JP2021021416A - Piping and its manufacturing method - Google Patents

Piping and its manufacturing method Download PDF

Info

Publication number
JP2021021416A
JP2021021416A JP2019136971A JP2019136971A JP2021021416A JP 2021021416 A JP2021021416 A JP 2021021416A JP 2019136971 A JP2019136971 A JP 2019136971A JP 2019136971 A JP2019136971 A JP 2019136971A JP 2021021416 A JP2021021416 A JP 2021021416A
Authority
JP
Japan
Prior art keywords
pipe
wall surface
shape
oil
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019136971A
Other languages
Japanese (ja)
Inventor
純 佐宗
Jun Saso
純 佐宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2019136971A priority Critical patent/JP2021021416A/en
Publication of JP2021021416A publication Critical patent/JP2021021416A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Pipe Accessories (AREA)

Abstract

To provide piping which can suppress the generation of a swirl flow of fluid such as oil, and its manufacturing method.SOLUTION: In piping 1 in which a fluid-passage space 2 is formed, at least one salient part 4 salient toward the space 2 from the piping 1, and suppressing a flow of fluid which swirls in the space 2 is formed at an inner wall face 1a of the piping 1 in a cross section view of the piping 1, and the salient part 4 is formed at least at a part of the piping 1 with respect to a passing direction of the fluid.SELECTED DRAWING: Figure 2

Description

本開示は、配管及びその製造方法に関する。 The present disclosure relates to piping and a method for manufacturing the same.

オイルを動力装置に循環させて、動力装置各部を潤滑又は冷却する技術が提案されている(例えば、特許文献1参照)。 A technique has been proposed in which oil is circulated in a power unit to lubricate or cool each part of the power unit (see, for example, Patent Document 1).

特開2010−255516号公報JP-A-2010-255516

ところで、動力装置の一例であるエンジン(内燃機関)でもその各部にオイル(流体)を循環させているが、オイルの流路を構成する配管内でオイルの旋回流が発生する場合がある。オイルの旋回流が発生すると、この発生に伴うオイルの圧力損失によりオイルの流路に配置されるオイルポンプの吐出量が低下する。そのため、オイルの旋回流の発生を抑制することは重要である。 By the way, even in an engine (internal combustion engine) which is an example of a power unit, oil (fluid) is circulated in each part thereof, but a swirling flow of oil may occur in a pipe constituting an oil flow path. When a swirling flow of oil is generated, the discharge amount of the oil pump arranged in the oil flow path is reduced due to the pressure loss of the oil accompanying the generation. Therefore, it is important to suppress the generation of swirling oil flow.

本開示の目的は、オイル等の流体の旋回流の発生を抑制することができる配管及びその製造方法を提供することにある。 An object of the present disclosure is to provide a pipe capable of suppressing the generation of a swirling flow of a fluid such as oil and a method for manufacturing the same.

上記の目的を達成するための本発明の態様の配管は、内部に流体の通過用の空間が形成される配管において、前記配管の断面視で、前記配管から前記空間に向かって突出して前記空間を旋回する流体の流れを抑制する突出部が前記配管の内壁面に少なくとも1つ形成されるとともに、流体の通過方向に関して前記突出部が前記配管の少なくとも一部に形成される。 The pipe of the aspect of the present invention for achieving the above object is a pipe in which a space for passing a fluid is formed inside, and the space is projected from the pipe toward the space in a cross-sectional view of the pipe. At least one protrusion for suppressing the flow of the fluid swirling around the pipe is formed on the inner wall surface of the pipe, and the protrusion is formed on at least a part of the pipe with respect to the passage direction of the fluid.

本開示によれば、オイル等の流体の旋回流の発生を抑制することができる。 According to the present disclosure, it is possible to suppress the generation of a swirling flow of a fluid such as oil.

本発明の実施形態の配管の内壁面の構成を平面視で例示する図である。It is a figure which illustrates the structure of the inner wall surface of the pipe of embodiment of this invention in a plan view. 図1の配管の内壁面の形状をA断面視で例示する図である。It is a figure which illustrates the shape of the inner wall surface of the pipe of FIG. 1 in A cross-sectional view. 本実施形態の配管の製造方法の工程フローを例示する図である。It is a figure which illustrates the process flow of the manufacturing method of the pipe of this embodiment. 中子の製作時における中子用の鋳型の位置関係を断面視で例示する図である。It is a figure which illustrates the positional relationship of the mold for a core at the time of manufacturing a core in a cross-sectional view. 配管の製造時における配管用の鋳型と中子の位置関係を断面視で例示する図である。It is a figure which illustrates the positional relationship of a mold for piping and a core at the time of manufacturing a pipe in a cross-sectional view.

以下、本開示の実施形態の配管及びその製造方法について、図面を参照しながら説明する。なお、本実施形態では、流体としてオイルOを例示しているが、一例である。流体は、水等の液体や空気等の気体でもよい。 Hereinafter, the piping and the manufacturing method thereof according to the embodiment of the present disclosure will be described with reference to the drawings. In this embodiment, oil O is exemplified as the fluid, but this is an example. The fluid may be a liquid such as water or a gas such as air.

図1に例示するように、本実施形態の配管1は、その内壁面1aの内部にオイルOの通過用の空間2が形成されている部材である。オイルOの通過方向に関して配管1の一部に屈曲部3が形成されている。屈曲部3は、配管1の平面視でオイルOの通過方向がその前後で変化する部位である。言い換えれば、屈曲部3は、配管1の平面視でその内周側の内壁面3aまたは外周側の内壁面3bの曲率半径が実験等により予め設定される所定の閾値以上の部位である。本実施形態では、屈曲部3は、その内周側の内壁面3aの曲率半径Rが所定の閾値以上の部位である。 As illustrated in FIG. 1, the pipe 1 of the present embodiment is a member in which a space 2 for passing oil O is formed inside the inner wall surface 1a thereof. A bent portion 3 is formed in a part of the pipe 1 with respect to the passing direction of the oil O. The bent portion 3 is a portion where the passage direction of the oil O changes before and after the passage direction of the oil O in the plan view of the pipe 1. In other words, the bent portion 3 is a portion where the radius of curvature of the inner wall surface 3a on the inner peripheral side or the inner wall surface 3b on the outer peripheral side thereof in a plan view of the pipe 1 is equal to or greater than a predetermined threshold value preset by an experiment or the like. In the present embodiment, the bent portion 3 is a portion where the radius of curvature R of the inner wall surface 3a on the inner peripheral side thereof is equal to or greater than a predetermined threshold value.

本実施形態の配管1には、配管1の平面視で、オイルOの通過方向に関して突出部4が配管1の内壁面1aの少なくとも一部に形成されている。図2に例示するように、突出部4は、配管1のA断面視で、配管1の内壁面1aから空間2に向かって突出する凸形状の部位である。突出部4は、配管1のA断面視で空間2の外周側を旋回するオイルOが衝突されることで、このオイルOの旋回流(空間2を旋回するオイルOの流れ)を抑制する。言い換えれば、オイルOの旋回流が突出部4に衝突することで、オイルOの旋回流を打ち消してオイルOの流れをその通過方向(配管1の延在方向)に整流する。突出部4は、配管1の内壁面1aに少なくとも1つ(本実施形態では2つ)一体化して形成される。ここで、「一体化」とは、配管1の内壁面1aに突出部4を構成する部材を溶接等により後付けで設置するのではなく、配管1の製造時に内壁面1aの形成とともに突出部4が形成されるという意味である。また、本実施形態では、突出部4の個数は2つであるが、1つでも3つ以上でもよい。突出部4の個数は、例えば、後述する段差部7の長さ等に応じて実験等により設定される。 In the pipe 1 of the present embodiment, in the plan view of the pipe 1, a protruding portion 4 is formed on at least a part of the inner wall surface 1a of the pipe 1 with respect to the passage direction of the oil O. As illustrated in FIG. 2, the protruding portion 4 is a convex portion protruding from the inner wall surface 1a of the pipe 1 toward the space 2 in the A cross-sectional view of the pipe 1. The protruding portion 4 suppresses the swirling flow of the oil O (the flow of the oil O swirling in the space 2) when the oil O swirling on the outer peripheral side of the space 2 collides with the A cross-sectional view of the pipe 1. In other words, when the swirling flow of oil O collides with the protrusion 4, the swirling flow of oil O is canceled and the flow of oil O is rectified in the passing direction (extending direction of the pipe 1). At least one (two in this embodiment) projecting portion 4 is integrally formed with the inner wall surface 1a of the pipe 1. Here, "integration" means that the member constituting the protrusion 4 is not installed on the inner wall surface 1a of the pipe 1 afterwards by welding or the like, but the protrusion 4 is formed at the time of manufacturing the pipe 1. Means that is formed. Further, in the present embodiment, the number of the protruding portions 4 is two, but it may be one or three or more. The number of the protruding portions 4 is set by an experiment or the like according to, for example, the length of the stepped portion 7 described later.

図2に例示するように、配管1の内壁面1aの形状は、配管1のA断面視で、上側の半円形状5と下側の半円形状6とを段差部7の形状で接続して構成される形状である。言い換えれば、内壁面1aの形状は、円形状の上半分(上半円)5をその下半分(下半円)6に対して水平に微小な長さだけ変位(オフセット)させて、両半円の隣り合う端どうしが段差部7で接続された形状である。上側の半円形状5の直径と下側の半円形状6の直径は略同じ値である。突出部4は、段差部7と上側の半円形状5または下側の半円形状6のいずれか一方の端部により形成される。 As illustrated in FIG. 2, the shape of the inner wall surface 1a of the pipe 1 is such that the upper semicircular shape 5 and the lower semicircular shape 6 are connected by the shape of the step portion 7 in the A cross-sectional view of the pipe 1. It is a shape composed of. In other words, the shape of the inner wall surface 1a is such that the upper half (upper semicircle) 5 of the circular shape is horizontally displaced (offset) by a minute length with respect to the lower half (lower semicircle) 6. The shape is such that adjacent ends of a circle are connected by a step portion 7. The diameter of the upper semicircular shape 5 and the diameter of the lower semicircular shape 6 are substantially the same value. The protruding portion 4 is formed by the step portion 7 and the end portion of either the upper semicircular shape 5 or the lower semicircular shape 6.

段差部7の形状は、水平方向に延在する形状で、上側の半円形状5及び下側の半円形状6を除く内壁面1aの残りの形状である。段差部7の延在方向(水平方向、円径方向)の長さは、オイルOの旋回流の抑制効果が段差部7にあり、かつ、段差部7に起因してオイルOの通過方向の流れが乱流化しない長さに設定される。この設定は、上側の半円形状5の直径(下側の半円形状6の直径)やオイルOの流速及び流量等を基にして実験等により行われる。段差部7の長さの一例は、上側の半円形状5の直径の5%〜10%である。 The shape of the step portion 7 is a shape extending in the horizontal direction, and is the remaining shape of the inner wall surface 1a excluding the upper semicircular shape 5 and the lower semicircular shape 6. The length of the step portion 7 in the extending direction (horizontal direction, circular radial direction) is such that the step portion 7 has the effect of suppressing the swirling flow of the oil O, and the step portion 7 causes the oil O to pass through. The length is set so that the flow does not become turbulent. This setting is performed by an experiment or the like based on the diameter of the upper semicircular shape 5 (the diameter of the lower semicircular shape 6), the flow velocity and the flow rate of the oil O, and the like. An example of the length of the step portion 7 is 5% to 10% of the diameter of the upper semicircular shape 5.

なお、上側の半円形状5の直径と下側の半円形状6の直径は異なる値でもよい。段差部7の形状は、オイルOの旋回流を抑制可能な形状であればよく、配管1のA断面視で水平形状に限定されず傾斜した形状でもよい。配管1のA断面視での段差部7の長さは、オイルOの通過方向に関して同じでも異なっていてもよい。内壁面1aの形状は、楕円形状や多角形状の上部をその残りの下部に対して水平に微小な長さだけ変位させて、両方の形状が段差部7で接続された形状としてもよい。 The diameter of the upper semicircular shape 5 and the diameter of the lower semicircular shape 6 may be different values. The shape of the step portion 7 may be any shape as long as it can suppress the swirling flow of the oil O, and may be an inclined shape without being limited to the horizontal shape in the A cross-sectional view of the pipe 1. The length of the step portion 7 in the A cross-sectional view of the pipe 1 may be the same or different with respect to the passing direction of the oil O. The shape of the inner wall surface 1a may be a shape in which the upper portion of the elliptical shape or the polygonal shape is horizontally displaced with respect to the remaining lower portion by a minute length, and both shapes are connected by the step portion 7.

屈曲部3の内周側の内壁面3aの曲率半径Rが大きくなるにつれて、オイルOの流れの変化が大きくなり、配管1の内部でオイルOの旋回流が発生しやすくなる。そこで、図1に例示するように、配管1に関してその内周側の内壁面3aの曲率半径Rが設定閾値R1以上である部分8(屈曲部3の一部)より下流側の一部に突出部4を形成する。言い換えれば、部分8に対応するオイルOの通過領域9より下流側の配管1の一部に突出部4を形成する。オイルOの通過領域9は、部分8と対向する外周側の内壁面3bの部分の両端と部分8の両端とを頂点として形成される四角形の領域である。設定閾値R1は、この閾値以上となると部分8より下流側の配管1でオイルOの旋回流が発生する虞がある値として実験等により予め設定される。突出部4は、オイルOの通過方向に関して、連続的に形成してもよいし、断続的に形成してもよい。また、部分8は曲率半径Rに対応するパラメータである内壁面3aの屈曲角度θが設定角度閾値θ1以上である部分ともいえる。 As the radius of curvature R of the inner wall surface 3a on the inner peripheral side of the bent portion 3 increases, the change in the flow of the oil O increases, and the swirling flow of the oil O tends to occur inside the pipe 1. Therefore, as illustrated in FIG. 1, the inner wall surface 3a on the inner peripheral side of the pipe 1 protrudes to a part downstream from the portion 8 (a part of the bent portion 3) in which the radius of curvature R is equal to or greater than the set threshold value R1. Part 4 is formed. In other words, the protruding portion 4 is formed in a part of the pipe 1 on the downstream side of the oil O passing region 9 corresponding to the portion 8. The oil O passage region 9 is a quadrangular region formed with both ends of the inner wall surface 3b on the outer peripheral side facing the portion 8 and both ends of the portion 8 as vertices. The set threshold value R1 is preset by an experiment or the like as a value at which a swirling flow of oil O may occur in the pipe 1 on the downstream side of the portion 8 when the threshold value is equal to or higher than this threshold value. The protrusion 4 may be formed continuously or intermittently with respect to the passage direction of the oil O. Further, the portion 8 can be said to be a portion in which the bending angle θ of the inner wall surface 3a, which is a parameter corresponding to the radius of curvature R, is equal to or greater than the set angle threshold value θ1.

なお、より詳細には、配管1の内部でオイルOの旋回流が発生するか否かは、曲率半径Rだけでなく、オイルOの粘性、オイルOの流速、屈曲部3より上流側または下流側の配管1の位置における別の屈曲部(配管1が曲がっている部分)の存在の有無等にも依存する。したがって、曲率半径RだけでなくオイルOの粘性等に基づいてオイルOの旋回流が発生する位置を選定し、この選定された配管1の内壁面1aの位置に突出部4が形成されると好ましい。 More specifically, whether or not a swirling flow of oil O is generated inside the pipe 1 depends not only on the radius of curvature R, but also on the viscosity of oil O, the flow velocity of oil O, and upstream or downstream of the bent portion 3. It also depends on the presence or absence of another bent portion (the portion where the pipe 1 is bent) at the position of the pipe 1 on the side. Therefore, when the position where the swirling flow of the oil O is generated is selected based on not only the radius of curvature R but also the viscosity of the oil O, and the protrusion 4 is formed at the position of the inner wall surface 1a of the selected pipe 1. preferable.

本実施形態の配管の製造方法について、工程フローの形で図3を参照しながら説明する。図3の工程フローは配管1の製造時に行われる。 The method of manufacturing the pipe of the present embodiment will be described in the form of a process flow with reference to FIG. The process flow of FIG. 3 is performed at the time of manufacturing the pipe 1.

なお、後述する中子10の製作時に使用する中子用の鋳型11については予め製作しておく。図4に例示するように、中子用の鋳型11は、断面視で同径の半円形状12をその壁面に有する2つの鋳型である。中子用の鋳型11に関して、半円形状12が形成された壁面は平面視で半円形状12による凹部を有するL字形状である。 The mold 11 for the core to be used when the core 10 to be described later is manufactured is manufactured in advance. As illustrated in FIG. 4, the mold 11 for the core is two molds having a semicircular shape 12 having the same diameter in cross-sectional view on the wall surface thereof. Regarding the mold 11 for the core, the wall surface on which the semicircular shape 12 is formed has an L-shape having a recess due to the semicircular shape 12 in a plan view.

また、配管1の製造時に使用する配管用の鋳型13についても予め製作しておく。図5に例示するように、配管用の鋳型13は、断面視で同径の半円形状14をその壁面に有する2つの鋳型である。この半円形状14の直径は中子用の鋳型11の半円形状12の直径より大きい。配管用の鋳型13に関して、半円形状14が形成された壁面は平面視で半円形形状14による凹部を有するL字形状である。 In addition, a mold 13 for piping used at the time of manufacturing the piping 1 is also manufactured in advance. As illustrated in FIG. 5, the pipe mold 13 is two molds having a semicircular shape 14 having the same diameter in cross-sectional view on the wall surface thereof. The diameter of the semicircular shape 14 is larger than the diameter of the semicircular shape 12 of the mold 11 for the core. Regarding the mold 13 for piping, the wall surface on which the semicircular shape 14 is formed has an L-shape having a recess due to the semicircular shape 14 in a plan view.

図3の工程フローがスタートすると、ステップS10(第1工程)で、中子10を製作する。より詳細には、図4に例示するように、まず、2つの中子用の鋳型11を各々の半円形状12を対向させながら互いに水平方向に実験等により予め設定された微小な長さだけずらして密着させる。この密着により、断面視で突出部4が形成される配管1の内壁面1aとなる形状(太線部分)をその外縁とする空間(後の中子10となる空間)を2つの中子用の鋳型11の内部に形成する。 When the process flow of FIG. 3 starts, the core 10 is manufactured in step S10 (first process). More specifically, as illustrated in FIG. 4, first, two molds 11 for cores are placed in a horizontal direction with each semicircular shape 12 facing each other, and only a minute length preset by an experiment or the like. Shift and bring them into close contact. Due to this close contact, the space (the space that becomes the core 10 later) whose outer edge is the shape (thick line portion) that becomes the inner wall surface 1a of the pipe 1 in which the protrusion 4 is formed in the cross-sectional view is used for the two cores. It is formed inside the mold 11.

次いで、この内壁面1aとなる形状をその外縁とする空間に砂を詰め込んだ後、2つの中子用の鋳型11を加熱してこの詰め込んだ砂を固化させる。この固化が完了した砂が中子(砂型の中子)10となる。中子10は、断面視で突出部4が形成される配管1の内壁面1aとなる形状をその壁面に有する。固化が完了した砂を自然冷却等により冷却することで中子10の製作が完了する(ステップS10が完了する)。 Next, sand is packed in a space having the shape of the inner wall surface 1a as the outer edge thereof, and then the molds 11 for the two cores are heated to solidify the packed sand. The sand that has been solidified becomes the core (sand-shaped core) 10. The core 10 has a shape on the inner wall surface 1a of the pipe 1 on which the protruding portion 4 is formed in a cross-sectional view. The production of the core 10 is completed by cooling the solidified sand by natural cooling or the like (step S10 is completed).

ステップS10の完了後、ステップS20(第2工程)に進む。ステップS20では、図5に例示するように、2つの配管用の鋳型13を、2つの半円形状14を基に1つの円形状15が形成されるように配置して密着させる。この円形状15は、後に配管1の外壁面となる形状である。言い換えれば、配管用の鋳型13は、配管1の外壁面となる形状をその壁面により形成可能である。そして、このように配置した2つの配管用の鋳型13の内部に、ステップS10で製作された中子10を、配管1の内壁面1aとなる中子10の形状と配管1の外壁面となる円形状15とが離間して対向するように設定する。ステップS20を完了後、ステップS30に進む。 After the completion of step S10, the process proceeds to step S20 (second step). In step S20, as illustrated in FIG. 5, molds 13 for two pipes are arranged and brought into close contact with each other so that one circular shape 15 is formed based on the two semicircular shapes 14. The circular shape 15 is a shape that later becomes the outer wall surface of the pipe 1. In other words, the mold 13 for piping can form a shape to be the outer wall surface of the piping 1 by the wall surface. Then, inside the molds 13 for the two pipes arranged in this way, the core 10 manufactured in step S10 becomes the shape of the core 10 that becomes the inner wall surface 1a of the pipe 1 and the outer wall surface of the pipe 1. It is set so that the circular shape 15 is separated from the circular shape 15 and faces each other. After completing step S20, the process proceeds to step S30.

ステップS30(第3工程)では、ステップS20で設定された中子10と配管用の鋳型13の間に配管1を構成する溶湯(例えばアルミニウム)16を流し込む。ステップS30を完了後、ステップS40に進む。 In step S30 (third step), the molten metal (for example, aluminum) 16 constituting the pipe 1 is poured between the core 10 set in step S20 and the pipe mold 13. After completing step S30, the process proceeds to step S40.

ステップS40(第4工程)では、ステップS30で流し込んだ溶湯16を自然冷却等により常温まで冷却する。この冷却により溶湯16は固化し、固化が完了した溶湯16は配管1を構成する。溶湯16の固化が完了後、配管用の鋳型13に対して外部から衝撃力を加えることで中子10を崩壊させる。溶湯16の固化が完了し、中子10を崩壊させることでステップS40は完了する。以上により、配管1の製造は完了し、本工程フローは終了する。 In step S40 (fourth step), the molten metal 16 poured in step S30 is cooled to room temperature by natural cooling or the like. The molten metal 16 is solidified by this cooling, and the molten metal 16 that has been solidified constitutes the pipe 1. After the solidification of the molten metal 16 is completed, the core 10 is collapsed by applying an impact force from the outside to the mold 13 for piping. Step S40 is completed by the solidification of the molten metal 16 is completed and the core 10 is disintegrated. As described above, the production of the pipe 1 is completed, and the main process flow is completed.

ここで、従来技術の配管1の製造方法では、図4に例示する2つの中子用の鋳型11を、断面視でこれらの2つの半円形状12により1つの円形状が形成されるように配置及び密着させて、この1つの円形状により形成される内部空間に詰め込んだ砂を加熱及び冷却することで、断面視で円形状の砂型の中子を製作していた。そして、この製作された中子を図5に例示する2つの配管用の鋳型13の円形状15の内部に配置して、中子と配管用の鋳型13の間に配管1を構成する溶湯16を流し込んで冷却することで、断面視でその内壁面1aが円形状の配管1を製造していた。 Here, in the conventional method for manufacturing the pipe 1, the two molds 11 for the core illustrated in FIG. 4 are formed into one circular shape by these two semicircular shapes 12 in a cross-sectional view. By arranging and bringing them into close contact with each other and heating and cooling the sand packed in the internal space formed by this one circular shape, a circular sand-shaped core was produced in a cross-sectional view. Then, the manufactured core is arranged inside the circular shape 15 of the two pipe molds 13 illustrated in FIG. 5, and the molten metal 16 constituting the pipe 1 is formed between the core and the pipe mold 13. By pouring and cooling the pipe 1, a pipe 1 having a circular inner wall surface 1a in cross-sectional view was manufactured.

すなわち、本実施形態の配管1の製造方法は、従来技術の配管1の製造方法に対して、中子10の製作工程(第1工程)で2つの中子用の鋳型11を断面視で互いに水平方向に微小な長さだけずらして密着させる作業を加えただけである。 That is, the manufacturing method of the pipe 1 of the present embodiment is different from the manufacturing method of the pipe 1 of the prior art, in which the molds 11 for the two cores are mutually viewed in cross section in the manufacturing process of the core 10 (first step). Only a small length was shifted in the horizontal direction to bring them into close contact.

以上より、本実施形態の配管1によれば、旋回するオイル等の流体が突出部4の段差部7に衝突することで流体の旋回流の発生を抑制することができる。流体の旋回流の発生を抑制することで旋回流に起因する流体の圧力損失が低減されるので、流体の流路に配置されるオイルポンプの吐出量の低下を抑制することができる。 From the above, according to the pipe 1 of the present embodiment, it is possible to suppress the generation of a swirling flow of the fluid by colliding the swirling fluid such as oil with the step portion 7 of the protruding portion 4. Since the pressure loss of the fluid caused by the swirling flow is reduced by suppressing the generation of the swirling flow of the fluid, it is possible to suppress the decrease in the discharge amount of the oil pump arranged in the flow path of the fluid.

配管1に関してその曲率半径Rが設定閾値R1以上である部分8より下流側の一部に突出部4を形成することで、比較的に流体の旋回流が発生し易い場所に旋回流を抑制する部位が形成されるので、旋回流の発生をより効率的に抑制することができる。 By forming a protruding portion 4 on a part of the pipe 1 on the downstream side of the portion 8 whose radius of curvature R is equal to or greater than the set threshold value R1, the swirling flow is suppressed in a place where a swirling flow of fluid is relatively likely to occur. Since the portion is formed, the generation of swirling flow can be suppressed more efficiently.

本実施形態の配管1の製造方法によれば、中子10の製作工程を変更するだけで突出部4を有する配管1の内壁面1aを形成することができるので、配管1の製造作業の効率の低下を抑制することができる。 According to the method for manufacturing the pipe 1 of the present embodiment, the inner wall surface 1a of the pipe 1 having the protruding portion 4 can be formed only by changing the manufacturing process of the core 10, so that the efficiency of the manufacturing work of the pipe 1 can be achieved. Can be suppressed.

2つの中子用の鋳型11を断面視で互いに水平方向に微小な長さだけずらして密着させる作業を加えるだけで本実施形態の中子10を製作可能であるので、配管1の製造作業の効率の維持が容易である。 Since the core 10 of the present embodiment can be manufactured only by adding the work of shifting the molds 11 for the two cores by a small length in the horizontal direction in a cross-sectional view and bringing them into close contact with each other, it is possible to manufacture the core 10 of the present embodiment. It is easy to maintain efficiency.

また、この製造方法等を用いて配管1の内壁面1aに突出部4が一体化して形成されると、内壁面1aに突出部4を溶接等により後付けで設定できない程度に配管1の管径が小さい場合でも流体の旋回流を抑制することができる。 Further, when the protruding portion 4 is integrally formed on the inner wall surface 1a of the pipe 1 by using this manufacturing method or the like, the pipe diameter of the pipe 1 cannot be set by welding or the like on the inner wall surface 1a. Even when is small, the swirling flow of the fluid can be suppressed.

なお、図5では、配管1(溶湯16の部分)の断面形状の肉厚(径方向の厚さ)が周方向に不均一な状態となっているが、実際には段差部7の水平方向の長さは微小であるのでこの肉厚は周方向に略均一な状態となる。 In addition, in FIG. 5, the wall thickness (thickness in the radial direction) of the cross-sectional shape of the pipe 1 (the portion of the molten metal 16) is in a non-uniform state in the circumferential direction, but in reality, the step portion 7 is in the horizontal direction. Since the length of the wall is very small, the wall thickness becomes substantially uniform in the circumferential direction.

1 配管
1a 内壁面
2 空間
3 屈曲部
4 突出部
5 上側の半円形状
6 下側の半円形状
7 段差部
8 曲率半径が設定閾値以上である屈曲部の一部
9 屈曲部の一部に対応するオイルの通過領域
10 中子
11 中子用の鋳型
12 中子用の鋳型の半円形状
13 配管用の鋳型
14 配管用の鋳型の半円形状
15 円形状
16 配管を構成する材料の溶湯
1 Piping 1a Inner wall surface 2 Space 3 Bending part 4 Protruding part 5 Upper semicircular shape 6 Lower semicircular shape 7 Step part 8 Part of bending part whose radius of curvature is equal to or greater than the set threshold 9 Part of bending part Corresponding oil passage area 10 Core 11 Mold for core 12 Semicircular shape of mold for core 13 Mold for piping 14 Semicircular shape of mold for piping 15 Circular shape 16 Molten metal of material constituting piping

Claims (4)

内部に流体の通過用の空間が形成される配管において、
前記配管の断面視で、前記配管から前記空間に向かって突出して前記空間を旋回する流体の流れを抑制する突出部が前記配管の内壁面に少なくとも1つ形成されるとともに、流体の通過方向に関して前記突出部が前記配管の少なくとも一部に形成される配管。
In piping where a space for fluid passage is formed inside
In a cross-sectional view of the pipe, at least one protrusion is formed on the inner wall surface of the pipe so as to project from the pipe toward the space and suppress the flow of the fluid swirling in the space, and with respect to the flow direction of the fluid. A pipe in which the protruding portion is formed in at least a part of the pipe.
前記配管に関してその曲率半径が予め設定された設定閾値以上である部分より下流側の一部に前記突出部が形成される請求項1に記載の配管。 The pipe according to claim 1, wherein the protruding portion is formed in a part downstream of the portion where the radius of curvature of the pipe is equal to or more than a preset set threshold value. 請求項1または2に記載の配管の製造方法において、
前記突出部が形成される前記配管の内壁面となる形状をその壁面に有する中子を製作する第1工程と、
前記第1工程で製作された中子を、前記配管の外壁面となる形状をその壁面により形成可能な鋳型に、前記内壁面となる形状と前記外壁面となる形状とが対向するように設定する第2工程と、
前記第2工程で設定された中子と前記鋳型の間に前記配管を構成する溶湯を流し込む第3工程と、
前記第3工程で流し込んだ溶湯を冷却する第4工程と、
を有することを特徴とする配管の製造方法。
In the method for manufacturing a pipe according to claim 1 or 2.
The first step of manufacturing a core having a shape on the inner wall surface of the pipe on which the protruding portion is formed, and
The core manufactured in the first step is set in a mold capable of forming the shape of the outer wall surface of the pipe by the wall surface so that the shape of the inner wall surface and the shape of the outer wall surface face each other. The second step to do
The third step of pouring the molten metal constituting the pipe between the core and the mold set in the second step, and the third step.
The fourth step of cooling the molten metal poured in the third step and
A method for manufacturing a pipe, characterized in that it has.
前記第1工程が、断面視で同径の半円形状をその壁面に有する2つの中子用の鋳型を、断面視で各々の前記半円形状を対向させながら互いに水平方向に予め設定された微小な長さだけずらして密着させることで、前記2つの中子用の鋳型の内部に断面視で前記配管の内壁面となる形状を外縁とする空間を形成する作業を含むことを特徴とする請求項3に記載の配管の製造方法。 In the first step, two molds for cores having semicircular shapes having the same diameter in cross-sectional view on the wall surface were preset in the horizontal direction with each of the semicircular shapes facing each other in cross-sectional view. It is characterized by including the work of forming a space having the shape of the inner wall surface of the pipe as the outer edge in a cross-sectional view inside the molds for the two cores by shifting the molds by a small length and bringing them into close contact with each other. The method for manufacturing a pipe according to claim 3.
JP2019136971A 2019-07-25 2019-07-25 Piping and its manufacturing method Pending JP2021021416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019136971A JP2021021416A (en) 2019-07-25 2019-07-25 Piping and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019136971A JP2021021416A (en) 2019-07-25 2019-07-25 Piping and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2021021416A true JP2021021416A (en) 2021-02-18

Family

ID=74573210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019136971A Pending JP2021021416A (en) 2019-07-25 2019-07-25 Piping and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2021021416A (en)

Similar Documents

Publication Publication Date Title
JP6080245B2 (en) Turbine engine casing and manufacturing method
WO2009104575A1 (en) Method of manufacturing a pipe coupling component, method of manufacturing a casing structural member, and pipe coupling structure for a hollow part
JP6205117B2 (en) Resin cage for tapered roller bearings
JP6049724B2 (en) Method of manufacturing a diaphragm by casting using a core
WO2015141435A1 (en) Bent pipe structure
JP2021021416A (en) Piping and its manufacturing method
JP6209382B2 (en) Piston for internal combustion engine, piston manufacturing method and manufacturing apparatus
CN206677156U (en) The mould with conformal cooling water route based on direct metal laser sintering and Founding moldability technology
JP6549103B2 (en) Turbine engine blade preform
JP6159352B2 (en) Production method of expansion
JP2009243356A (en) Cylinder liner method for manufacturing and cylinder liner manufacturing mold
KR101140296B1 (en) Method for manufacturing blade ring for gas turbine by centrifugal casting
JP3893581B2 (en) Manufacturing method of pipe flange
JP2010274439A (en) Mold apparatus for injection molding
JP2017066482A (en) Copper-made stave cooler and manufacturing method
JP6629588B2 (en) Die-casting mold, cast product produced using die-casting mold, and method for producing cast product using die-casting mold
CN108788096A (en) The mold and its manufacturing method with conformal cooling water route based on direct metal laser sintering and Founding moldability technology
JP6045389B2 (en) Turbine nozzle and manufacturing method thereof
KR101269646B1 (en) Method of manufacturing of gas turbine air compressor vane carrier
JPH01317679A (en) Hollow cylindrical body for embedding by casting and production thereof
JP4284149B2 (en) Sand core molding device and cylinder head
CN103485923B (en) A kind of piston, outside piston Section Optimization and piston molded line optimization method
KR101864323B1 (en) Cooler assembly and manufacturing method thereof
JP6910542B2 (en) Heat exchanger
JP2007085201A (en) Method of manufacturing piston for internal combustion engine, and piston for internal combustion engine