JP3893581B2 - Manufacturing method of pipe flange - Google Patents

Manufacturing method of pipe flange Download PDF

Info

Publication number
JP3893581B2
JP3893581B2 JP2000155500A JP2000155500A JP3893581B2 JP 3893581 B2 JP3893581 B2 JP 3893581B2 JP 2000155500 A JP2000155500 A JP 2000155500A JP 2000155500 A JP2000155500 A JP 2000155500A JP 3893581 B2 JP3893581 B2 JP 3893581B2
Authority
JP
Japan
Prior art keywords
cutting
pipe
flange
flow path
bending point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000155500A
Other languages
Japanese (ja)
Other versions
JP2001336681A (en
Inventor
雅敏 羽田
泰夫 須永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Machine Industry Co Ltd
Sanoh Industrial Co Ltd
Original Assignee
Aichi Machine Industry Co Ltd
Sanoh Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Machine Industry Co Ltd, Sanoh Industrial Co Ltd filed Critical Aichi Machine Industry Co Ltd
Priority to JP2000155500A priority Critical patent/JP3893581B2/en
Publication of JP2001336681A publication Critical patent/JP2001336681A/en
Application granted granted Critical
Publication of JP3893581B2 publication Critical patent/JP3893581B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、エンジンの吸気管などの流体導入部に用いられるパイプフランジの製造方法に関するものである。
【0002】
【従来の技術及びその課題】
従来、自動車用あるいは産業機械用のガソリンエンジンとかディーゼルエンジンの吸気管などの流体導入部においては、図13に示すように、板状のフランジ51に接合挿入部51aを形成させ、パイプ52の先端の挿入直管部52bを、接合挿入部51a内に挿入して、ロー付けあるいは溶接で接合しており、パイプ52には曲がり部52aを設けて、干渉物53との干渉を避けているが、曲がり部52aの曲げ半径Rをパイプ52の直径Dの1.2倍以上にしないと急激に管路抵抗が増大するため、なるべく曲げ半径Rを大きくするようにしているが、干渉物53との関係で、曲げ半径Rを小さくせねばならない場合もあり、設計の自由度が小さくなるという問題点があった。
【0003】
このような問題点を解決するために、図14に示すように、鋳造でフランジ55を形成させ、内部に曲がり部55bを形成させて、端部に接合挿入部55aを形成させ、この接合挿入部55aに、直管のパイプ52を接合させて構成したものが存在し、このような構造では、曲がり部55bの曲げ半径Rを大きくすることができ、曲げによる管路抵抗の増大を抑えることができるが、このようなフランジ55を鋳造で形成するためには中子が必要となり、中子砂の粒度などから、この曲がり部55bの内面粗度が大きくなり、これにより管路抵抗が大きくなってしまうという問題点があり、また、鋳造のフランジ55では中子が必要となるため、高価なものとなってしまうという問題点が別に発生する。
【0004】
また、図15に示すように、パイプ52を、直径D1の真円から、高さ方向の寸法がD2の楕円あるいは長円形状に、形状変化区間Pで変化させて、板状フランジ51の長円開口51bに接合させるような構造では、パイプ52に曲がり部52aを形成させた後に、端部を加工して形状変化区間Pを形成させる必要があり、パイプ52の曲がり始めの部分がフランジ51から遠くなり、曲がり部52aの曲げ半径Rを小さくせねばならないという問題点が生ずる。
【0005】
また、図16に示すように、鋳造フランジ55内に、曲がり部55bと形状変化区間Pを作る場合には、曲がり部55bの曲がり半径を大きくすることができるが、成形時に中子が必要であり、中子により曲がり部55bの内面粗度が大きくなり、管路抵抗が大となってしまうという問題点があった。
【0006】
なお、図17は、図15及び図16における長円開口51b及び55cの正面構成図であり、長円開口51b,55cは、真円のパイプ52の直径D1に対し高さ方向の寸法D2は小さく、横方向の寸法D3は大に形成されている。
【0007】
【課題を解決するための手段】
本発明は上記従来の問題点に鑑み案出したものであって、管路抵抗を増大させることなく設計の自由度の大きい曲がり部を有したパイプフランジの製造方法を提供することを第1の目的とし、また第2の目的は、中子を用いずダイカストで加工代の少ない安価なパイプフランジの製造方法を提供せんことを目的とし、その第1の要旨は、2つの主型を合わせて鋳込空間を形成する工程と、直線状のスライド型を前記2つの主型のうちの一方の主型から前記鋳込空間内に直線状に突出した突出部に所定角度をもって該鋳込空間内で接合させる工程と、該鋳込空間内に湯を流し込んで内部で前記所定角度の曲がり部をもって結ばれた第1直管部と第2直管部とからなる流路を有するフランジを形成する工程と、前記曲がり部のうち内側の曲がり点を、その切削寸法が、該曲がり部のうち外側の曲がり部の接点と前記第1直管部及び前記第2直管部をアール状に連続させる仮想円弧との最大距離と同じ、または、該最大距離の1.2倍程度となるよう前記内側の曲がり点を切削加工する工程と、を有することである。
また、第2の要旨は、前記流路は、真円から長円或いは楕円に変化する形状変化区間が形成され、該形状変化区間を前記内側の曲がり点を切削加工する工程で切削される部位内に設定したことである。
また、第3の要旨は、前記流路の形状変更に伴う断面積変化分の修正を、前記曲がり部内側の曲がり点を切削加工する工程で補ったことである。
また、第4の要旨は、前記流路の端側を直線状に切削加工してパイプ接合用の接合部を形成する工程を有し、前記鋳込空間内に湯を流し込んで前記フランジを形成する際に発生する鋳バリを、前記曲がり部内側の曲がり点を切削加工する工程と前記接合部を形成する工程とで除去できる部位に発生するようにしたことである
【0008】
【実施例】
以下、本発明の実施例を図面に基づいて説明する。
図1は、フランジとパイプの接合構造の断面構成図であり、フランジ1は、ダイカストで中子を用いずに形成されたものとなっており、フランジ1の内部には、右側から下流側直管部5が形成され、他方側から接合側直管部4が形成されて、両直管部4,5は、外側曲がり点6及び内側曲がり点7で接点を形成するように構成されている。即ち、上流側及び下流側から2本の直管を角度θで結んだ形状に内部の流路が曲がり状に形成されたものとなっており、接合側直管部4の端部には、直線状の接合挿入部3が形成されて、この接合挿入部3に対し、外側より直径Dの真円のパイプ2が挿入され、ロー付けあるいは溶接で接合されたものとなっている。
【0009】
図1において、前記外側曲がり点6と、その内側の、接合側直管部4および下流側直管部5で構成される2本の直管をアール状に連続させる仮想円弧9との最大距離t1に相当するt2分の寸法が、内側曲がり点7で削り取られて切削部8が形成されており、図2に示すように、この切削部8は、ダイカスト成形後に、流路の内径よりも小さな刃具10の軸10aを回転させて、回転する刃具10で内側曲がり点7を切削加工して削り取ったものである。
【0010】
このように切削部8を形成しておけば、図3に示すように、パイプ2側からフランジ1内の流路に流れ込む流体の実流線11は、流路の外側では仮想円弧9以上には発達せず、流路の内側では切削部8で乱流域が生ずることなく、実流路径Dはパイプ2の内径Dとほぼ同寸法となって、上流から下流側へ流体が流れることとなり、曲げによる管路抵抗の増大を抑えることができるものとなる。
【0011】
なお、切削部8が存在しない場合には、図4に示すように、内側曲がり点7の下流で、流体の粘性などによる内側乱流域12aが形成されて、実流路径D4は小さくなってしまう。また、切削部8の切削量が小さすぎる場合も同様に、内側乱流域12aが発達して、実流路径は小さくなってしまう。
一方、逆に切削部8の切削量が大きすぎると、図5に示すように、この切削部8の部分が拡管部となり、流路径が拡大された後、下流側直管部5の部分に向かって縮管となるため、外側曲がり点6の部分でも外側乱流域12cが外側曲がり点6の乱流域に続いて形成され、また、内側の内側乱流域12bも内側乱流域12aに連続して形成され、管路抵抗が増大してしまうこととなる。
【0012】
従って、切削部8の切削寸法t2は、t1と同じか、t1の1.2倍程度が好ましく、このように設定して切削部8を切削加工した場合には、図3のように、切削部8で乱流域が生ずることなく、管路抵抗を少なくすることができるものとなる。
【0013】
この図1のようなフランジ1は、図6に示すような、主型16,17とスライド型18からなる割り型式のダイカスト鋳型15を用いて、中子を用いることなくダイカスト成形することができるものである。
即ち、主型17に前記外側曲がり点6を形成する部位が設けられており、また、主型17とスライド型18の接合面M1で前記内側曲がり点7の部位が成形され、内部の鋳込空間S内に湯を流し込んでフランジ1を製造することができ、主型17は矢印方向に移動させて抜くことができ、また、スライド型18も矢印方向に抜くことができ、このような割り型式のダイカスト鋳型15であれば、中子を必要とすることなく、直線状に抜き取ってフランジ1の成形が可能となる。
【0014】
なお、フランジ1の成形時に、図7に示すように、主型17とスライド型18の接合面M1の、内側曲がり点7の部位にバリ19bが形成され、外側にはバリ19cが形成されることとなり、また、主型16とスライド型18の接合面M2,M3でバリ19a,19aが形成されることとなるが、このようなダイカスト成形時に発生する鋳バリ19a,19b,19cは、全てその後の切削加工により除去することができるものである。
【0015】
即ち、図7に示すように、前述した内側曲がり点7を刃具10で切削して切削部8を形成させる際に、バリ19bは除去されるものであり、また、パイプ2を接合させるための接合挿入部3を接合挿入部加工用刃具20で切削加工する際に、バリ19a,19a,19cは除去されるものであり、流路内にバリが残ることがなく、別途、鋳バリ19a,19b,19cの除去作業を行う必要がなく、加工工数が少ないものとなる。
【0016】
なお、鋳バリ19b,19c等が流路内に残ると、流体の圧力とか震動などで落下して、流路内に流れ込み、エンジンの吸気管の場合には、バルブの部分に引っ掛かって、シール不良とかバルブの損傷とかエンジンストールなどの重大な問題を発生させるものであるため、鋳バリ19b,19c等は注意深く削除する必要があったが、本例では、切削部8の部位及び接合挿入部3の加工部位にバリ19b,19cが発生するように予め設定されているため、ダイカスト成形の後の切削加工により、確実にこの流路内のバリ19a,19b,19cを削除できるものとなる。
【0017】
なお、図8は、図6の変形例であり、図8のダイカスト鋳型15では、外側曲がり点6の部分を、予め仮想円弧9のアール形状に設定して、主型17を形成したものである。
次に、図9の縦断面図で、また図11の横断面図で示すダイカスト鋳型15は、フランジ1の内部の流路に形状変化区間P1〜P2を形成させることができるものであり、スライド型18は直径D1に形成され、主型17側に、図10に図9のA−A線断面図で、図12に図11のB−B線断面図で示すように、縦寸法がD2で、横寸法がD3の長円または楕円形状の形状部を設けたものである。
【0018】
このようなダイカスト鋳型15では、主型17に、切削部8の切削代t2の区間で直径をD1からD2(D1からD3)に変化させた形状変化区間P1〜P2を設け、切削代t2を、外側曲がり点6と仮想円弧9との間の最大距離t1に、形状変化による断面積変化分を加えた分とすることで、曲がり部の乱流域による管路抵抗の増大を防止できるように構成されており、断面積の修正のための加工も不要となり、中子を用いずに安価にフランジ1を成形することができるものとなっている。
また、主型16,17とスライド型18との接合する面に発生するバリが、切削部8及び接合挿入部3の位置となるように設定されており、その後の切削部8と接合挿入部3の切削加工でバリを除去でき、別途、バリ取り加工を行う必要がなく、フランジ1を安価に製造できるものとなる。
【0019】
【発明の効果】
本発明のパイプフランジの製造方法は、2つの主型を合わせて鋳込空間を形成する工程と、直線状のスライド型を前記2つの主型のうちの一方の主型から前記鋳込空間内に直線状に突出した突出部に所定角度をもって該鋳込空間内で接合させる工程と、該鋳込空間内に湯を流し込んで内部で前記所定角度の曲がり部をもって結ばれた第1直管部と第2直管部とからなる流路を有するフランジを形成する工程と、前記曲がり部のうち内側の曲がり点を、その切削寸法が、該曲がり部のうち外側の曲がり部の接点と前記第1直管部及び前記第2直管部をアール状に連続させる仮想円弧との最大距離と同じ、または、該最大距離の1.2倍程度となるよう前記内側の曲がり点を切削加工する工程と、を有することにより、中子を使わず安価にダイカスト成形でパイプフランジを形成させることができ、しかも、成形されるパイプフランジは、乱流域が生ずることのない、管路抵抗が少ないものとなる。
【0020】
また、前記流路は、真円から長円或いは楕円に変化する形状変化区間が形成され、該形状変化区間を前記内側の曲がり点を切削加工する工程で切削される部位内に設定したことにより、成形されるパイプフランジに、管路抵抗の少ない形状変化区間を形成させることができ、また、鋳バリも後の切削加工で良好に除去することができ、流路内に形状変化区間の存在するフランジを、中子を使わず安価に製造することができるものとなる。
【0021】
また、前記流路の形状変更に伴う断面積変化分の修正を、前記曲がり部内側の曲がり点を切削加工する工程で補ったことにより、切削加工部位の切削代を形状変化による断面積変化分を加えた分とすることで、断面積の修正のための加工も不要となり、安価にフランジを成形することができる。
【0022】
また、前記流路の端側を直線状に切削加工してパイプ接合用の接合部を形成する工程を有し、前記鋳込空間内に湯を流し込んで前記フランジを形成する際に発生する鋳バリを、前記曲がり部内側の曲がり点を切削加工する工程と前記接合部を形成する工程とで除去できる部位に発生するようにしたことにより、ダイカスト成形時に発生する鋳バリは曲がり部内側の切削加工域内及びパイプ接合用の切削加工域内に発生するため、後の切削加工で鋳バリを確実に除去して、鋳バリの脱落による不具合の発生を確実に防ぐことができるものとなる。
【図面の簡単な説明】
【図1】 曲がり流路を形成したフランジに直管状のパイプを接合した状態の断面構成図である。
【図2】 図1のフランジの成形後に、曲がり部内側を刃具で切削している状態の作業説明図である。
【図3】 内側曲がり点の切削量が適正値の場合の、流路内を流れる流体の実流路径を示す説明構成図である。
【図4】 内側曲がり点を切削しない場合に乱流域が発生する状態の説明構成図である。
【図5】 内側曲がり点の切削量が大の場合に乱流域が増大してしまう状態を示す説明構成図である。
【図6】 図1のフランジを成形するためのダイカスト鋳型の断面構成図である。
【図7】 ダイカスト鋳型で成形されたフランジに発生する鋳バリの位置を示す概略構成図である。
【図8】 ダイカスト鋳型の変形例を示す断面構成図である。
【図9】 形状変化区間の存在する流路をフランジに成形するためのダイカスト鋳型の縦断面図である。
【図10】 図9のA−A線端面図である。
【図11】 図9の横断面構成図である。
【図12】 図11のB−B線端面図である。
【図13】 従来のパイプ側を曲げた構成の断面構成図である。
【図14】 従来のフランジ側に曲がり流路を形成させた状態の断面構成図である。
【図15】 従来のパイプ側に形状変化区間を形成させた場合の断面構成図である。
【図16】 従来のフランジ内の流路に形状変化区間を形成させた断面構成図である。
【図17】 図15及び図16における長円開口の正面図である。
【符号の説明】
1 フランジ
2 パイプ
3 接合挿入部
4 接合側直管部
5 下流側直管部
6 外側曲がり点
6a 曲がり部
7 内側曲がり点
8 切削部
9 内接円弧
10 刃具
11 流体の実流線
12a,12b 内側乱流域
12c 外側乱流域
15 ダイカスト鋳型
16,17 主型
18 スライド型
19a,19b,19c 鋳バリ
20 接合挿入部加工用刃具
M1,M2,M3 接合面
S 鋳込空間
P1〜P2 形状変化区間
[0001]
[Industrial application fields]
The present invention relates to a method for manufacturing a pipe flange used in a fluid introduction part such as an intake pipe of an engine.
[0002]
[Prior art and problems]
Conventionally, in a fluid introduction part such as an intake pipe of a gasoline engine or a diesel engine for automobiles or industrial machines, a joint insertion part 51a is formed in a plate-like flange 51 as shown in FIG. The insertion straight pipe portion 52b is inserted into the joint insertion portion 51a and joined by brazing or welding, and the pipe 52 is provided with a bent portion 52a to avoid interference with the interference object 53. If the bending radius R of the bending portion 52a is not 1.2 times the diameter D of the pipe 52 or more, the pipe resistance increases rapidly. Therefore, the bending radius R is increased as much as possible. Therefore, there is a case where the bending radius R has to be made small, and there is a problem that the degree of freedom of design becomes small.
[0003]
In order to solve such problems, as shown in FIG. 14, a flange 55 is formed by casting, a bent portion 55b is formed inside, and a joint insertion portion 55a is formed at the end, and this joint insertion is performed. There is a configuration in which a straight pipe 52 is joined to the portion 55a. With such a structure, the bending radius R of the bent portion 55b can be increased, and an increase in pipe resistance due to bending can be suppressed. However, in order to form such a flange 55 by casting, a core is required, and the inner surface roughness of the bent portion 55b is increased due to the particle size of the core sand, thereby increasing the pipe resistance. In addition, there is another problem that the casting flange 55 requires a core and thus becomes expensive.
[0004]
Further, as shown in FIG. 15, the pipe 52 is changed from a perfect circle having a diameter D1 to an ellipse or an ellipse having a height dimension of D2 in the shape change section P, and the length of the plate-like flange 51 is changed. In the structure that is joined to the circular opening 51 b, it is necessary to form the bent portion 52 a in the pipe 52 and then to process the end portion to form the shape change section P, and the portion where the pipe 52 starts to be bent is the flange 51. This causes a problem that the bending radius R of the bent portion 52a must be reduced.
[0005]
In addition, as shown in FIG. 16, when the bent portion 55b and the shape change section P are formed in the casting flange 55, the bent radius of the bent portion 55b can be increased, but a core is required at the time of molding. In addition, there is a problem that the inner surface roughness of the bent portion 55b increases due to the core, and the pipe resistance increases.
[0006]
FIG. 17 is a front configuration diagram of the oval openings 51b and 55c in FIGS. 15 and 16. The oval openings 51b and 55c have a dimension D2 in the height direction with respect to the diameter D1 of the perfect pipe 52. It is small and has a large lateral dimension D3.
[0007]
[Means for Solving the Problems]
The present invention has been devised in view of the above-mentioned conventional problems, and it is a first object of the present invention to provide a method for manufacturing a pipe flange having a bent portion with a high degree of design freedom without increasing pipe resistance. The second purpose is to provide an inexpensive pipe flange manufacturing method that uses die-casting and has a small machining cost without using a core. The first gist is that the two main types are combined. A step of forming a casting space, and a linear slide mold in the casting space with a predetermined angle at a projecting portion projecting linearly from one of the two main molds into the casting space And a flange having a flow path composed of a first straight pipe portion and a second straight pipe portion connected with a bent portion of the predetermined angle inside by pouring hot water into the casting space. Step of bending and inner side of the bent portion The cutting dimension is the same as the maximum distance between the contact point of the outer bent portion of the bent portion and the virtual arc that continuously connects the first straight pipe portion and the second straight pipe portion in a round shape, or And a step of cutting the inner bending point so as to be about 1.2 times the maximum distance .
The second gist is that the flow path is formed with a shape change section that changes from a perfect circle to an ellipse or an ellipse, and the shape change section is cut in a process of cutting the inner bending point. It is set in .
The third gist is that the correction of the change in the cross-sectional area accompanying the change in the shape of the flow path is supplemented by a process of cutting a bending point inside the bending portion .
The fourth gist has a step of cutting the end side of the flow path into a straight line to form a joint for pipe joining, and pouring hot water into the casting space to form the flange. The casting burr generated at the time of forming is generated at a site that can be removed by the process of cutting the bending point inside the bent part and the process of forming the joint part.
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional configuration diagram of a flange-pipe joint structure. The flange 1 is formed by die casting without using a core, and the flange 1 is directly connected from the right side to the downstream side. The pipe part 5 is formed, the joining side straight pipe part 4 is formed from the other side, and both the straight pipe parts 4 and 5 are configured to form a contact at the outer bending point 6 and the inner bending point 7. . That is, the internal flow path is formed in a shape in which two straight pipes are connected at an angle θ from the upstream side and the downstream side, and the end of the joint-side straight pipe part 4 is A straight joint insertion portion 3 is formed, and a perfect circular pipe 2 having a diameter D is inserted from the outside into the joint insertion portion 3 and joined by brazing or welding.
[0009]
In FIG. 1, the maximum distance between the outer bending point 6 and a virtual arc 9 in which two straight pipes constituted by the joining-side straight pipe part 4 and the downstream straight pipe part 5 are continuous in a round shape. The dimension of t2 corresponding to t1 is scraped off at the inner bending point 7 to form a cutting part 8, and as shown in FIG. 2, this cutting part 8 is smaller than the inner diameter of the flow path after die casting. The shaft 10a of the small cutting tool 10 is rotated, and the inner bending point 7 is cut by the rotating cutting tool 10 and cut off.
[0010]
If the cutting part 8 is formed in this way, as shown in FIG. 3, the actual flow line 11 of the fluid flowing into the flow path in the flange 1 from the pipe 2 side is larger than the virtual arc 9 outside the flow path. Does not develop, a turbulent flow region does not occur in the cutting part 8 inside the flow path, the actual flow path diameter D is substantially the same as the inner diameter D of the pipe 2, and the fluid flows from upstream to downstream, An increase in pipe resistance due to bending can be suppressed.
[0011]
If the cutting portion 8 is not present, as shown in FIG. 4, an inner turbulent flow region 12a due to fluid viscosity or the like is formed downstream of the inner bending point 7, and the actual flow path diameter D4 becomes smaller. . Similarly, when the cutting amount of the cutting portion 8 is too small, the inner turbulent flow region 12a develops and the actual flow path diameter becomes small.
On the other hand, if the cutting amount of the cutting portion 8 is too large, as shown in FIG. 5, the portion of the cutting portion 8 becomes a tube expanding portion, and after the flow path diameter is expanded, the portion of the downstream straight tube portion 5 is expanded. Therefore, the outer turbulent flow region 12c is formed following the turbulent flow region at the outer bending point 6, and the inner turbulent flow region 12b is also continuous with the inner turbulent flow region 12a. As a result, the pipe resistance increases.
[0012]
Therefore, the cutting dimension t2 of the cutting part 8 is preferably the same as t1 or about 1.2 times t1, and when the cutting part 8 is cut and set in this way, as shown in FIG. It is possible to reduce the pipe resistance without generating a turbulent flow region in the portion 8.
[0013]
The flange 1 as shown in FIG. 1 can be die-casted without using a core by using a split-type die casting mold 15 composed of main molds 16 and 17 and a slide mold 18 as shown in FIG. Is.
That is, a portion for forming the outer bending point 6 is provided in the main mold 17, and a portion of the inner bending point 7 is formed by a joint surface M 1 between the main mold 17 and the slide mold 18, and the inner casting is performed. The flange 1 can be manufactured by pouring hot water into the space S, the main mold 17 can be pulled out by moving in the direction of the arrow, and the slide mold 18 can also be pulled out in the direction of the arrow. If the die-cast mold 15 is of the type, the flange 1 can be formed by drawing it straight without requiring a core.
[0014]
At the time of molding the flange 1, as shown in FIG. 7, a burr 19b is formed at the inner bending point 7 of the joint surface M1 of the main mold 17 and the slide mold 18, and a burr 19c is formed outside. In addition, the burrs 19a and 19a are formed at the joint surfaces M2 and M3 of the main mold 16 and the slide mold 18, and all of the cast burrs 19a, 19b and 19c generated during such die casting are It can be removed by subsequent cutting.
[0015]
That is, as shown in FIG. 7, the burr 19 b is removed when the inner bending point 7 is cut with the blade 10 to form the cutting portion 8, and the pipe 2 is joined. The burrs 19a, 19a, 19c are removed when the joint insertion portion 3 is cut with the joint insertion portion machining blade 20, and no burrs remain in the flow path. It is not necessary to perform the removal work of 19b and 19c, and the number of processing steps is reduced.
[0016]
If the cast burrs 19b, 19c, etc. remain in the flow path, they drop due to fluid pressure or vibration and flow into the flow path, and in the case of an intake pipe of an engine, they are caught by the valve portion and sealed. The casting burrs 19b, 19c and the like had to be carefully removed because they would cause serious problems such as defects, valve damage, engine stalls, etc. In this example, the part of the cutting part 8 and the joint insertion part Since the burrs 19b and 19c are set in advance so that the burrs 19b and 19c are generated in the third processed portion, the burrs 19a, 19b and 19c in the flow path can be surely deleted by cutting after die casting.
[0017]
FIG. 8 is a modification of FIG. 6. In the die casting mold 15 of FIG. 8, the outer bending point 6 is set in advance to the round shape of the virtual arc 9, and the main mold 17 is formed. is there.
Next, the die casting mold 15 shown in the longitudinal cross-sectional view of FIG. 9 and in the cross-sectional view of FIG. 11 can form the shape change sections P1 to P2 in the flow path inside the flange 1, and slides. The mold 18 is formed to have a diameter D1, and on the side of the main mold 17, the vertical dimension is D2 as shown in FIG. 10 as a sectional view taken along line AA in FIG. Thus, an elliptical or elliptical shape portion having a lateral dimension of D3 is provided.
[0018]
In such a die casting mold 15, the main mold 17 is provided with shape change sections P1 to P2 in which the diameter is changed from D1 to D2 (D1 to D3) in the section of the cutting allowance t2 of the cutting portion 8, and the cutting allowance t2 is set. By increasing the maximum distance t1 between the outer bend point 6 and the virtual arc 9 by adding the change in the cross-sectional area due to the shape change, it is possible to prevent an increase in pipe resistance due to the turbulent flow region at the bend. Thus, the processing for correcting the cross-sectional area is not required, and the flange 1 can be formed at low cost without using a core.
Moreover, the burr | flash which generate | occur | produces in the surface which the main type | molds 16 and 17 and the slide type | mold 18 join is set so that it may become the position of the cutting part 8 and the joining insertion part 3, and the subsequent cutting part 8 and joining insertion part The burrs can be removed by the cutting process 3, and it is not necessary to perform a deburring process separately, and the flange 1 can be manufactured at low cost.
[0019]
【The invention's effect】
The manufacturing method of the pipe flange of the present invention includes a step of forming a casting space by combining two main molds, and a linear slide mold from one main mold of the two main molds into the casting space. A step of joining the projecting portion projecting linearly at a predetermined angle in the casting space, and a first straight pipe portion in which hot water is poured into the casting space and connected with the bent portion of the predetermined angle inside Forming a flange having a flow path composed of a second straight pipe portion, an inner bending point of the bent portion, a cutting dimension of the bent portion and a contact point of the outer bent portion of the bent portion, and the first The step of cutting the inner bending point so as to be the same as the maximum distance from the virtual arc that makes the straight pipe part and the second straight pipe part continuous in a round shape, or about 1.2 times the maximum distance. and, by having a, low cost die-without the core The pipe flange can be formed by the strike molding, and the molded pipe flange does not generate a turbulent flow region and has a low pipe resistance.
[0020]
Further, the flow path has a shape change section that changes from a perfect circle to an ellipse or an ellipse, and the shape change section is set in a portion that is cut in the step of cutting the inner bending point. The pipe flange to be molded can be formed with a shape change section with little pipe resistance, and cast burrs can be removed well by subsequent cutting, and there is a shape change section in the flow path. The flange to be manufactured can be manufactured at low cost without using a core.
[0021]
Further, the correction of the change in the cross-sectional area due to the change in the shape of the flow path is supplemented by the process of cutting the bending point inside the bent portion, so that the cutting allowance of the cut portion is changed by the change in the cross-sectional area due to the change in shape. By adding the above, processing for correcting the cross-sectional area becomes unnecessary, and the flange can be formed at a low cost.
[0022]
Further, it has a step of cutting the end side of the flow path into a straight line to form a joint portion for pipe joining, and casting that occurs when hot water is poured into the casting space to form the flange. Since burrs are generated in the part that can be removed by the process of cutting the bending point inside the bent part and the process of forming the joined part, the casting burr generated at the time of die casting is cut inside the bent part. Since it occurs in the machining area and in the cutting area for pipe joining, the casting burr can be surely removed by subsequent machining, and the occurrence of defects due to the dropping of the casting burr can be reliably prevented.
[Brief description of the drawings]
FIG. 1 is a cross-sectional configuration diagram of a state in which a straight pipe is joined to a flange having a curved flow path.
FIG. 2 is an operation explanatory diagram in a state where the inside of a bent portion is cut with a cutting tool after molding of the flange of FIG. 1;
FIG. 3 is an explanatory configuration diagram showing the actual flow path diameter of the fluid flowing in the flow path when the cutting amount of the inner bending point is an appropriate value.
FIG. 4 is an explanatory configuration diagram of a state in which a turbulent flow region is generated when an inner bending point is not cut.
FIG. 5 is an explanatory configuration diagram illustrating a state in which a turbulent flow region increases when the cutting amount of an inner bending point is large.
6 is a cross-sectional configuration diagram of a die casting mold for forming the flange of FIG. 1. FIG.
FIG. 7 is a schematic configuration diagram showing a position of a casting burr generated on a flange formed by a die casting mold.
FIG. 8 is a cross-sectional configuration diagram showing a modification of the die casting mold.
FIG. 9 is a longitudinal sectional view of a die casting mold for forming a flow path having a shape change section into a flange.
FIG. 10 is an end view taken along line AA in FIG.
11 is a cross-sectional configuration diagram of FIG. 9;
12 is an end view taken along line BB of FIG.
FIG. 13 is a cross-sectional configuration diagram of a configuration in which a conventional pipe side is bent.
FIG. 14 is a cross-sectional configuration diagram in a state in which a bent flow path is formed on the conventional flange side.
FIG. 15 is a cross-sectional configuration diagram in the case where a shape change section is formed on the conventional pipe side.
FIG. 16 is a cross-sectional configuration diagram in which a shape change section is formed in a flow path in a conventional flange.
17 is a front view of the oval opening in FIGS. 15 and 16. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flange 2 Pipe 3 Joining insertion part 4 Joining side straight pipe part 5 Downstream side straight pipe part 6 Outer bending point 6a Bending part 7 Inner bending point 8 Cutting part 9 Inscribed circular arc 10 Cutting tool 11 Fluid actual flow line 12a, 12b inside Turbulent flow region 12c Outer turbulent flow region 15 Die casting mold 16, 17 Main mold 18 Slide mold 19a, 19b, 19c Casting burr 20 Cutting tool for joint insertion part M1, M2, M3 Joint surface S Casting space P1-P2 Shape change section

Claims (4)

2つの主型を合わせて鋳込空間を形成する工程と、Forming a casting space by combining two main molds;
直線状のスライド型を前記2つの主型のうちの一方の主型から前記鋳込空間内に直線状に突出した突出部に所定角度をもって該鋳込空間内で接合させる工程と、Joining a linear slide mold in the casting space at a predetermined angle to a projecting portion projecting linearly into the casting space from one of the two main molds;
該鋳込空間内に湯を流し込んで内部で前記所定角度の曲がり部をもって結ばれた第1直管部と第2直管部とからなる流路を有するフランジを形成する工程と、Pouring hot water into the casting space and forming a flange having a flow path composed of a first straight pipe part and a second straight pipe part connected with the bent part of the predetermined angle inside;
前記曲がり部のうち内側の曲がり点を、その切削寸法が、該曲がり部のうち外側の曲がり部の接点と前記第1直管部及び前記第2直管部をアール状に連続させる仮想円弧との最大距離と同じ、または、該最大距離の1.2倍程度となるよう前記内側の曲がり点を切削加工する工程と、An internal bending point of the bent portion, and a cutting dimension thereof is a virtual arc that connects the contact point of the outer bent portion of the bent portion with the first straight pipe portion and the second straight pipe portion in a round shape. Cutting the inner bending point to be the same as the maximum distance or about 1.2 times the maximum distance;
を有するパイプフランジの製造方法。A method for manufacturing a pipe flange.
前記流路は、真円から長円或いは楕円に変化する形状変化区間が形成され、The flow path is formed with a shape change section that changes from a perfect circle to an ellipse or an ellipse,
該形状変化区間を前記内側の曲がり点を切削加工する工程で切削される部位内に設定したことを特徴とする請求項1に記載のパイプフランジの製造方法。2. The method for manufacturing a pipe flange according to claim 1, wherein the shape change section is set in a portion to be cut in the step of cutting the inner bending point.
前記流路の形状変更に伴う断面積変化分の修正を、前記曲がり部内側の曲がり点を切削加工する工程で補ったことを特徴とする請求項2に記載のパイプフランジの製造方法。The method for manufacturing a pipe flange according to claim 2, wherein the correction of the change in the cross-sectional area accompanying the change in the shape of the flow path is supplemented by a step of cutting a bending point inside the bending portion. 前記流路の端側を直線状に切削加工してパイプ接合用の接合部を形成する工程を有し、A step of cutting the end side of the flow path into a straight line to form a joint for pipe joining,
前記鋳込空間内に湯を流し込んで前記フランジを形成する際に発生する鋳バリを、前記曲がり部内側の曲がり点を切削加工する工程と前記接合部を形成する工程とで除去できる部位に発生するようにしたことを特徴とする請求項1乃至請求項3何れかに記載のパイプフランジの製造方法。Cast burrs that are generated when hot water is poured into the casting space to form the flange are generated at a part that can be removed by the process of cutting the bending point inside the bending part and the process of forming the joint part. The pipe flange manufacturing method according to any one of claims 1 to 3, wherein the pipe flange is manufactured.
JP2000155500A 2000-05-25 2000-05-25 Manufacturing method of pipe flange Expired - Lifetime JP3893581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000155500A JP3893581B2 (en) 2000-05-25 2000-05-25 Manufacturing method of pipe flange

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000155500A JP3893581B2 (en) 2000-05-25 2000-05-25 Manufacturing method of pipe flange

Publications (2)

Publication Number Publication Date
JP2001336681A JP2001336681A (en) 2001-12-07
JP3893581B2 true JP3893581B2 (en) 2007-03-14

Family

ID=18660435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000155500A Expired - Lifetime JP3893581B2 (en) 2000-05-25 2000-05-25 Manufacturing method of pipe flange

Country Status (1)

Country Link
JP (1) JP3893581B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10253913B2 (en) 2012-09-18 2019-04-09 Nifco Inc. Curved tube structure and die for forming curved tube

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6152064B2 (en) * 2014-03-18 2017-06-21 株式会社ニフコ Curved pipe structure
JP6529275B2 (en) * 2014-06-25 2019-06-12 出光興産株式会社 Piping communication member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10253913B2 (en) 2012-09-18 2019-04-09 Nifco Inc. Curved tube structure and die for forming curved tube

Also Published As

Publication number Publication date
JP2001336681A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
JP6535584B2 (en) Method of manufacturing compressor housing
US6886516B2 (en) Cylinder head of internal combustion engine and method of producing same
JP3893581B2 (en) Manufacturing method of pipe flange
CN203362256U (en) Device body integrally provided with flow path
CN111512032A (en) Method for producing a turbine housing
JP3975980B2 (en) Engine intake system
JPH04341834A (en) Method for injection molding of curved pipe made of synthetic resin
JP3373245B2 (en) Method of manufacturing bent pipe
JP6242533B1 (en) Hollow part and manufacturing method thereof
JP2016074029A (en) Tubular member
US10532500B2 (en) Hollow product and method of making the product
JP2001205408A (en) Method for casting pipe having ruggedness on outer periphery of spigot
JP2005169486A (en) Method for manufacturing special shaped bend taper tube and special shaped bend taper tube which is manufactured by this method
EP2602469A1 (en) Acoustic resonator of a system for piping gas of an internal combustion engine and a process for manufacturing an acoustic resonator
JP3111070B1 (en) Piping joint structure
JP7437274B2 (en) intake control device
JP2021021416A (en) Piping and its manufacturing method
TWI852194B (en) Joint of gravity casting runner system and gravity casting runner system
JP3487031B2 (en) Manufacturing method of silencing hose
JP3037388U (en) Forged valve housing structure
JP2005096393A (en) Method for producing synthetic resin molding, primary molding, and synthetic resin molding
JP4287934B2 (en) Lost wax well lid
JP2019027320A (en) Manufacturing method of member with fluid passage in internal combustion engine
JPH01162558A (en) Manufacture of die material casting in hollow member
JPH11280442A (en) Manufacture of oil plug and oil plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061201

R150 Certificate of patent or registration of utility model

Ref document number: 3893581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term