 20 or more and a dielectric loss tangent 0.005 following dielectric ceramic powder and 10 to 40 volume% formulation.
上記誘電率が20以上でかつ誘電正接が0.005以下という値は、誘電セラミックス粉として一般に得られる中で、優れた値である。 The dielectric constant value of and dielectric loss tangent at 20 or higher than 0.005, among which is obtained generally as a dielectric ceramic powder is an excellent value. 充填材の配合比率は、多いほど誘電性樹脂複合材の誘電率を高くできるが、多すぎると成形性が悪くなる。 Mixing ratio of the filler is enough to increase the dielectric constant of the dielectric resin composite material often, too moldability is deteriorated. 上記の誘電率および誘電正接を持つ誘電セラミックス粉を充填材として用い、上記配合量とすると、誘電性樹脂複合材として、例えば誘電率が5〜15程度で、誘電正接が0.0008〜0.003程度のものができる。 Additional dielectric constant and using a dielectric ceramic powder having a dielectric loss tangent as a filler, if the above amount, as a dielectric resin composite material, for example, a dielectric constant of about 5 to 15, the dielectric loss tangent 0.0008 to 0. it is of about 003. この誘電率および誘電正接の値は、フィルムアンテナとして優れたものとなる。 The value of the dielectric constant and dielectric loss tangent, and excellent as a film antenna. また、充填材の配合量が40%以下であると、誘電性樹脂複合材の成形性にも優れる。 Further, the amount of the filler is 40% or less, excellent in formability of the dielectric resin composite material.
上記誘電セラミックス粉の充填材は、未完全焼結体としている。 Filler of the dielectric ceramic powder is in the incomplete sintering body. 高誘電セラミックスは、焼結して初めて、優れた誘電特性が得られる。 High dielectric ceramics, only after sintering, resulting excellent dielectric properties. しかし、完全な焼結体としなくても、仮焼と言われるように、実際の焼結温度よりも少し低い温度で、完全に固まらないところで一旦焼結したものであっても、つまり未完全焼結体であっても、優れた誘電特性を得ることができる。 However, even without a complete sintered body, as is said to be calcined, the actual temperature slightly lower than the sintering temperature, even those that were once sintered in place that does not harden completely, that is unfinished burned down even sintered body, it is possible to obtain excellent dielectric properties. 上記誘電セラミックス粉の充填材は、所望の誘電特性を得るため未完全焼結体であり、上記充填材の平均粒径は、達成すべき誘電正接に基づき0.1μm〜10μmの範囲であることが好ましい。 Filler of the dielectric ceramic powder is incomplete sintered to obtain the desired dielectric properties, the average particle diameter of the filler is in the range of 0.1μm~10μm based on dissipation factor to be achieved preferable. 実験によると、同種材料では粒径が小さい方が、誘電正接が小さくて良好な傾向が得られる。 Experiments have better particle size is small in a homogeneous material, a good tendency is obtained with a small dielectric loss tangent.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】(A),(B)は、それぞれこの発明の第1の実施形態にかかる誘電性樹脂統合アンテナの分解斜視図および外観斜視図である。 [1] (A), (B) is an exploded perspective view and an external perspective view of a dielectric resin integrated antenna to a first embodiment of the present invention, respectively.
【図2】(A),(B)は、それぞれこの発明の他の実施形態にかかる誘電性樹脂統合アンテナの斜視図およびそのB−B線断面図である。 Figure 2 (A), (B) is a perspective view and a sectional view taken along line B-B view of a dielectric resin integrated antenna to another embodiment of the invention, respectively.
【図3】同アンテナの導体の一例を示す平面図である。 3 is a plan view showing an example of the antenna conductor.
【図4】この発明のさらに他の実施形態の平面図である。 4 is a plan view of yet another embodiment of the present invention.
【図5】この発明のさらに他の実施形態の平面図である。 5 is a plan view of yet another embodiment of the present invention.
【図6】(A),(B)は、それぞれこの発明のさらに他の実施形態の斜視図および線断面図である。 6 (A), (B) is a perspective view and a line cross-sectional view of yet another embodiment of the invention, respectively.
【図7】(A),(B)はそれぞれ同実施形態における誘電体の製造方法の各例を示す説明図である。 7 (A), (B) are explanatory views showing respective examples of a manufacturing method of a dielectric in the embodiment, respectively.
【図8】特定樹脂に特定充填材を配合した誘電性樹脂複合材につき、配合量を種々変えた場合の誘電率の実測値と経験式による値とを示すグラフである。 [8] per dielectric resin composite material obtained by blending a specific filler in a specific resin is a graph showing the values ​​actually measured values ​​and empirical formula of the dielectric constant in the case of variously changing the mixing amount.
【図9】同特定樹脂に同特定充填材を配合した誘電性樹脂複合材につき、配合量を種々変えた場合の誘電正接の実測値と経験式による値とを示すグラフである。 [9] per the specific resin in the particular filler dielectric resin composite material blended with a graph showing the values ​​actually measured values ​​and empirical formula of the dielectric loss tangent in the case of variously changing the mixing amount.
【図10】同特定樹脂に他の特定充填材を配合した誘電性樹脂複合材につき、配合量を種々変えた場合の誘電率の実測値と経験式による値とを示すグラフである。 [10] per the specific resin to another particular filler dielectric resin composite material blended with a graph showing the values ​​actually measured values ​​and empirical formula of the dielectric constant in the case of variously changing the mixing amount.
【図11】同特定樹脂に同特定の充填材を配合した誘電性樹脂複合材につき、配合量を種々変えた場合の誘電正接の実測値と経験式による値とを示すグラフである。 11 is a graph showing the values ​​actually measured values ​​and empirical formula of the dielectric loss tangent of the case per the specific resin in the particular filler dielectric resin composite material blended with, which variously changed the amount.
【図12】他の特定樹脂に他の特定充填材を配合した誘電性樹脂複合材につき、配合量を種々変えた場合の誘電率の実測値と経験式による値とを示すグラフである。 [12] per other specific resins to another particular filler dielectric resin composite material blended with a graph showing the values ​​actually measured values ​​and empirical formula of the dielectric constant in the case of variously changing the mixing amount.
【図13】同特定樹脂に同特定充填材を配合した誘電性樹脂複合材につき、配合量を種々変えた場合の誘電正接の実測値と経験式による値とを示すグラフである。 [13] per the specific filler dielectric resin composite material blended with the same specific resin is a graph showing the values ​​actually measured values ​​and empirical formula of the dielectric loss tangent in the case of variously changing the mixing amount.
【図14】同特定樹脂にさらに他の特定充填材を配合した誘電性樹脂複合材につき、配合量を種々変えた場合の誘電率の実測値と経験式による値とを示すグラフである。 14 is a graph showing the values ​​due to the specific per resin to yet another dielectric resin composite material obtained by blending a specific filler, empirical formula and the measured value of the dielectric constant in the case of variously changing the mixing amount.
【図15】同特定樹脂に同特定充填材を配合した誘電性樹脂複合材につき、配合量を種々変えた場合の誘電正接の実測値と経験式による値とを示すグラフである。 [15] per the specific resin in the particular filler dielectric resin composite material blended with a graph showing the values ​​actually measured values ​​and empirical formula of the dielectric loss tangent in the case of variously changing the mixing amount.
【図16】同特定樹脂にさらに他の特定充填材を配合した誘電性樹脂複合材につき、配合量を種々変えた場合の誘電率の実測値と経験式による値とを示すグラフである。 [16] per the specific resin to yet another particular filler dielectric resin composite material blended with a graph showing the values ​​actually measured values ​​and empirical formula of the dielectric constant in the case of variously changing the mixing amount.
【図17】同特定樹脂に同特定充填材を配合した誘電性樹脂複合材につき、配合量を種々変えた場合の誘電正接の実測値と経験式による値とを示すグラフである。 [17] per the specific formulated with the specific filler in the resin dielectric resin composite material is a graph showing the values ​​actually measured values ​​and empirical formula of the dielectric loss tangent in the case of variously changing the mixing amount.
【符号の説明】 DESCRIPTION OF SYMBOLS
1〜3…周波数帯別アンテナ部分5…誘電体6…電極10…誘電性樹脂統合アンテナ20…誘電性樹脂統合アンテナ21〜26…周波数帯別アンテナ部分27…誘電体28,29…電極30…誘電性樹脂統合アンテナ31〜34…周波数帯別アンテナ部分35…誘電体36…電極40…誘電性樹脂統合アンテナ41〜43…周波数帯別アンテナ部分44…誘電体45…電極50…誘電性樹脂統合アンテナ51〜53…周波数帯別アンテナ部分54…誘電体55…電極 1-3 ... each frequency band antenna portion 5 ... dielectric 6 ... electrode 10 ... dielectric resin integrated antenna 20 ... dielectric resin integrated antenna 21-26 ... frequency band by the antenna portion 27 ... dielectric 29 ... electrode 30 ... dielectric resin integrated antenna 31-34 ... frequency band by the antenna portion 35 ... dielectric 36 ... electrode 40 ... dielectric resin integrated antenna 41-43 ... each frequency band antenna portion 44 ... dielectric 45 ... electrode 50 ... dielectric resin integrated antenna 51-53 ... frequency band by the antenna portion 54 ... dielectric 55 ... electrode

Claims (5)

  1. 互いに異なる周波数帯に対応した複数の周波数帯別アンテナ部分を有し、これら各周波数帯別アンテナ部分は誘電性樹脂複合材の誘電体と導体とで構成されて互いに一体に統合され、上記各周波数帯別アンテナ部分の上記誘電性樹脂複合材が、合成樹脂に誘電体無機粉末の充填材を配合したものであり、 A plurality of frequency bands by the antenna portions corresponding to different frequency bands, each of these frequency bands by the antenna portion is monolithically integrated with each other is composed of a dielectric and a conductor of the dielectric resin composite material, each frequency the dielectric resin composite material of the band by the antenna portion state, and are not blended with the filler dielectric inorganic powder synthetic resin,
    上記誘電性樹脂複合材は、 The dielectric resin composite,
    誘電体無機粉末の充填材の誘電率と該充填材の配合量との関係、および、誘電体無機粉末の充填材の誘電正接と該充填材の配合量との関係に基づき、誘電率20以上でかつ誘電正接0.005以下の誘電セラミックス粉である充填材を10〜40容量%配合し、 The relationship between the dielectric constant and the amount of the filler of the filler of the dielectric inorganic powder, and, based on the relationship between dielectric loss tangent and blended amount of the filler of the filler of the dielectric inorganic powder, a dielectric constant of 20 or more in and the filler is a dielectric loss tangent 0.005 following dielectric ceramic powder and 10 to 40 volume% formulation,
    上記誘電セラミックス粉の充填材は、所望の誘電特性を得るため未完全焼結体であり、上記充填材の平均粒径は、達成すべき誘電正接に基づき0.1μm〜10μmの範囲である誘電性樹脂統合アンテナ。 Filler of the dielectric ceramic powder is incomplete sintered to obtain the desired dielectric properties, the average particle size of the filler, the dielectric in the range of 0.1μm~10μm based on dissipation factor to be achieved resin integrated antenna.
  2. 上記各周波数帯別アンテナ部分が、板状またはシート状であって、各周波数帯別アンテナ部分は誘電性樹脂複合材の誘電率が互いに異なるものであり、これら各周波数帯別アンテナ部分を積層状態に統合した請求項1に記載の誘電性樹脂統合アンテナ。 Each frequency band by the antenna portion, a plate-like or sheet-like, each frequency band by the antenna portion are those dielectric constant of the dielectric resin composite material are different from each other, each of these frequency bands by the antenna portion laminated state dielectric resin integrated antenna according to claim 1 which integrates a.
  3. 上記各周波数帯別アンテナ部分がパッチアンテナであって、各周波数帯別アンテナ部分は誘電性樹脂複合材からなる誘電体の誘電率が互いに異なるものであり、これら各周波数帯別アンテナ部分は平面的に並ぶように統合した請求項1に記載の誘電性樹脂統合アンテナ。 A each frequency band by the antenna portion patch antennas, each frequency band by the antenna portion are those dielectric constant of the dielectric comprising a dielectric resin composite material are different from each other, each of these frequency bands by the antenna portion plane dielectric resin integrated antenna according to claim 1 which integrates so as to line up in.
  4. 上記各周波数帯別アンテナ部分がパッチアンテナであって、各周波数帯別アンテナ部分は誘電性樹脂複合材からなる誘電体の厚さが互いに異なるものであり、これら各周波数帯別アンテナ部分は平面的に並ぶように統合した請求項1に記載の誘電性樹脂統合アンテナ。 A each frequency band by the antenna portion patch antennas, each frequency band by the antenna portion are those thickness of the dielectric of dielectric resin composite material are different from each other, each of these frequency bands by the antenna portion plane dielectric resin integrated antenna according to claim 1 which integrates so as to line up in.
  5. 上記合成樹脂が熱可塑性樹脂であり、上記誘電性樹脂複合材は、射出形成、押し出し成形、または圧縮成形等の溶融成形が可能なものである請求項1ないし請求項4のいずれか1項に記載の誘電性樹脂統合アンテナ。 A said synthetic resin is a thermoplastic resin, the dielectric resin composite, injection molding, extrusion molding, or melt molding compression molding or the like are those capable in any one of claims 1 to 4 dielectric resin integrated antenna according.
JP2001401046A 2001-12-28 2001-12-28 Dielectric resin integrated antenna Expired - Fee Related JP3895175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001401046A JP3895175B2 (en) 2001-12-28 2001-12-28 Dielectric resin integrated antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001401046A JP3895175B2 (en) 2001-12-28 2001-12-28 Dielectric resin integrated antenna

Publications (2)

Publication Number Publication Date
JP2003198230A JP2003198230A (en) 2003-07-11
JP3895175B2 true JP3895175B2 (en) 2007-03-22

Family

ID=27605261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001401046A Expired - Fee Related JP3895175B2 (en) 2001-12-28 2001-12-28 Dielectric resin integrated antenna

Country Status (1)

Country Link
JP (1) JP3895175B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010027074A1 (en) 2008-09-05 2010-03-11 住友電気工業株式会社 Ceramic powder, dielectric composite material containing said ceramic powder, and dielectric antenna
CN104241870A (en) * 2013-06-14 2014-12-24 李展 Combined antenna for mobile device and manufacturing method for combined antenna

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7519328B2 (en) 2006-01-19 2009-04-14 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
CN101401257B (en) 2006-03-08 2012-07-25 诺基亚公司 Low loss layered cover for an antenna
CN101416353B (en) 2006-04-10 2013-04-10 株式会社村田制作所 Wireless IC device
WO2007119310A1 (en) 2006-04-14 2007-10-25 Murata Manufacturing Co., Ltd. Antenna
US9064198B2 (en) 2006-04-26 2015-06-23 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
AT539463T (en) 2006-04-26 2012-01-15 Murata Manufacturing Co object with food-provided circuit board
WO2007138919A1 (en) 2006-05-26 2007-12-06 Murata Manufacturing Co., Ltd. Data coupler
WO2007138857A1 (en) 2006-06-01 2007-12-06 Murata Manufacturing Co., Ltd. Radio frequency ic device and composite component for radio frequency ic device
WO2007145053A1 (en) 2006-06-12 2007-12-21 Murata Manufacturing Co., Ltd. Electromagnetically coupled module, wireless ic device inspecting system, electromagnetically coupled module using the wireless ic device inspecting system, and wireless ic device manufacturing method
JP4281850B2 (en) 2006-06-30 2009-06-17 株式会社村田製作所 optical disk
WO2008007606A1 (en) 2006-07-11 2008-01-17 Murata Manufacturing Co., Ltd. Antenna and radio ic device
WO2008023636A1 (en) 2006-08-24 2008-02-28 Murata Manufacturing Co., Ltd. Wireless ic device inspecting system and wireless ic device manufacturing method using the same
JP5005407B2 (en) * 2006-08-31 2012-08-22 富士通コンポーネント株式会社 The antenna device
WO2008050535A1 (en) 2006-09-26 2008-05-02 Murata Manufacturing Co., Ltd. Electromagnetically coupled module and article with electromagnetically coupled module
JP4798223B2 (en) 2006-10-27 2011-10-19 株式会社村田製作所 With electromagnetic coupling module goods
JP4835696B2 (en) 2007-01-26 2011-12-14 株式会社村田製作所 Container with an electromagnetic coupling module
JP4888494B2 (en) 2007-02-06 2012-02-29 株式会社村田製作所 With the electromagnetic coupling module packaging material
WO2008126458A1 (en) 2007-04-06 2008-10-23 Murata Manufacturing Co., Ltd. Radio ic device
US8009101B2 (en) 2007-04-06 2011-08-30 Murata Manufacturing Co., Ltd. Wireless IC device
WO2008126649A1 (en) 2007-04-09 2008-10-23 Murata Manufacturing Co., Ltd. Wireless ic device
JP4930586B2 (en) 2007-04-26 2012-05-16 株式会社村田製作所 Wireless ic device
EP2141636B1 (en) 2007-04-27 2012-02-01 Murata Manufacturing Co. Ltd. Wireless ic device
EP2141769A4 (en) 2007-04-27 2010-08-11 Murata Manufacturing Co Wireless ic device
JP4525859B2 (en) 2007-05-10 2010-08-18 株式会社村田製作所 Wireless ic device
EP2148449B1 (en) 2007-05-11 2012-12-12 Murata Manufacturing Co., Ltd. Wireless ic device
AT545174T (en) 2007-06-27 2012-02-15 Murata Manufacturing Co ic-appliance Wireless
US7762472B2 (en) 2007-07-04 2010-07-27 Murata Manufacturing Co., Ltd Wireless IC device
US8235299B2 (en) 2007-07-04 2012-08-07 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
KR101023582B1 (en) 2007-07-09 2011-03-21 가부시키가이샤 무라타 세이사쿠쇼 Wireless ic device
CN101578616A (en) 2007-07-17 2009-11-11 株式会社村田制作所 Wireless IC device and electronic apparatus
US20090021352A1 (en) 2007-07-18 2009-01-22 Murata Manufacturing Co., Ltd. Radio frequency ic device and electronic apparatus
JP4434311B2 (en) 2007-07-18 2010-03-17 株式会社村田製作所 Wireless ic device and manufacturing method thereof
JP5104865B2 (en) 2007-07-18 2012-12-19 株式会社村田製作所 Wireless ic device
US7830311B2 (en) 2007-07-18 2010-11-09 Murata Manufacturing Co., Ltd. Wireless IC device and electronic device
EP2096709B1 (en) 2007-12-20 2012-04-25 Murata Manufacturing Co., Ltd. Radio ic device
CN101601169B (en) 2007-12-26 2013-08-14 株式会社村田制作所 Ic antenna apparatus and radio device
EP2251934B1 (en) 2008-03-03 2018-05-02 Murata Manufacturing Co. Ltd. Wireless ic device and wireless communication system
WO2009110382A1 (en) 2008-03-03 2009-09-11 株式会社村田製作所 Composite antenna
EP2256861B1 (en) 2008-03-26 2018-12-05 Murata Manufacturing Co., Ltd. Radio ic device
JP4535209B2 (en) 2008-04-14 2010-09-01 株式会社村田製作所 Wireless ic device, a method of adjusting the resonance frequency of electronic devices and wireless ic devices
CN102037605B (en) 2008-05-21 2014-01-22 株式会社村田制作所 Wireless IC device
WO2009142068A1 (en) 2008-05-22 2009-11-26 株式会社村田製作所 Wireless ic device and method for manufacturing the same
JP5218558B2 (en) 2008-05-26 2013-06-26 株式会社村田製作所 Authenticity determination method of a wireless ic device system and a wireless ic devices
KR101148534B1 (en) 2008-05-28 2012-05-21 가부시키가이샤 무라타 세이사쿠쇼 Wireless ic device and component for a wireless ic device
JP4557186B2 (en) 2008-06-25 2010-10-06 株式会社村田製作所 Wireless ic device and manufacturing method thereof
EP2306586B1 (en) 2008-07-04 2014-04-02 Murata Manufacturing Co. Ltd. Wireless ic device
CN102124605A (en) 2008-08-19 2011-07-13 株式会社村田制作所 Wireless IC device and method for manufacturing same
JP5429182B2 (en) 2008-10-24 2014-02-26 株式会社村田製作所 Wireless ic device
JP4525869B2 (en) 2008-10-29 2010-08-18 株式会社村田製作所 Wireless ic device
WO2010055945A1 (en) 2008-11-17 2010-05-20 株式会社村田製作所 Antenna and wireless ic device
CN102273012B (en) 2009-01-09 2013-11-20 株式会社村田制作所 Wireless IC device, wireless IC module and wireless IC module manufacturing method
WO2010082413A1 (en) 2009-01-16 2010-07-22 株式会社村田製作所 High frequency device and wireless ic device
EP2385580B1 (en) 2009-01-30 2014-04-09 Murata Manufacturing Co., Ltd. Antenna and wireless ic device
JP5510450B2 (en) 2009-04-14 2014-06-04 株式会社村田製作所 Wireless ic device
WO2010122685A1 (en) 2009-04-21 2010-10-28 株式会社村田製作所 Antenna apparatus and resonant frequency setting method of same
WO2010140429A1 (en) 2009-06-03 2010-12-09 株式会社村田製作所 Wireless ic device and production method thereof
WO2010146944A1 (en) 2009-06-19 2010-12-23 株式会社村田製作所 Wireless ic device and method for coupling power supply circuit and radiating plates
WO2011001709A1 (en) 2009-07-03 2011-01-06 株式会社村田製作所 Antenna and antenna module
JP5182431B2 (en) 2009-09-28 2013-04-17 株式会社村田製作所 Wireless ic devices and environmental state detection method using the same
CN102577646B (en) 2009-09-30 2015-03-04 株式会社村田制作所 Circuit substrate and method of manufacture thereof
JP5304580B2 (en) 2009-10-02 2013-10-02 株式会社村田製作所 Wireless ic device
WO2011045970A1 (en) 2009-10-16 2011-04-21 株式会社村田製作所 Antenna and wireless ic device
CN102598413A (en) 2009-10-27 2012-07-18 株式会社村田制作所 Transmitting/receiving apparatus and wireless tag reader
CN102549838B (en) 2009-11-04 2015-02-04 株式会社村田制作所 The communication terminal and an information processing system
CN102473244B (en) 2009-11-04 2014-10-08 株式会社村田制作所 Ic wireless tag, the reader and the information processing system
JP5333601B2 (en) 2009-11-04 2013-11-06 株式会社村田製作所 Communication terminal and an information processing system
CN102576929B (en) 2009-11-20 2015-01-28 株式会社村田制作所 The antenna device and a mobile communication terminal
GB2488450B (en) 2009-12-24 2014-08-20 Murata Manufacturing Co Antenna and mobile terminal
CN102782937B (en) 2010-03-03 2016-02-17 株式会社村田制作所 The wireless communication device and a radio communication terminal
WO2011108340A1 (en) 2010-03-03 2011-09-09 株式会社村田製作所 Wireless communication module and wireless communication device
JP5477459B2 (en) 2010-03-12 2014-04-23 株式会社村田製作所 Wireless communication device and the metallic article
JP5370581B2 (en) 2010-03-24 2013-12-18 株式会社村田製作所 Rfid system
WO2011122163A1 (en) 2010-03-31 2011-10-06 株式会社村田製作所 Antenna and wireless communication device
JP5299351B2 (en) 2010-05-14 2013-09-25 株式会社村田製作所 Wireless ic device
JP5170156B2 (en) 2010-05-14 2013-03-27 株式会社村田製作所 Wireless ic device
WO2012005278A1 (en) 2010-07-08 2012-01-12 株式会社村田製作所 Antenna and rfid device
CN104752813B (en) 2010-07-28 2018-03-02 株式会社村田制作所 The antenna device and communication terminal apparatus
WO2012020748A1 (en) 2010-08-10 2012-02-16 株式会社村田製作所 Printed wire board and wireless communication system
JP5234071B2 (en) 2010-09-03 2013-07-10 株式会社村田製作所 Rfic module
JP5730523B2 (en) * 2010-09-28 2015-06-10 Ntn株式会社 Chip antenna and manufacturing method thereof
JP5630506B2 (en) 2010-09-30 2014-11-26 株式会社村田製作所 Radio ic device
CN105206919B (en) 2010-10-12 2018-11-02 株式会社村田制作所 The antenna device and a terminal device
CN102971909B (en) 2010-10-21 2014-10-15 株式会社村田制作所 The communication terminal apparatus
WO2012093541A1 (en) 2011-01-05 2012-07-12 株式会社村田製作所 Wireless communication device
WO2012096365A1 (en) 2011-01-14 2012-07-19 株式会社村田製作所 Rfid chip package and rfid tag
JP5718720B2 (en) 2011-02-22 2015-05-13 アピックヤマダ株式会社 Rfid tag, wireless charging antenna part, a process for their preparation, and the mold
JP5370616B2 (en) 2011-02-28 2013-12-18 株式会社村田製作所 Wireless communication device
JP5630566B2 (en) 2011-03-08 2014-11-26 株式会社村田製作所 Antenna apparatus and communication terminal equipment
EP2618424A4 (en) 2011-04-05 2014-05-07 Murata Manufacturing Co Wireless communication device
JP5482964B2 (en) 2011-04-13 2014-05-07 株式会社村田製作所 Wireless ic devices and radio communication terminal
JP5569648B2 (en) 2011-05-16 2014-08-13 株式会社村田製作所 Wireless ic device
KR101338173B1 (en) 2011-07-14 2013-12-06 가부시키가이샤 무라타 세이사쿠쇼 Wireless communication device
CN103370886B (en) 2011-07-15 2015-05-20 株式会社村田制作所 The wireless communication device
CN204189963U (en) 2011-07-19 2015-03-04 株式会社村田制作所 The antenna apparatus and a communication terminal apparatus
WO2013035821A1 (en) 2011-09-09 2013-03-14 株式会社村田製作所 Antenna device and wireless device
JP5619705B2 (en) * 2011-10-20 2014-11-05 古河電気工業株式会社 The antenna device
WO2013080991A1 (en) 2011-12-01 2013-06-06 株式会社村田製作所 Wireless ic device and method for manufacturing same
KR20130105938A (en) 2012-01-30 2013-09-26 가부시키가이샤 무라타 세이사쿠쇼 Wireless ic device
WO2013125610A1 (en) 2012-02-24 2013-08-29 株式会社村田製作所 Antenna device and wireless communication device
JP6033560B2 (en) * 2012-03-16 2016-11-30 Ntn株式会社 Multi-band antenna and a method of manufacturing the same
JP5304975B1 (en) 2012-04-13 2013-10-02 株式会社村田製作所 Inspection method and apparatus of Rfid tag

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010027074A1 (en) 2008-09-05 2010-03-11 住友電気工業株式会社 Ceramic powder, dielectric composite material containing said ceramic powder, and dielectric antenna
US9090479B2 (en) 2008-09-05 2015-07-28 Sumitomo Electric Industries, Ltd. Ceramic powder, dielectric composite material containing the ceramic powder, and dielectric antenna
CN104241870A (en) * 2013-06-14 2014-12-24 李展 Combined antenna for mobile device and manufacturing method for combined antenna

Also Published As

Publication number Publication date
JP2003198230A (en) 2003-07-11

Similar Documents

Publication Publication Date Title
Kim et al. Analysis of the small band-rejected antenna with the parasitic strip for UWB
US6908960B2 (en) Composite dielectric material, composite dielectric substrate, prepreg, coated metal foil, molded sheet, composite magnetic substrate, substrate, double side metal foil-clad substrate, flame retardant substrate, polyvinylbenzyl ether resin composition, thermosettin
US5962122A (en) Liquid crystalline polymer composites having high dielectric constant
EP0786825B1 (en) Dielectric lens apparatus
US7081803B2 (en) Inductance element, laminated electronic component, laminated electronic component module and method for producing these element, component and module
KR100678393B1 (en) High efficiency slot fed microstrip patch antenna
US20190036206A1 (en) Ceramic antenna module and methods of manufacture thereof
JP4051079B2 (en) High Efficiency slot feeding microstrip antenna with improved stub
US20020109634A1 (en) Low cost antennas using conductive plastics or conductive composites
KR100500150B1 (en) Electronic Parts
EP1347475A1 (en) Laminated circuit board and production method for electronic part, and laminated electronic part
EP1014487A1 (en) Patch antenna and method for tuning a patch antenna
WO2013121682A1 (en) Composite dielectric material and dielectric antenna using same
EP1475889A2 (en) Antenna matching circuit, mobile communication device including antenna matching circuit, and dielectric antenna including antenna matching circuit
US5154973A (en) Composite material for dielectric lens antennas
KR100544908B1 (en) Ceramic electronic component and method for manufacturing the same
US20060262030A1 (en) Layer-built antenna
JP2005252661A (en) Antenna module
EP1665455A1 (en) Method for mounting a radiator in a radio device and a radio device
US20030030994A1 (en) Substrate for electronic part and electronic part
JP2006039902A (en) Uhf band radio ic tag
CN1784810A (en) Arrangements of microstrip antennas having dielectric substrates including meta-materials
US5830591A (en) Multilayered ferroelectric composite waveguides
KR100443496B1 (en) Composite Dielectric Molded Product and Lens Antenna Using the Same
US5693429A (en) Electronically graded multilayer ferroelectric composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees