JP3894349B2 - Rice transplanter - Google Patents

Rice transplanter Download PDF

Info

Publication number
JP3894349B2
JP3894349B2 JP35395998A JP35395998A JP3894349B2 JP 3894349 B2 JP3894349 B2 JP 3894349B2 JP 35395998 A JP35395998 A JP 35395998A JP 35395998 A JP35395998 A JP 35395998A JP 3894349 B2 JP3894349 B2 JP 3894349B2
Authority
JP
Japan
Prior art keywords
planting
sensor
planting part
lift
float
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35395998A
Other languages
Japanese (ja)
Other versions
JP2000157019A (en
Inventor
田 悟 岡
山 実 小
石 俊 樹 南
本 二 教 山
井 邦 夫 土
川 雄 一 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanma Agricultural Equipment Co Ltd
Original Assignee
Yanma Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanma Agricultural Equipment Co Ltd filed Critical Yanma Agricultural Equipment Co Ltd
Priority to JP35395998A priority Critical patent/JP3894349B2/en
Publication of JP2000157019A publication Critical patent/JP2000157019A/en
Application granted granted Critical
Publication of JP3894349B2 publication Critical patent/JP3894349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transplanting Machines (AREA)
  • Lifting Devices For Agricultural Implements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は植付部に支持するフロートの傾斜角度の変化に基づいて植付部を昇降制御するようにした田植機に関する。
【0002】
【発明が解決しようとする課題】
畦際など障害物のある所で植付部を下降させて作業を始めようとした場合に、フロートの接地前に植付ケースやフロートなど植付部の一部が障害物に当接してそれ以上の下降が無理な状態となったときにも、植付部の下降信号は出力され続けて、そのまま作業が続行されたときには植付部に変形や破損事故など発生させるなどの不都合があった。
【0003】
【課題を解決するための手段】
請求項1に係る発明は、植付部に支持するフロートの傾斜角度を検出する昇降センサと、該昇降センサの検出値に基づいて植付部を昇降制御する植付昇降制御機構とを備えた田植機において、植付部の対機体高さを検出する昇降位置センサを設け、植付部の下降動作中で昇降センサ及び昇降位置センサの何れにも出力変化がないとき、植付部の下降を中止させるように構成したものであるから、昇降センサと昇降位置センサとを用いた極めて簡単な手段で畦際などでの障害物を容易に検出して、畦際など障害物のある所での適正な植付部の下降作業を可能にしている。また、昇降センサの出力と、昇降位置センサの出力とに基づき、植付部の植付ケースまたはバンパー等が障害物に当接したか否かが判断でき、植付部の変形や破損事故を確実に防止するものである。
即ち、畦際などで植付部を上昇させて旋回した後、畦など障害物のある場所で植付部を下降させる途中、コンクリート製の畦など障害物に、植付部の植付ケースまたはバンパー等のフロート以外の部分が当接し、植付部の下降動作が中断した場合、フロートは最下降状態に植付部に支持され、昇降センサの出力が一定の下降出力に維持され、昇降位置センサの出力も一定になる。したがって、昇降センサの変化しない下降出力(フロートが一定の非接地姿勢に支持された状態)と、昇降位置センサの変化しない出力(植付部の対機体高さが一定に維持された状態)とに基づき、植付部の植付ケースまたはバンパー等が障害物に当接したか否かが判断できる。 なお、フロートが障害物に当接した場合、昇降位置センサの出力に関らず、昇降センサの出力が下降中止出力になるから、植付部の下降動作が自動的に中断され、フロートの変形や破損事故が防止される。
【0004】
請求項2に係る発明は、植付部の下降動作中で昇降センサ及び昇降位置センサの何れにも出力変化がないとき、植付部を一定高さだけ上昇させて機体を一定時間だけ走行させる一方、一定時間内の走行停止時には昇降センサの中立制御位置まで植付部を下降させるように構成したものであるから、昇降センサ及び昇降位置センサでもって植付部が障害物に当接したことを検出したとき、植付部を一定高さ上昇させ、一定時間走行させて、障害物より離れた後にあっては通常の昇降センサに基づく植付昇降制御に戻して、植付部を適正位置にスムーズに下降させると共に、例えば少しの移動で障害物を回避可能な畦際で一定時間の走行を途中停止させた場合にも、植付部を適正位置まで下降させて、極力畦際からの良好な植付作業を可能とさせて、作業性を向上させるものである。
【0005】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて詳述する。図1は乗用田植機の側面図、図2は同平面図を示し、図中(1)は作業者が搭乗する走行車であり、エンジン(2)を車体フレーム(3)に搭載させ、ミッションケース(4)前方にフロントアクスルケース(5)を介して水田走行用前輪(6)を支持させると共に、前記ミッションケース(4)の後部にリヤアクスルケース(7)を連設し、前記リヤアクスルケース(7)に水田走行用後輪(8)を支持させる。そして前記エンジン(2)等を覆うボンネット(9)両側に予備苗載台(10)を取付けると共に、乗降ステップ(11)を介して作業者が搭乗する車体カバー(12)によって前記ミッションケース(4)等を覆い、前記車体カバー(12)上部に運転席(13)を取付け、その運転席(13)の前方で前記ボンネット(9)後部に操向ハンドル(14)を設ける。
【0006】
また、図中(15)は6条植え用の苗載台(16)並びに複数の植付爪(17)などを具備する植付部であり、前高後低の合成樹脂製の前傾式苗載台(16)を下部レール(18)及びガイドレール(19)を介して植付ケース(20)に左右往復摺動自在に支持させると共に、一方向に等速回転させるロータリケース(21)を前記植付ケース(20)に支持させ、該ケース(21)の回転軸芯を中心に対称位置に一対の爪ケース(22)(22)を配設し、その爪ケース(22)(22)先端に植付爪(17)(17)を取付ける。また前記植付ケース(20)の前側にローリング支点軸(23)を介してヒッチブラケット(24)を設け、トップリンク(25)及びロワーリンク(26)を含む昇降リンク機構(27)を介して走行車(1)後側にヒッチブラケット(24)を連結させ、前記リンク機構(27)を介して植付部(15)を昇降させる油圧昇降制御機構である油圧昇降シリンダ(28)をロワーリンク(26)に連結させ、前記前後輪(6)(8)を走行駆動して移動すると同時に、左右に往復摺動させる苗載台(16)から一株分の苗を植付爪(17)によって取出し、連続的に苗植え作業を行うように構成する。
【0007】
また、図中(29)は主変速レバー、(30)は副変速レバーでもある植付レバー、(31)は昇降目標値設定器、(32)は主クラッチペダル、(33)(33)は左右ブレーキペダル、(34)は2条分均平用センタフロート、(35)は2条分均平用サイドフロート、(36)は6条用の側条施肥機である。
【0008】
さらに、図3、図4に示す如く、前低後高(傾斜角約4度)に傾斜させる前記車体フレーム(3)前部上面に架台(37)…を一体固定させ、架台(37)…の上面に防振ゴム(38)…及びエンジン台(39)を介して前記エンジン(2)を上載させ、前記エンジン(2)の左側に燃料タンク(40)を、またエンジン(2)の右側にマフラー(41)を取付けると共に、車体フレーム(3)前端側略中央にバッテリ(43)を取付けている。
【0009】
またさらに、前記車体フレーム(3)にケース台(44)を一体固定させ、ケース台(44)にステアリングケース(45)を取付け、ハンドル筒体(46)に内挿させる操向ハンドル(14)のステアリング軸(14a)を、左右車体フレーム(3)(3)間の略中央でステアリングケース(45)上面に立設させると共に、ステアリングケース(45)下面に出力軸(47)を突設させ、左右の前輪(6)(6)を方向転換させる操向アーム(48)を前記出力軸(47)に取付けている。
【0010】
また、前記エンジン(2)下方のエンジン台(39)下側に、前後方向に略水平な円筒形の軸受体(49)を熔接固定させ、前記軸受体(49)にカウンタ軸(50)を挿通支持させ、軸受体(49)前方に突出させるカウンタ軸(50)前端にカウンタプーリ(51)を取付けると共に、左右車体フレーム(3)(3)間の略中央上方でエンジン(2)の前方にエンジン出力軸(52)を突設させ、該出力軸(52)に出力プーリ(53)を取付け、該出力プーリ(53)を前記カウンタプーリ(51)にVベルト(54)を介して連結させている。
【0011】
さらに、前記車体フレーム(3)後端部にリヤアクスルケース(7)をボルト止め固定させ、前記リヤアクスルケース(7)前面にミッションケース(4)後面を連結固定させると共に、ミッションケース(4)の右側前面にクラッチケース(55)を一体形成し、クラッチケース(55)前面に無段ベルト変速ケース(56)右側後面を嵌合固定させ、また昇降シリンダ(28)を作動させる油圧ポンプ(57)をベルト変速ケース(56)の左側後面に固定させるもので、四角パイプ形の左右車体フレーム(3)(3)の間でこの上面よりも低位置に前記各ケース(4)(55)(56)及び油圧ポンプ(57)を吊下げ固定させ、ユニバーサルジョイント付き伝動軸(58)を前記カウンタ軸(50)後端とベルト変速ケース(56)間に設け、エンジン(2)出力をベルト変速ケース(56)に伝えると共に、フロントアクスルケース(5)とミッションケース(4)間に前輪伝動軸(59)を設け、ミッションケース(4)の変速出力を各アクスルケース(5)(7)を介して前後輪(6)(8)に伝えるように構成している。
【0012】
図5乃至図8に示す如く、前記センタフロート(34)の前部を上下に揺動自在に支持するピッチング支点軸(60)をフロート(34)後部上面のブラケット(61)に設け、前記植付ケース(20)に回動自在に枢支する植付深さ調節支点軸(62)に、植付深さ調節リンク(63)の基端を固設させると共に、該リンク(63)の先端を前記ピッチング支点軸(60)に連結させている。
【0013】
そして、前記植付ケース(20)側に固定アーム(64a)を介し支持する支軸(65)に出力リンク(66)中間を回動自在に枢支し、前記調節支点軸(62)に基端を固設する揺動アーム(67)の先端に、結合ピン(68)を介して出力リンク(66)後端を連結させると共に、該出力リンク(66)前端の軸(69)に昇降リンク(70)を連結させ、センタフロート(34)の前部上面に固設するブラケット(71)の軸(72)と前記昇降リンク(70)一端側の軸(73)間を揺動リンク(74)を介し連結させている。
【0014】
また、前記支軸(65)にセンサリンク(75)の中間を回動自在に枢支し、センサリンク(75)一端側の軸(76)と前記昇降リンク(70)他端側の軸(77)間を連動リンク(78)で連結させると共に、植付ケース(20)側に固定アーム(64b)を介し支持するポテンショメータ式昇降センサ(79)の検出アーム(80)の長孔(81)に前記センサリンク(75)他端側の検出軸(82)を係合連結させて、耕盤の凹凸或いは深さの変化などで植付深さが変化するとき、昇降センサ(79)によってこれを検出するように構成している。
【0015】
図9乃至図11にも示す如く、前記支点軸(62)に基端を固設する基準植付深さ設定用の植深調節レバー(83)を植深モータ(84)により適宜駆動制御するようにしたもので、中央の植付ケース(20)より右側の伝動パイプ(85)に取付板(86)及び側板(87)を介しモータ取付台(88)を固設させ、該モータ取付台(88)のモータ(84)の回転ネジ軸(89)に結合させる移動子(90)のU字形係合金具(91)に、調節レバー(83)に設けるL形係合軸(92)の一端側を係合させて、モータ(84)の駆動によって移動子(90)がネジ軸(89)に沿って上下方向に移動するとき、調節レバー(83)を上下方向に揺動させて支点軸(62)を回動させ、基準植付深さの調節を行うように構成している。
【0016】
また、前記調節レバー(83)は支点軸(62)に固設する基端フレーム部(83a)と、前記係合軸(92)を固設する先端操作部(83b)とに分割させるもので、フレーム部(83a)先端に回動軸(93)を介し左右揺動自在に操作部(83b)を連結させると共に、これらフレーム部(83a)の係合軸(92)と操作部(83b)の軸(94)間に回動軸(93)を中心とした支点越えバネ(95)を張設して、回動軸(93)を中心として操作部(83b)を右方向に揺動させて係合金具(91)より係合軸(92)を離脱させるとき、手動による調節レバー(83)の操作を可能とさせるように構成している。なお、取付台(88)のレバーガイド孔(88a)の一側にはレバー位置決めノッチ(88b)を形成して、調節レバー(83)の手動操作時には操作部(83b)に固設する位置決め板(83c)をノッチ(88b)に係合させて、調節レバー(83)の位置固定を行うように構成している。
【0017】
さらに、前記調節レバー(83)の操作部(83b)は短寸に形成し、モータ取付台(88)に開閉自在に固定するカバー(96)内にコンパクトに配置させると共に、前記モータ取付台(88)にはフレーム部(83a)のセンサピン(97)の移動位置をアクチュエータ(98a)を介して検出するポテンショメータ式フィードバックセンサ(98)を設けて、植付深さ位置を検出するように構成している。なお前記移動子(90)には取付台(88)の移動ガイド孔(88c)に挿入するガイドローラ(90a)を設けて、ネジ軸(89)回転時の移動子(90)の共回りを防止している。
【0018】
そして前記植深モータ(84)或いは調節レバー(83)により支点軸(62)を中心とした植深変更時にはピッチング支点軸(60)部の上下変位置と、出力リンク(66)前端の軸(69)部の上下変位置とを略同一とさせて、植深を変更させても昇降センサ(79)の出力を変化させないように構成している。
【0019】
一方、前記変速ケース(56)の入力軸部には伝動軸(58)を介し伝達されるエンジン(2)からの回転数を検出するエンジン回転センサ(99)を、また前記フロントアクスルケース(5)の入力軸部には伝動軸(59)を介し伝達されるミッションケース(4)からの走行出力を検出する車速センサ(100)を設けると共に、車体カバー(12)の後部略中央には走行車(1)の前後傾きを検出する振り子形或いは静電容量形などの傾斜センサ(101)を設けている。
【0020】
図5、図12に示す如く、左側の車体フレーム(3)にセンサ取付板(102)を介しポテンショメータ式昇降位置センサ(103)を設置すると共に、前記昇降シリンダ(28)のピストンロッド(28a)先端とロワーリンク(26)とを連結するリフトアーム(104)に検出板(105)を固設して、前記位置センサ(103)の検出アーム(106)先端の検出軸(106a)を検出板(105)の長孔に係合させて、前記昇降シリンダ(28)による植付部(15)の昇降時この昇降位置をセンサ(103)で検出するように構成している。
【0021】
図3、図13にも示す如く、前記車速センサ(100)は前輪伝動軸(59)とフロントアクスルケース(5)の入力軸(5a)とを連結するスプライン継手(107)外周の固定ギヤ(108)の回転パルスを検出して走行出力である車速を算出させるもので、回転センサ(近接スイッチ)などで車速センサ(100)を形成し、該センサ(100)を取付けるセンサ台(109)を車体フレーム(3)に固設するアクスルケース(5)の取付台(110)にボルト(111)を介し取外し自在に固定させて、前記車速センサ(100)の取付及び交換を容易とさせて保守点検作業の至便化を図ると共に、ミッションケース(4)に直付のセンサのような切粉で誤動作するなどした不都合も解消させて検出精度の安定維持を図るように構成している。
【0022】
図14に示す如く、エンジン(2)によって駆動する油圧ポンプ(112)の供給油圧回路を、フローコントロールバルブ(113)によって高圧油路(114)と低圧油路(115)に分岐して、操向ハンドル(14)によって操向シリンダ(116)の操向バルブ(117)を切換える操向バルブユニット(118)と、ソレノイド式上昇及び下降バルブ(119)(120)操作によって昇降シリンダ(28)を駆動する昇降バルブユニット(121)とを高圧油路(114)に設けると共に、植付部(15)の左右傾斜姿勢を制御する水平シリンダ(122)の水平操作用ソレノイドバルブ(123)を有する水平バルブユニット(124)とを低圧油路(115)に設けて、植付部(15)の昇降制御を前記バルブ(119)(120)の上昇及び下降ソレノイド(125)(126)の励磁操作によって行うように構成している。
【0023】
そして図15に示す如く、前記植深モータ(84)のリレー回路(127)と、前記ソレノイド(125)(126)とに出力接続させるコントローラ(128)を備えるもので、前記植付レバー(30)の植付下降及び上昇位置をそれぞれ検出する下降及び上昇スイッチ(129)(130)と、前記各センサ(79)(98)(99)(100)(101)(103)と、基準植付深さを設定する植深設定器(131)と、圃場表面硬度に応じ昇降シリンダ(28)の昇降目標値を設定する昇降目標値設定器(31)と、サイドフロート(35)の前後方向の傾きを検出する振り子形或いは静電容量形などのフロート傾斜センサ(132)とを前記コントローラ(128)に入力接続させて、植付深さを一定維持させる昇降制御を行うように構成している。
【0024】
本実施例は上記の如く構成するものにして、図16、図17に示す如く、植付レバー(30)を下降位置に操作し下降スイッチ(120)をオンとさせるとき、前記下降バルブ(120)の操作によって昇降シリンダ(28)が駆動され植付部(15)が下降するもので、前記昇降センサ(79)に流込まれるセンサ値(V)と昇降目標値設定器(31)で設定されるセンタフロート(34)の目標傾斜角度である目標値(V1)とが一致(センタフロート(34)の傾斜角度が一定)するまで昇降シリンダ(28)によって植付部(15)が下降制御され、以後目標の植付深さを一定維持させる(V=V1)植付部(15)の昇降制御が行われる。
【0025】
而して図18に示す如く、畦際などで植付部(15)を上昇させての旋回後において、畦など障害物のある場所で植付部(15)を下降させる途中に、図19に示す如くコンクリート製の畦など障害物(133)に植付ケース(20)の後端部或いは後端のバンパー(134)を当接させて、植付部(15)の下降動作を中断させるとき、前記昇降シリンダ(28)による下降制御を中止させるもので、障害物(133)に植付部が当接したか否かの判断を昇降センサ(79)と昇降位置センサ(103)の2つによって行うものである。
【0026】
つまり、通常の植付部(15)の下降時は昇降位置センサ(103)のセンサ値は正常に変化し、センタフロート(34)の田面接地後は昇降センサ(79)のセンサ値も正常に変化するのに対し、障害物(133)に植付部(15)が当接して下降不可能となるときには、植付部(15)の下降停止によって昇降位置センサ(103)が出力変化無し状態、またセンタフロート(34)の非接地によって昇降センサ(79)が出力変化無し状態となって、これらセンサ(79)(103)の何れもが出力変化を停止させる。したがってこのようなセンサ(79)(103)の出力変化停止状態のとき、植付部(15)の下降中に障害物(133)に当接したと判断するもので、このときには植付部(15)を一定時間(例えば植付部(15)を10〜20mm程度上昇する時間)上昇させ、その後本機を発進させ、発進後一定車速(例えば0.3m/s)以上で一定時間(T1)(例えばT1=0.5秒)が経過するまでは植付部(15)を上昇保持し、障害物(133)より離れたと判断される一定時間(T1)経過後は前記昇降センサ(79)に基づく通常の昇降制御によって植付部(15)を下降させるものである。
【0027】
また図18破線に示す如く、上述発進後の一定時間経過途中(T1以内)で本機を停止させた場合には昇降センサ(79)の中立制御位置となる前記センタフロート(34)が接地し目標の傾斜角度(V1)の不感帯域に入るまで植付部(15)を下降させて、少し移動で障害物(133)との干渉を回避させた場合における極力畦際よりの適正深さでの植付けを可能とさせている。
【0028】
一方図20、図21に示す如く、センタフロート(34)より後端を後方に突出させるサイドフロート(35)の傾斜センサ(132)によって、サイドフロート(35)の後端と畦など障害物(133)との干渉を検出するもので、畦際などで植付部(15)の下降動作中、サイドフロート(35)後端と障害物(133)との干渉によってサイドフロート(35)が自然前下り姿勢よりさらに前下り姿勢に変化したときには前記傾斜センサ(132)でこれを検出して、前記昇降シリンダ(28)による下降を停止させ、本機を前進させ、障害物(133)よりサイドフロート(35)後端が離れて該フロート(35)が前上り方向に変化するときには、前記昇降センサ(79)による目標値(V1)までの下降制御を行うものである。
【0029】
而してこの場合にも障害物(133)にサイドフロート(35)を乗り上げて作業を行う場合の、植付爪(17)の損傷やフロート(35)及びこの調節リンク(63)など支持部材の変形事故などの発生を防止して、フロート(35)に無理な力が作用することのない畦際からの良好な植付作業を可能とさせるものである。
【0030】
【発明の効果】
以上実施例から明らかなように、請求項1に係る発明は、植付部(15)に支持するフロート(34)の傾斜角度を検出する昇降センサ(79)と、該昇降センサ(79)の検出値に基づいて植付部(15)を昇降制御する植付昇降制御機構(28)とを備えた田植機において、植付部(15)の対機体高さを検出する昇降位置センサ(103)を設け、植付部(15)の下降動作中で昇降センサ(79)及び昇降位置センサ(103)の何れにも出力変化がないとき、植付部(15)の下降を中止させるものであるから、昇降センサ(79)と昇降位置センサ(103)とを用いた極めて簡単な手段で畦際などでの障害物(133)を容易に検出して、畦際など障害物のある所での適正な植付部(15)の下降作業を可能とさせることができる。また、昇降センサ(79)の出力と、昇降位置センサ(103)の出力とに基づき、植付部(15)の植付ケース(20)またはバンパー(134)等が障害物に当接したか否かが判断でき、植付部(15)の変形や破損事故を確実に防止することができるものである。
【0031】
請求項2に係る発明は、植付部(15)の下降動作中で昇降センサ(79)及び昇降位置センサ(103)の何れにも出力変化がないとき、植付部(15)を一定高さだけ上昇させて機体を一定時間だけ走行させる一方、一定時間内の走行停止時には昇降センサ(79)の中立制御位置まで植付部(15)を下降させるものであるから、昇降センサ(79)及び昇降位置センサ(103)でもって植付部(15)が障害物(133)に当接したことを検出したとき、植付部を一定高さ上昇させ、一定時間走行させて、障害物より離れた後にあっては通常の昇降センサ(79)に基づく植付昇降制御に戻して、植付部(15)を適正位置にスムーズに下降させると共に、例えば少しの移動で障害物(133)を回避可能な畦際で一定時間の走行を途中停止させた場合にも、植付部(15)を適正位置まで下降させるように構成したものであるから、極力畦際からの良好な植付作業を可能とさせて、作業性を向上させることができるものである。
【図面の簡単な説明】
【図1】田植機の全体側面図である。
【図2】田植機の全体平面図である。
【図3】走行車体の側面説明図である。
【図4】走行車体の平面説明図である。
【図5】植付部の側面説明図である。
【図6】フロート部の平面説明図である。
【図7】センタフロート部の平面説明図である。
【図8】センタフロート部の側面説明図である。
【図9】植深調節部の側面説明図である。
【図10】植深調節部の正面説明図である。
【図11】植深調節部の平面説明図である。
【図12】昇降位置センサ部の取付説明図である。
【図13】車速センサの取付説明図である。
【図14】油圧回路図である。
【図15】制御回路図である。
【図16】昇降制御のフローチャートである。
【図17】昇降センサとセンタフロートとの関係を示す線図である。
【図18】タイムチャートである。
【図19】植付部と障害物の干渉説明図である。
【図20】昇降制御のフローチャートである。
【図21】サイドフロートと障害物の干渉説明図である。
【符号の説明】
(15)植付部
(28)昇降シリンダ(昇降制御機構)
(34)フロート
(79)昇降センサ
(108)昇降位置センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rice transplanter in which a planting part is controlled to move up and down based on a change in the inclination angle of a float supported by the planting part.
[0002]
[Problems to be solved by the invention]
When trying to start the work by lowering the planting part in the place where there is an obstacle such as the heel, a part of the planting part such as the planting case or the float comes into contact with the obstacle before the grounding of the float. Even when the above-mentioned descending is impossible, the descending signal of the planting part continues to be output, and when the operation is continued as it is, there is a disadvantage that the planting part may be deformed or damaged. .
[0003]
[Means for Solving the Problems]
The invention according to claim 1 includes an elevating sensor that detects an inclination angle of a float that is supported by the planting unit, and a planting elevating control mechanism that controls the elevating unit based on a detection value of the elevating sensor. The rice planting machine is provided with a lift position sensor that detects the height of the planting unit with respect to the machine body, and when there is no change in the output of either the lift sensor or the lift position sensor while the planting part is being lowered, the planting part is lowered. since the is obtained by configuration so that is stopped, and easily detect an obstacle ridges when in such an extremely simple means of using the lift sensor and vertical position sensor, where there is an obstacle during furrow This makes it possible to properly descend the planting part. In addition, based on the output of the lift sensor and the output of the lift position sensor, it can be determined whether or not the planting case or bumper of the planting part has come into contact with an obstacle. It is surely prevented.
In other words, after turning the planting part up at the edge of the bush, turning the planting part in the place where there is an obstacle such as a fence, on the obstacle such as a concrete fence, When a part other than the float, such as a bumper, comes into contact and the descending operation of the planting part is interrupted, the float is supported by the planting part in the lowest lowered state, and the output of the lift sensor is maintained at a constant descending output, and the lift position The sensor output is also constant. Therefore, the lowering output that does not change the lifting sensor (the state where the float is supported in a constant non-grounding posture) and the output that the lifting position sensor does not change (the state where the height of the planting unit is maintained constant) Based on the above, it can be determined whether or not the planting case or the bumper of the planting unit is in contact with the obstacle. Note that when the float comes into contact with an obstacle, the lowering sensor output is automatically suspended regardless of the lifting position sensor output, so the lowering operation of the planting part is automatically interrupted and the deformation of the float And damage accidents are prevented.
[0004]
Invention, when there is no output change in any of the elevating sensor and the elevation position sensor in the downward movement of the planting unit, is caused to travel by a certain time the aircraft is raised planting unit by a predetermined height according to claim 2 on the other hand, at the time of stop of traveling of the predetermined time from those configured in so that lowers the planting unit to the neutral control position of the elevating sensor, planting unit with at lift sensor and the elevation position sensor is in contact with the obstacle When it is detected, raise the planting part to a certain height, run for a certain period of time, and after leaving the obstacle, return to the planting lifting control based on the normal lifting sensor to make the planting part appropriate For example, even when the vehicle travels for a certain period of time while avoiding obstacles with a little movement, the planting part is lowered to the appropriate position and Enables good planting work It is intended to improve the workability.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a side view of a passenger rice transplanter, and FIG. 2 is a plan view thereof. In FIG. 1, (1) is a traveling vehicle on which an operator is boarded, and an engine (2) is mounted on a body frame (3). A front axle case (5) is supported in front of the case (4) via a front axle case (5), and a rear axle case (7) is connected to the rear part of the transmission case (4) to connect the rear axle case ( 7) support the rear wheels (8) for paddy field travel. The spare seedling platforms (10) are attached to both sides of the bonnet (9) covering the engine (2) and the like, and the transmission case (4) is mounted by the vehicle body cover (12) on which the operator gets on via the getting-on / off step (11). ) And the like, and a driver's seat (13) is attached to the upper part of the vehicle body cover (12), and a steering handle (14) is provided at the rear of the bonnet (9) in front of the driver's seat (13).
[0006]
Further, in the figure, (15) is a planting part having a seedling mount (16) for six-row planting and a plurality of planting claws (17), etc. A rotary case (21) for supporting the seedling stage (16) on the planting case (20) through the lower rail (18) and the guide rail (19) so as to be slidable to the left and right and rotating at a constant speed in one direction. Is supported by the planting case (20), and a pair of claw cases (22) and (22) are arranged at symmetrical positions around the rotational axis of the case (21). The claw cases (22) and (22) ) Attach the planting claws (17) and (17) to the tip. Further, a hitch bracket (24) is provided on the front side of the planting case (20) via a rolling fulcrum shaft (23), and a lifting link mechanism (27) including a top link (25) and a lower link (26) is provided. A hydraulic lift cylinder (28), which is a hydraulic lift control mechanism for connecting the hitch bracket (24) to the rear side of the traveling vehicle (1) and moving the planting part (15) up and down via the link mechanism (27), is connected to the lower link. (26), and the front and rear wheels (6) and (8) are driven to move, and at the same time, a seedling for a single plant is planted from a seedling stand (16) that reciprocally slides left and right. And is configured to continuously perform seedling planting work.
[0007]
In the figure, (29) is the main shift lever, (30) is the planting lever that is also the sub-shift lever, (31) is the lift target value setter, (32) is the main clutch pedal, and (33) and (33) are Left and right brake pedals, (34) is a two-level leveling center float, (35) is a two-level leveling side float, and (36) is a six-level side fertilizer.
[0008]
Further, as shown in FIGS. 3 and 4, a gantry (37) is integrally fixed to the upper surface of the front portion of the vehicle body frame (3) which is inclined to a front low rear height (an inclination angle of about 4 degrees), and the gantry (37). The engine (2) is mounted on the upper surface of the engine (2) via an anti-vibration rubber (38) and an engine stand (39), a fuel tank (40) is mounted on the left side of the engine (2), and a right side of the engine (2) is mounted. The muffler (41) is attached to the vehicle body, and the battery (43) is attached to the vehicle frame (3) at the front center side.
[0009]
Still further, a steering wheel (14) for fixing a case base (44) to the vehicle body frame (3), attaching a steering case (45) to the case base (44), and inserting the steering wheel into the handle cylinder (46). The steering shaft (14a) is erected on the upper surface of the steering case (45) at the approximate center between the left and right body frames (3) and (3), and the output shaft (47) is projected on the lower surface of the steering case (45). The steering arm (48) for changing the direction of the left and right front wheels (6) (6) is attached to the output shaft (47).
[0010]
A cylindrical bearing body (49) that is substantially horizontal in the front-rear direction is welded and fixed to the lower side of the engine base (39) below the engine (2), and a counter shaft (50) is attached to the bearing body (49). The counter pulley (51) is attached to the front end of the counter shaft (50) that is inserted and supported and protrudes forward of the bearing body (49), and the front of the engine (2) is positioned approximately at the upper center between the left and right body frames (3) and (3). The engine output shaft (52) is projected on the output shaft, the output pulley (53) is attached to the output shaft (52), and the output pulley (53) is connected to the counter pulley (51) via the V belt (54). I am letting.
[0011]
Further, a rear axle case (7) is bolted and fixed to the rear end of the vehicle body frame (3), the rear surface of the transmission case (4) is connected and fixed to the front surface of the rear axle case (7), and the right side of the transmission case (4) A hydraulic pump (57) for integrally forming a clutch case (55) on the front surface, fitting and fixing the right rear surface of the continuously variable belt transmission case (56) on the front surface of the clutch case (55), and operating the lifting cylinder (28). The case (4) (55) (56) is fixed to the left rear surface of the belt transmission case (56), and is positioned lower than the upper surface between the right and left body frames (3) and (3) of the square pipe shape. And the hydraulic pump (57) is suspended and fixed, and the transmission shaft (58) with a universal joint is connected to the rear end of the counter shaft (50) and the belt transmission case (56). The transmission output of the engine (2) is transmitted to the belt transmission case (56), and the front wheel transmission shaft (59) is provided between the front axle case (5) and the transmission case (4), and the transmission output of the transmission case (4) is provided. Is transmitted to the front and rear wheels (6) and (8) through the axle cases (5) and (7).
[0012]
As shown in FIGS. 5 to 8, a pitching fulcrum shaft (60) for swinging the front part of the center float (34) up and down is provided on the bracket (61) on the upper surface of the rear part of the float (34). The base end of the planting depth adjusting link (63) is fixed to the planting depth adjusting fulcrum shaft (62) pivotally supported by the attached case (20), and the tip of the link (63) is fixed. Is connected to the pitching fulcrum shaft (60).
[0013]
Then, the middle of the output link (66) is pivotally supported on the support shaft (65) supported on the planting case (20) via the fixed arm (64a), and is based on the adjustment fulcrum shaft (62). The rear end of the output link (66) is connected to the front end of the swing arm (67) having a fixed end via a coupling pin (68), and the lifting link is connected to the shaft (69) at the front end of the output link (66). (70) is connected, and a swing link (74) is provided between the shaft (72) of the bracket (71) fixed to the front upper surface of the center float (34) and the shaft (73) on one end side of the lift link (70). ).
[0014]
Further, the middle of the sensor link (75) is pivotally supported on the support shaft (65), and the shaft (76) on one end side of the sensor link (75) and the shaft on the other end side of the lift link (70) ( 77) are connected by an interlocking link (78), and the long hole (81) of the detection arm (80) of the potentiometer type lift sensor (79) supported on the planting case (20) via the fixed arm (64b) When the sensor shaft (82) on the other end side of the sensor link (75) is engaged and connected, and the planting depth changes due to the unevenness of the tiller or the change of the depth, the lifting sensor (79) Is configured to detect.
[0015]
As shown in FIGS. 9 to 11, a planting depth adjusting lever (83) for setting a base planting depth, which is fixed to the fulcrum shaft (62), is appropriately driven and controlled by a planting depth motor (84). The motor mounting base (88) is fixed to the transmission pipe (85) on the right side of the center planting case (20) via the mounting plate (86) and the side plate (87). The L-shaped engagement shaft (92) provided on the adjustment lever (83) is attached to the U-shaped engagement fitting (91) of the mover (90) to be coupled to the rotary screw shaft (89) of the motor (84) of (88). When the mover (90) moves vertically along the screw shaft (89) by driving the motor (84) with one end engaged, the adjustment lever (83) is swung vertically to support the fulcrum. The shaft (62) is rotated to adjust the reference planting depth.
[0016]
The adjustment lever (83) is divided into a base frame portion (83a) fixed to the fulcrum shaft (62) and a distal end operation portion (83b) fixed to the engagement shaft (92). The operating portion (83b) is connected to the front end of the frame portion (83a) via a rotating shaft (93) so as to be swingable left and right, and the engaging shaft (92) and the operating portion (83b) of these frame portions (83a) are connected. A fulcrum spring (95) centered on the rotation shaft (93) is stretched between the shafts (94), and the operation portion (83b) is swung rightward about the rotation shaft (93). Thus, when the engagement shaft (92) is detached from the engagement fitting (91), the adjustment lever (83) can be manually operated. In addition, a lever positioning notch (88b) is formed on one side of the lever guide hole (88a) of the mounting base (88), and a positioning plate fixed to the operating portion (83b) when the adjustment lever (83) is manually operated. (83c) is engaged with the notch (88b) to fix the position of the adjustment lever (83).
[0017]
Further, the operation portion (83b) of the adjustment lever (83) is formed in a short size, and is compactly disposed in a cover (96) fixed to the motor mounting base (88) so as to be freely opened and closed, and the motor mounting base ( 88) is provided with a potentiometer type feedback sensor (98) for detecting the moving position of the sensor pin (97) of the frame portion (83a) via the actuator (98a) so as to detect the planting depth position. ing. The moving element (90) is provided with a guide roller (90a) to be inserted into the moving guide hole (88c) of the mounting base (88), so that the moving element (90) rotates together with the screw shaft (89). It is preventing.
[0018]
When the planting depth is changed around the fulcrum shaft (62) by the planting depth motor (84) or the adjusting lever (83), the vertical displacement position of the pitching fulcrum shaft (60) portion and the front link shaft (66) ( 69) The vertical change position of the portion is substantially the same, and the output of the lift sensor (79) is not changed even if the planting depth is changed.
[0019]
On the other hand, an engine rotation sensor (99) for detecting the number of rotations from the engine (2) transmitted through the transmission shaft (58) to the input shaft portion of the transmission case (56), and the front axle case (5 ) Is provided with a vehicle speed sensor (100) for detecting the traveling output from the transmission case (4) transmitted through the transmission shaft (59), and the vehicle body cover (12) is substantially at the rear center. A pendulum-type or capacitance-type tilt sensor (101) for detecting the front / rear tilt of the car (1) is provided.
[0020]
As shown in FIGS. 5 and 12, a potentiometer type lift position sensor (103) is installed on the left body frame (3) via a sensor mounting plate (102), and the piston rod (28a) of the lift cylinder (28). A detection plate (105) is fixed to a lift arm (104) that connects the tip and the lower link (26), and the detection shaft (106a) at the tip of the detection arm (106) of the position sensor (103) is used as a detection plate. The elevating position is detected by the sensor (103) when the planting portion (15) is moved up and down by the elevating cylinder (28).
[0021]
As shown in FIGS. 3 and 13, the vehicle speed sensor (100) includes a fixed gear on the outer periphery of the spline joint (107) that connects the front wheel transmission shaft (59) and the input shaft (5a) of the front axle case (5). 108) to detect a rotation pulse and calculate a vehicle speed as a running output. A vehicle speed sensor (100) is formed by a rotation sensor (proximity switch) or the like, and a sensor base (109) to which the sensor (100) is attached is provided. Axle case (5) fixed to the vehicle body frame (3) is detachably fixed to a mounting base (110) via a bolt (111) to facilitate installation and replacement of the vehicle speed sensor (100). Constructed to make detection work more convenient and to eliminate the inconvenience of malfunctions caused by chips such as a sensor directly attached to the mission case (4), and to maintain stable detection accuracy. By that.
[0022]
As shown in FIG. 14, the supply hydraulic circuit of the hydraulic pump (112) driven by the engine (2) is branched into a high pressure oil passage (114) and a low pressure oil passage (115) by a flow control valve (113). The steering valve unit (118) for switching the steering valve (117) of the steering cylinder (116) by the steering handle (14), and the lift cylinder (28) by the solenoid type lift and lower valves (119) (120) are operated. A horizontal lift valve unit (121) to be driven is provided in the high pressure oil passage (114), and has a horizontal operation solenoid valve (123) of a horizontal cylinder (122) for controlling the right and left inclined posture of the planting part (15). A valve unit (124) is provided in the low-pressure oil passage (115), and the raising and lowering control of the planting part (15) is performed by the valve (119) (1 Are configured to perform the excitation operation 0) rising and descending solenoid (125) (126).
[0023]
As shown in FIG. 15, the planting lever (30) includes a controller (128) for output connection to the relay circuit (127) of the planting depth motor (84) and the solenoids (125) (126). ) Descending and ascending switches (129) and (130) for detecting planting descending and ascending positions, respectively, sensors (79) (98) (99) (100) (101) (103), and standard planting and Uefuka setter for setting a depth (131), the lift desired value setter for setting a lift target value of the lifting cylinder according to the field surface hardness (28) and (31), the side floats longitudinal direction of (35) A float tilt sensor (132), such as a pendulum type or a capacitance type, that detects tilt is connected to the controller (128) to perform elevation control to maintain the planting depth constant. It is configured to.
[0024]
This embodiment is constructed as described above. As shown in FIGS. 16 and 17, when the planting lever (30) is operated to the lowered position and the lowering switch (120) is turned on, the lowering valve (120 ), The lifting cylinder (28) is driven and the planting part (15) is lowered, and is set by the sensor value (V) flowing into the lifting sensor (79) and the lifting target value setter (31). The planting part (15) is controlled to descend by the elevating cylinder (28) until the target value (V1), which is the target inclination angle of the center float (34), coincides (the inclination angle of the center float (34) is constant). Thereafter, the raising / lowering control of the planting unit (15) is performed to maintain the target planting depth constant (V = V1).
[0025]
Thus, as shown in FIG. 18, after turning the planting part (15) by raising the planting part (15) at the heel, etc., while the planting part (15) is being lowered at a place where there is an obstacle such as a kite, As shown in Fig. 9, the rear end of the planting case (20) or the bumper (134) at the rear end is brought into contact with an obstacle (133) such as a concrete fence, and the lowering operation of the planting unit (15) is interrupted. In this case, the lowering control by the elevating cylinder (28) is stopped, and it is determined whether the planting part is in contact with the obstacle (133) by the elevating sensor (79) and the elevating position sensor (103). It is done by two.
[0026]
That is, the sensor value of the lift position sensor (103) changes normally when the normal planting part (15) is lowered, and the sensor value of the lift sensor (79) is also normal after the center float (34) touches the surface. On the other hand, when the planting part (15) comes into contact with the obstacle (133) and cannot be lowered, the lifting position sensor (103) has no output change due to the lowering of the planting part (15). When the center float (34) is not grounded, the lift sensor (79) is in a state where there is no output change, and any of these sensors (79) (103) stops the output change. Accordingly, when the output change of the sensors (79) and (103) is stopped, it is determined that the planting part (15) is in contact with the obstacle (133) while the planting part (15) is descending. 15) is raised for a certain period of time (for example, the time for raising the planting part (15) by about 10 to 20 mm), and then the machine is started. After the departure, the vehicle is moved at a certain vehicle speed (for example, 0.3 m / s) for a certain period of time (T1). ) (E.g., T1 = 0.5 seconds), the planting part (15) is held up, and after the elapse of a certain time (T1) when it is determined that the planting part (15) is separated from the obstacle (133), the lift sensor (79 ) To lower the planting part (15) by normal lifting control.
[0027]
Also, as shown by the broken line in FIG. 18, when the machine is stopped in the middle of the lapse of a certain time after starting (within T1), the center float (34) serving as the neutral control position of the lift sensor (79) is grounded. The planting part (15) is lowered until it enters the dead zone of the target inclination angle (V1), and when the interference with the obstacle (133) is avoided by moving a little, the depth is as close as possible to the nearest. Planting is possible.
[0028]
On the other hand, as shown in FIG. 20 and FIG. 21, the rear float of the side float (35) and an obstacle such as a ridge by the inclination sensor (132) of the side float (35) that protrudes rearward from the center float (34). 133), and when the planting part (15) is being lowered at the edge of the planting, the side float (35) is naturally moved by the interference between the rear end of the side float (35) and the obstacle (133). When the forward and downward posture is changed to the forward and downward posture, this is detected by the tilt sensor (132), the lowering by the lifting cylinder (28) is stopped, the machine is moved forward, and the obstacle (133) is moved to the side. When the rear end of the float (35) is separated and the float (35) changes in the forward upward direction, the lowering control to the target value (V1) is performed by the lift sensor (79).
[0029]
Thus, in this case as well, when the side float (35) is mounted on the obstacle (133), the planting claw (17) is damaged, the float (35), and the support member such as the adjustment link (63). Therefore, it is possible to prevent the occurrence of deformation accidents and to allow a good planting operation from the heel without excessive force acting on the float (35).
[0030]
【The invention's effect】
As is apparent from the above embodiments, the invention according to claim 1 is a lift sensor (79) for detecting the inclination angle of the float (34) supported by the planting part (15), and the lift sensor (79). In a rice transplanter equipped with a planting lift control mechanism (28) for controlling the planting part (15) to move up and down based on the detected value, a lift position sensor (103) for detecting the height of the planting part (15) with respect to the body. ) To stop the lowering of the planting part (15) when there is no change in the output of either the lifting sensor (79) or the lifting position sensor (103) during the lowering operation of the planting part (15). Therefore, it is possible to easily detect the obstacle (133) at the heel by using very simple means using the lift sensor (79) and the lift position sensor (103), and at the place where there is an obstacle such as the heel. be capable of lowering work proper planting unit (15) That. Whether the planting case (20) or the bumper (134) of the planting part (15) is in contact with an obstacle based on the output of the lifting sensor (79) and the output of the lifting position sensor (103). It can be determined whether or not the planting portion (15) can be reliably prevented from being deformed or damaged.
[0031]
In the invention according to claim 2, when there is no output change in any of the lift sensor (79) and the lift position sensor (103) during the lowering operation of the planting part (15), the planting part (15) is kept at a certain height. while for running predetermined time only by raising the aircraft is, from the time of stop of traveling of the predetermined time is intended to lower the planting unit to the neutral control position of the elevation sensor (79) (15), the lift sensor (79) When the planting part (15) detects that the planting part (15) has come into contact with the obstacle (133) with the lift position sensor (103), the planting part is lifted by a certain height and travels for a certain period of time. After leaving, the planting lifting / lowering control based on the normal lifting / lowering sensor (79) is returned to smoothly lower the planting part (15) to an appropriate position. For example, the obstacle (133) can be moved with a slight movement. Driving for a certain time with avoidable coast Even when the middle is stopped, since it is those constructed so that lowers planting unit (15) to a proper position, as much as possible to allow good planting work from time ridges, improve workability It can be made to.
[Brief description of the drawings]
FIG. 1 is an overall side view of a rice transplanter.
FIG. 2 is an overall plan view of a rice transplanter.
FIG. 3 is a side view of a traveling vehicle body.
FIG. 4 is an explanatory plan view of a traveling vehicle body.
FIG. 5 is an explanatory side view of a planting part.
FIG. 6 is an explanatory plan view of a float part.
FIG. 7 is an explanatory plan view of a center float unit.
FIG. 8 is an explanatory side view of a center float portion.
FIG. 9 is an explanatory side view of a planting depth adjusting unit.
FIG. 10 is a front explanatory view of a planting depth adjusting unit.
FIG. 11 is an explanatory plan view of a planting depth adjusting unit.
FIG. 12 is an explanatory diagram of attachment of a lift position sensor unit.
FIG. 13 is an explanatory view of attachment of a vehicle speed sensor.
FIG. 14 is a hydraulic circuit diagram.
FIG. 15 is a control circuit diagram.
FIG. 16 is a flowchart of elevation control.
FIG. 17 is a diagram showing the relationship between the lift sensor and the center float.
FIG. 18 is a time chart.
FIG. 19 is an explanatory diagram of interference between a planting unit and an obstacle.
FIG. 20 is a flowchart of elevation control.
FIG. 21 is an explanatory diagram of interference between a side float and an obstacle.
[Explanation of symbols]
(15) Planting part (28) Elevating cylinder (elevating control mechanism)
(34) Float (79) Lift sensor (108) Lift position sensor

Claims (2)

植付部(15)に支持するフロート(34)の傾斜角度を検出する昇降センサ(79)と、該昇降センサ(79)の検出値に基づいて植付部(15)を昇降制御する植付昇降制御機構(28)とを備えた田植機において、植付部(15)の対機体高さを検出する昇降位置センサ(103)を設け、植付部(15)の下降動作中で昇降センサ(79)及び昇降位置センサ(103)の何れにも出力変化がないとき、植付部(15)の下降を中止させるように構成したことを特徴とする田植機。Elevating sensor (79) for detecting the inclination angle of the float (34) supported by the planting part (15), and planting for controlling the raising and lowering of the planting part (15) based on the detection value of the elevating sensor (79) In a rice transplanter equipped with a lifting control mechanism (28), a lifting position sensor (103) is provided for detecting the height of the planting part (15) with respect to the machine body , and the lifting sensor is being lowered during the lowering operation of the planting part (15). (79) A rice transplanter characterized by being configured to stop the descent of the planting part (15) when there is no output change in any of the lift position sensor (103). 植付部(15)の下降動作中で昇降センサ(79)及び昇降位置センサ(103)の何れにも出力変化がないとき、植付部(15)を一定高さだけ上昇させて機体を一定時間だけ走行させる一方、一定時間内の走行停止時には昇降センサ(79)の中立制御位置まで植付部(15)を下降させるように構成したことを特徴とする請求項1に記載の田植機。When there is no output change in any of the elevation sensor (79) and the vertical position sensor (103) in the downward movement of the planting unit (15), constant aircraft is raised planting unit (15) by a predetermined height while for running for the time, during running stop within a predetermined time planting machine according to claim 1, characterized by being configured so as to lower the planting unit to the neutral control position of the elevation sensor (79) (15).
JP35395998A 1998-11-26 1998-11-26 Rice transplanter Expired - Fee Related JP3894349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35395998A JP3894349B2 (en) 1998-11-26 1998-11-26 Rice transplanter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35395998A JP3894349B2 (en) 1998-11-26 1998-11-26 Rice transplanter

Publications (2)

Publication Number Publication Date
JP2000157019A JP2000157019A (en) 2000-06-13
JP3894349B2 true JP3894349B2 (en) 2007-03-22

Family

ID=18434377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35395998A Expired - Fee Related JP3894349B2 (en) 1998-11-26 1998-11-26 Rice transplanter

Country Status (1)

Country Link
JP (1) JP3894349B2 (en)

Also Published As

Publication number Publication date
JP2000157019A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
JP3960405B2 (en) Rice transplanter
JP3894349B2 (en) Rice transplanter
JP4442333B2 (en) Traveling vehicle
JP3894348B2 (en) Rice transplanter
JP4001216B2 (en) Rice transplanter
JP4041255B2 (en) Rice transplanter
JP3998827B2 (en) Rice transplanter
JP4016515B2 (en) Rice transplanter
JPH0522023Y2 (en)
JP2002192989A (en) Mobile agricultural machine
JPH0444012Y2 (en)
JPH0445457Y2 (en)
JPH0455445Y2 (en)
JP2985713B2 (en) Rice transplanter planting section elevation control device
JP2000157018A (en) Rice transplanter
JPH0442982Y2 (en)
JP2000060242A (en) Rice transplanter
JP3882976B2 (en) Rice transplanter
JP4438319B2 (en) Ride type rice transplanter
JP4750288B2 (en) Rice transplanter
JP2000175525A (en) Rice transplanter
JP2000060239A (en) Rice transplanter
JP2000175521A (en) Rice transplanter
JPH0444011Y2 (en)
JPH0741301Y2 (en) Rice transplanter

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040604

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20050215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees